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der Georg-August-Universität zu Göttingen

vorgelegt von

Guido Skipka

aus Simmerath

Göttingen, den 28.5.2003



Referent: Prof. Dr. A. Munk

Korreferent: Prof. Dr. M. Denker

Tag der mündlichen Prüfung: 25.6.2003
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1 Introduction

In clinical investigations with the goal to evaluate new therapies or diagnostic methods,

the randomized controlled trial is the established design of a study. Especially in drug de-

velopment the randomized controlled trial design is mandatory prescribed by regulatory

agencies. In the past decades the efficacy of a therapy was declared by its superiority

over a placebo. Nowadays, for many indications and diseases the clinical progress leads

to the ethical problem of choosing placebo as a control. The declaration of Helsinki

which expresses the ethical principles for medical research involving human subjects of

the World Medical Association, states: ”The benefits, risks, burdens and effectiveness of

a new method should be tested against those of the best current prophylactic, diagnostic,

and therapeutic methods. This does not exclude the use of placebo, or no treatment, in

studies where no proven prophylactic, diagnostic or therapeutic method exists”. There-

fore, today it is common to compare a new therapy with an established standard therapy

(so-called active control). This implies smaller differences between a new therapy and its

control resulting in a very large number of patients to achieve a given power for detect-

ing a difference between the groups. For acute myocardial infarction trials to evaluate

thrombolytic agents, more than 40,000 patients had to be enrolled in a study (GUSTO

[1993]). Therefore, in the last decade new approaches became popular focussing on the

equivalence of a new therapy and an established standard and not on superiority, see e.g.

Dunnett and Gent [1977], Blackwelder [1982], Farrington and Manning [1990], Kieser

[1995], Chan [1998], Röhmel and Mansmann [1999b], Kang and Chen [2000], Hoover

and Blackwelder [2001], Phillips [2003], Pigeot et al. [2003]. With this approach the

sample sizes can be reduced substantially. Further motivations for equivalence trials are

less side effects, less adverse events or an easier handling/application of the new therapy.

In clinical trials comparing a new therapy and a standard, the investigators mostly want

to show that the new therapy is superior to its comparator. This leads to one-sided

hypotheses. In almost all cases the term equivalence in the manner described above is

also defined by an one-sided hypothesis since, more precisely, the goal is to show that

the new therapy is at most irrelevantly inferior to the standard and may be much better.

Equivalence in this context is often called therapeutic equivalence in the literature.

However, the term equivalence suggests a restriction to both directions. It is also used in

bioequivalence trials which involve two-sided hypotheses. For this reason, in the following

5



1. Introduction

the term equivalence will be avoided and replaced by the term non-inferiority.

The parallel group design is the most common setting in clinical trials evaluating new

therapies or diagnostics. The patients are randomly allocated to two or more groups with

different treatment strategies. For quantifying a therapeutic effect θ, usually measures of

location are specified. For continuous outcomes the difference, the standardized differ-

ence or the ratio of the endpoints are mostly used. For binary outcomes the difference,

the ratio (in medicine often called risk ratio or relative risk) or the odds ratio of the rates

is specified.

If a non-inferiority trial is planned, the term inferior has to be quantified by defining

the equivalence margin. This margin is the largest difference which is still clinically

acceptable. A difference bigger than this margin would matter. There is a broad still

ongoing debate how to specify an equivalence margin. A general rule cannot be given.

The equivalence margin depends on clinical aspects like the indication or the endpoint.

Furthermore, the margin is oriented on results of earlier clinical trials. The question how

to specify this margin will not be pursued here.

It is a structural problem to ensure the external validity in two-armed non-inferiority

trials comparing a new treatment and a standard therapy. The external validity is the

ability of a trial to allow for the conclusion of the efficacy of the new treatment, if

non-inferiority is shown. If the efficacy of the standard (the difference between standard

and placebo, where placebo is not evaluated in the trial) is smaller than the specified

equivalence margin, then non-inferiority of an inefficacious new treatment is shown. The

ability of a trial to evaluate the efficacy of a new treatment is called assay sensitivity.

For two-armed trials without a placebo group this can be intended only by consulting

historical comparisons, i.e. investigating the results of similar trials in the past (so-

called meta analyses). If the information about the efficacy of the standard treatment

is insufficient, a third placebo group may be justifiable. In these cases it is possible to

prove the assay sensitivity directly. Therefore, statistical tests are investigated for two

and three independent groups.

Closely related to this is the aim to establish a relevant superiority of a new treatment

compared to a standard one in superiority trials, see e.g. Chan [1998], Chuang-Stein

[2001], Dunnett and Tamhane [1997], Greco et al. [1996], Gustafsson et al. [1996],

Moulton et al. [2001], Röhmel and Mansmann [1999b]. The most common ways to deal

with this problem is to test a proper hypothesis (to be described later on) or to base the

decision on a confidence interval (see e.g. Newcombe [1998] for a survey).

For comparing two groups, a discrepancy measure is defined which is used to describe

the aim of the clinical trial. In the following it is assumed that θ is the measure for the

inferiority of the new treatment T in comparison to the control C. Choosing θ as the
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1. Introduction

difference or standardized difference, the strict equivalence of both groups is expressed

by θ = 0. The statistical hypotheses for proving non-inferiority of T in comparison to C

are given by

H0 : θ ≥ θ0 vs. H1 : θ < θ0 , (1.1)

where the equivalence margin θ0 has to be specified larger than 0.

On the other hand, if the goal is to prove the relevant superiority of T , the margin θ0 in

(1.1) has to be chosen smaller than 0.

For the relative risk or the odds ratio the strict equivalence holds for θ = 1. Here the

margin θ0 has to be chosen > 1 for non-inferiority and < 1 for relevant superiority,

respectively.

Examples: The efficacy of a new thrombolytic agent (T ) in comparison to a standard

one (C) was investigated in patients with acute myocardial infarction by Tebbe et al.

[1998]. Non-inferiority of T over C was defined in terms of the odds ratio of the 30-days

mortality rates, with an equivalence margin θ0 = 1.5. The hypotheses were

H0 :
pT (1 − pC)

pC(1 − pT )
≥ 1.5 vs. H1 :

pT (1 − pC)

pC(1 − pT )
< 1.5 ,

where pT and pC represented the mortality rates of the two groups.

In a three-armed trial by Diehm et al. [1996] in patients with chronic venous insufficiency

the efficacy of dried horse chestnut seed extract was examined. Primary endpoint was

the reduction of the lower leg volume after a treatment over a period of 12 weeks. Two

control groups were included: compression stockings (C) and a drug placebo (P ). Based

on the standardized difference of means two goals were intended: first, the relevant

superiority of C as compared to P , second, the non-inferiority of the new treatment (T )

as compared to C. An equivalence margin of θ0 = 0.5 was chosen for both comparisons.

Therefore, the hypotheses

H0 :
µP − µC

σ
≥ 0.5 vs. H1 :

µP − µC

σ
< 0.5 (rel. superiority),

H0 :
µC − µT

σ
≥ −0.5 vs. H1 :

µC − µT

σ
< −0.5 (non-inferiority),

where specified with µT , µC , µP as the means and σ as the standard deviation of the

groups, respectively. Since the effect of the compression stockings was not well known

at the planning phase, the trial was evaluated by means of a hierarchical test procedure:

Non-inferiority of the new therapy with respect to the standard should be shown in a

second step, provided the relevant superiority of the standard over placebo was shown

in a first step.
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1. Introduction

For normally distributed data Pigeot et al. [2003] suggest a three-armed design for a

treatment group (T ), an active control group (C) and a placebo group (P ). They

specify the null hypothesis

H0 : µC − µT ≥ p (µP − µC) , −1 < p < 0

to avoid the problem of assay sensitivity. Using this hypothesis, the equivalence margin

is specified as a fraction of the efficacy of the control (difference between C and P ).

In this work, hypotheses for three-armed designs consisting of two pairwise hypotheses

of the type (1.1) are considered.

As before, one or two new treatment groups are denoted by T (T1, T2, respectively), one

or two active control groups as C (C1, C2, respectively), and a placebo group as P .

From a medical point of view the following problems including non-inferiority for three-

armed trials may be of interest:

1. non-inferiority of T w.r.t. S1 and w.r.t. S2: In this situation the new treatment has

to be at least as effective as two standards.

2. non-inferiority of T w.r.t. S1 or w.r.t. S2: In this situation the new treatment has

to be at least as effective as one of the two or both standards.

3. non-inferiority of T1 or T2 w.r.t. S: In this situation one of the two or both new

treatments have to be at least as effective as the standard.

4. non-inferiority of T1 and T2 w.r.t. S: In this situation both new treatments have

to be at least as effective as the standard, respectively.

5. non-inferiority of T w.r.t. S and superiority of S w.r.t. P : In this situation the new

treatment has to be at least as effective as the standard and, simultaneously, the

standard has to be relevantly more effective than the placebo.

6. non-inferiority of T w.r.t. S and superiority of T w.r.t. P : In this situation the

new treatment has to be at least as effective as the standard and, simultaneously,

relevantly more effective than the placebo.

From a statistical point of view the problems mentioned above can be expressed by the

following three types of hypotheses. Let θi,j denote the distance measure for group i and

j, and let θ01 , θ02 be the two equivalence margins, respectively:

a) H0 : θ1,2 ≥ θ01 ∨ θ1,3 ≥ θ02 vs. H1 : θ1,2 < θ01 ∧ θ1,3 < θ02 ,

b) H0 : θ1,2 ≥ θ01 ∧ θ1,3 ≥ θ02 vs. H1 : θ1,2 < θ01 ∨ θ1,3 < θ02 ,

c) H0 : θ1,2 ≥ θ01 ∨ θ2,3 ≥ θ02 vs. H1 : θ1,2 < θ01 ∧ θ2,3 < θ02 .
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1. Introduction

The problems 1, 4 and 5 are of type a), the problems 2 and 3 are of type b) and the

problem 6 is of type c).

The goal of this work is to derive statistical tests based on the likelihood ratio (LR)

principle for the three hypotheses mentioned above. Further we will compare these tests

with the commonly used statistical approaches with respect to level and power. We will

focus solely on testing methods. However, in principle all procedures can be used to

obtain confidence intervals by proper inversion (Casella and Berger [2002, Ch. 9.2]).

This work is organized as follows: In Chapter 2 we introduce the general methodology

of LR tests. The main theorems will be given in order to determine the asymptotic

distribution of the likelihood ratio statistic for special cases introduced in the subsequent

chapters. In Chapter 3 we give a survey for the two-sample case for normally distributed

data. It will be shown that the LR tests for the commonly used distance measures are

equivalent to the t-tests usually applied in this situation. This will be extended to three

groups in Chapter 4. The LR test will be derived applying the methodology of order

restricted inference (see e.g. Robertson et al. [1988]). We show that for the hypotheses

a) and c), respectively, the LR test is the same as the intersection-union test, when its

two-sample pooled variances are replaced by the three-sample pooled variance. Robertson

et al. [1988] derived the LR test in the general setting of k > 2 groups which will be

used for the hypotheses b). In this case it is possible to give explicit formulae under the

assumption of three homoscedastic groups. We investigate the power of the LR test and

the commonly used pairwise comparison procedures. It will be found that the LR test is

comparable and sometimes slightly superior to the best of the competitors.

In Chapter 5 the LR test for binary outcomes is investigated in the two-sample situation.

We derive the asymptotic distribution of the likelihood ratio statistic for general distance

measures in Section 5.2. A comparison to other asymptotic approaches will be given

regarding the commonly used distance measures. We will show that the power differences

are only marginal on the one hand. On the other hand, the LR test keeps the level more

accurately than its competitors.

It is well known from the literature that the actual level of asymptotic approaches exceeds

the nominal level for small sample sizes. In Section 5.3 we suggest an exact version of the

LR test which is based on an idea used by Storer and Kim [1990] in a different context.

This test is analyzed and compared in a numerical study with various competitors from

the literature. It will be found that in general the power of the LR test tends to be

larger, even if the improvement is small. On the other hand, the computational effort is

larger for the LR test. As a by-product which is of interest on its own we observe serious

numerical difficulties with Barnard’s [1947] test. We will analyze these difficulties and

give an explanation for them.
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1. Introduction

Additionally, we will discuss briefly sample size calculations, and we will show that the

power is maximized in general for unequal group sample sizes in non-inferiority trials.

This is in contrast to trials where the null hypothesis states the equality of treatments.

In Chapter 6 the asymptotic and exact LR approaches are extended to three groups for

the binomial distribution. We will derive the asymptotic distribution of the LR test for the

hypotheses mentioned above. Analogously to the case of normally distributed data, we

obtain the pairwise comparison procedure for hypotheses a) and c). For the hypotheses

b), the LR approach is different from the pairwise comparisons and its asymptotic dis-

tribution can be determined analytically. The asymptotic distribution, however, depends

on unknown nuisance parameters and cannot be used for the practical performance of

the test. Therefore, we suggest to substitute the constrained maximum likelihood esti-

mator for the unknown parameters and to determine the distribution numerically. In a

numerical study we show that this approach is comparable to other asymptotic pairwise

procedures with respect to level and power. Analogously to the two-sample case, we

construct an unconditional exact version based on the LR statistic. This test will be ex-

tensively compared to the pairwise exact procedures for various distance measures. We

find that the exact LR test represents an improvement on the corresponding pairwise

two-sample procedures which can be quite substantial in various cases.

In summary, the exact version of the LR statistic represents a unified and powerful tool

for the assessment of non-inferiority in two- and three-sample settings. In particular, for

binary responses the improvement in power can become quite substantial compared to

its competitors from the literature.
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2 The likelihood ratio principle

The likelihood ratio (LR) principle is a general parametric method to derive statistical

tests for parameters of a probability distribution. Especially for composite hypotheses

which are hypotheses including more than one distribution, this principle leads to very

powerful tests, in general.

In this chapter the general methodology for likelihood ratio tests is described for inde-

pendent samples. This will be used in the subsequent sections to derive the likelihood

ratio test for specific designs and settings.

Let stochastically independent random variables X1, . . . , Xn be given, where Xi has a

density function fi, i = 1, . . . , n, depending on a parameter vector ϑ ∈ Θ ⊆ R
k. For a

fixed sample x1, . . . , xn the likelihood function

L(ϑ) :=
n∏

i=1

fi(xi, ϑ)

provides the probability for obtaining the sample as a function of ϑ, if the sample space

is discrete. For continuous outcomes the likelihood function provides a value which is

proportional to the probability that a sample lies in the neighborhood of the observed

sample. If the null hypothesis and alternative hypothesis divide the parameter space

Θ = Θ0 ∪ Θ1 in two disjoint sets, the likelihood ratio (LR) is given by

λ :=
L(ϑ̂∗)

L(ϑ̂ )
=

supϑ∈Θ0
L(ϑ)

supϑ∈Θ L(ϑ)
. (2.1)

Any parameter vector maximizing the density is called a maximum likelihood estimator

(MLE). Therefore, the LR is the ratio of the joint density with the MLE constrained to

the null hypothesis, ϑ̂∗, and of the density with the unconstrained MLE ϑ̂. If the unknown

true parameter vector is included in the null hypothesis, the LR tends to 1, otherwise

it tends to 0. Thus, it is tempting to use the LR as a test statistic for constructing

a statistical test. For many models, under certain requirements the random variable

−2 log λ follows a χ2-law.

If the null space Θ0 is multidimensional, the numerical determination of the LR is very

cumbersome. The following Theorem 2.1 provides conditions under which the maximum
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2. The likelihood ratio principle

is located at the boundary ∂Θ0 of Θ0. This makes the determination of the maximum

much easier.

Theorem 2.1 Let ϑ ∈ Θ ⊆ R
k and Θ0 ⊂ Θ, where Θ0 and Θ are closed. Let

X1, . . . , Xn be a vector of independent random variables with densities fi, respectively,

such that for each realization x1, . . . , xn

lim
‖ϑ‖→∞

fi(xi, ϑ) = 0 (2.2)

holds. Let the likelihood function L(ϑ) =
∏n

i=1 fi(xi, ϑ) be differentiable in ϑ and

grad L(ϑ) �= 0 for all ϑ ∈ ◦
Θ0:= Θ0 \ ∂Θ0.

Then, the constrained MLE exists, and we have for any MLE

{ϑ̃ | ϑ̃ := arg max
ϑ∈Θ0

L(ϑ)} ⊆ ∂Θ0 .

Proof: In a first step we show the existence of a maximizer of L, i.e. the maximum

is attained in Θ. For compact Θ0 the assertion is trivial. Therefore, assume that Θ0

is not compact. The compact sets Km := {ϑ ∈ Θ0| ‖ϑ‖ ≤ m} (m ∈ N) cover Θ0, i.e.⋃∞
m=1 Km = Θ0. There is a maximizer ϑm of L restricted to Km, again due to compact-

ness of Km. The sequence Km being increasing, i.e. Km ⊆ Km+1, implies L(ϑm) to be

increasing. Suppose there is a subsequence ϑml
such that ‖ϑml

‖ → ∞. The Assumption

(2.2) implies lim‖ϑ‖→∞ L(ϑ) = 0, in particular liml→∞ L(ϑml
) = 0. Since L �≡ 0 and

L ≥ 0, this contradicts the monotonicity of L(ϑml
). Hence, ‖ϑm‖ is bounded, i.e. there

is a compact set K ⊂ Θ0 such that ϑm ∈ K for all m. Thus, maximization is restricted

to this compact set K which proves the assertion.

Now it is shown that the maximum is attained at the boundary of Θ0. Suppose the

contrary, i.e. ϑ̃ ∈ ◦
Θ0. Then there exists an open neighborhood U0 ⊆ ◦

Θ0 of ϑ̃, so that ϑ̃

is a local maximum in U0. Since L(ϑ) is differentiable for all ϑ ∈ Θ0, it follows that

gradL(ϑ̃) = 0 which is a contradiction. �

The merit of Theorem 2.1 is twofold. First, it allows to restrict the parameter space to a

one dimensional curve Θh for numerical computation of the constrained MLE, if Θ ⊆ R
2.

Second, this will be the key property for the derivation of the asymptotic distribution of

the likelihood ratio statistic λ.

The following results from Pruscha [2000] are required to obtain the asymptotic distri-

bution of the LR statistic for different models and hypotheses.

Let

Un(ϑ) :=
∂

∂ϑ
log L(ϑ)

12



2. The likelihood ratio principle

denote the k-dimensional score vector of the likelihood function and

Wn(ϑ) :=
∂

∂ϑ
U�

n (ϑ)

the (k × k)-functional matrix of Un(ϑ).

Definition 2.2 Let Γn be a (k×k)-diagonal matrix with positive elements and Γn → 0

for n → ∞. A sequence ϑ̂n of k-dimensional random vectors is called a Γ−1
n -consistent

Z-estimator for ϑ, if for all ϑ ∈ Θ,

1.) Pϑ(Un(ϑ̂n) = 0) −→ 1 (n → ∞) ,

2.) Γ−1
n (ϑ̂n − ϑ) is Pϑ-stochastically bounded,

i.e. limM→∞ lim supn→∞ Pϑ(|Γ−1
n (ϑ̂n − ϑ)| > M) = 0 .

The following Theorem provides conditions for the asymptotic normality of a Z-estimator.

Theorem 2.3 Let Σ(ϑ) and B(ϑ) denote positive definite (k × k)-matrices. If for all

ϑ ∈ Θ and for n → ∞ the conditions

1.) ΓnUn(ϑ)
D−→ Nk(0, Σ(ϑ)) ,

2.) ΓnWn(ϑ∗
n)Γn

Pϑ−→ −B(ϑ) for all sequences of random vectors ϑ∗
n, for which

Γ−1
n (ϑ∗

n − ϑ) is Pϑ-stochastically bounded,

hold, it follows for a Γ−1
n -consistent Z-estimator ϑ̂n for ϑ that

Γ−1
n (ϑ̂n − ϑ)

D−→ Nk(0, (B
−1(ϑ))�Σ(ϑ)B−1(ϑ)) ,

where Nk(µ, Σ) denotes the k-dimensional normal distribution with mean µ and covari-

ance matrix Σ.

Proof: Pruscha [2000, p. 194] �

The parametrization of composite hypotheses is given by a C(2)-function

h : ∆ → Θ, h(η) = (h1(η), . . . , hk(η))�, η ∈ ∆, over a parameter subspace ∆ ⊂ R
c

with 1 ≤ c < k. Let

h′(η) := (
∂

∂η
h(η))� ,

h′′
j (η) :=

∂2

∂η∂η�h′
j(η) , j = 1, . . . , k ,

be the functional (k × c)-matrix of h with full rank c and the Hessian (c × c)-matrix of

hj, j = 1, . . . , k , respectively.

13



2. The likelihood ratio principle

Theorem 2.4 Let C(η) be a (k× c)-matrix with rank c and let Γ∗
n be (c × c)-diagonal

matrices with positive diagonal entries and Γ∗
n → 0 for n → ∞. Further, let η∗

n be c-

dimensional random vectors for which Γ∗−1

n (η∗
n − η) is Ph(η)-stochastically bounded, and

1.) Γ−1
n h′(η∗

n)Γ∗
n

Ph(η)−→ C(η) ,

2.) Un,j(h(η∗
n))Γ∗

nh
′′
j (η

∗
n)Γ∗

n

Ph(η)−→ 0 , j = 1, . . . , k .

Let
Dh(η)−→ denote the convergence in distribution under the probability law Ph(η). Then a

Γ∗−1

n -consistent Z-estimator η̂n for η exists, satisfying

Γ∗−1

n (η̂n − η)
Dh(η)−→ Nc(0, (B

∗−1

(η))�Σ∗(η)B∗−1

(η)) ,

where Σ∗(η) := C�(η)Σ(h(η))C(η) and B∗(η) := C�(η)B(h(η))C(η).

Furthermore, the log-LR statistic Tn = 2[log L(ϑ̂n)−log L(h(η̂n))] asymptotically follows

a χ2-law:

Tn

Dh(η)−→ χ2
k−c .

Proof: Pruscha [2000, Proposition p. 252, Theorem 4.3 p. 253]. �

Lemma 2.5 Under the conditions of Theorem 2.3, if the matrices Σ and B are equal,

it follows for ϑ = h(η), X̂n(ϑ) := Γ−1
n (ϑ̂n − ϑ), and X̂∗

n(η) := Γ∗−1

n (η̂n − η), that

1.) 2[log L(ϑ̂n) − log L(ϑ)] − X̂�
n (ϑ)Σ(ϑ)X̂n(ϑ)

Pϑ−→ 0 ,

2.) 2[log L(h(η̂n)) − log L(h(η))] − X̂∗�
n (η)Σ∗(η)X̂∗

n(η)
Ph(η)−→ 0 .

Thus, for the LR-statistic Tn it holds that

Tn − X̂�
n (ϑ)[Σ(ϑ) − Σ(ϑ)C(η)Σ∗(η)C�(η)Σ(ϑ)]X̂n(ϑ)

Ph(η)−→ 0 ,

since X̂∗
n(η) − Σ∗−1

(η)C�(η)Σ(h(η))X̂n(h(η))
Ph(η)−→ 0 .

Proof: Pruscha [2000, Proposition (b) p. 195, Corollary p. 249, Theorem 4.3 p.253]. �

The results given above are applied in the following sections to derive the constrained

MLEs, the LR statistics and their asymptotic behavior for various models and hypotheses.
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3 Two normal samples

3.1 Model and hypotheses

In medical research the comparison of two independent groups is the most popular

design. Often, if the outcome is continuous the normality of the data is assumed, or

an appropriate data transformation (e.g. logarithm) leads to approximately normal data.

The difference between the groups is specified by using the group means. As a rule

the group variances are assumed to be equal. This requirement is statistically founded,

since in this case the statistical methods are much easier. However, there is an additional

reason: The comparison of two means makes sense only for similar variances. Two groups

are declared to be equal, if their corresponding means are equal. Certainly, even in the

case of equal means of the two groups, these groups are not considered to be equal, if

the variances differ substantially.

Let X11, . . . , X1n1

i.i.d.∼ N(µ1, σ
2) and X21, . . . , X2n2

i.i.d.∼ N(µ2, σ
2) be two independent

random vectors with equal unknown variances. The mostly used distance measure to

discriminate between the two groups is the difference of the means θd := µ1 − µ2. Various

authors suggest to use the ratio of the means θr := µ1/µ2 for certain situations (Liu and

Weng [1994], Hauschke et al. [1999]). When no information about the data variances is

available, the standardized difference θs := (µ1 − µ2)/σ may be used.

In the following it is assumed that the measures θd, θr and θs quantify the inferiority of

group 1 compared to group 2.

Thus, for θ ∈ {θd, θr, θs} the non-inferiority hypotheses are given by

H0 : θ ≥ θ0 versus H1 : θ < θ0 ,

where θ0 is a fixed value to be specified in advance (cf. the discussion in Chapter 1).

The group sample means and the pooled standard deviation are denoted by x1, x2 and

sp, respectively. Furthermore, (tm,δ)α is the α-quantile of the noncentral t-distribution

with m degrees of freedom and noncentrality parameter δ, while (tm)α is the α-quantile

of the central t-distribution.

15



3. Two normal samples

3.2 LR test and t-statistics

The classical test for differences in means is the two-sample t-test. The test statistic

Td :=
x1 − x2 − θ0

sp

√
1
n1

+ 1
n2

follows a noncentral t-distribution with n1 +n2−2 degrees of freedom and noncentrality

parameter

δd :=
µ1 − µ2 − θ0

σ
√

1
n1

+ 1
n2

=
θd − θ0

σ
√

1
n1

+ 1
n2

. (3.1)

At the boundary of the null space (θd = θ0) the statistic Td follows a t-distribution. The

null hypothesis H0 is rejected at level α for Td < (tn1+n2−2)α. This test is the uniformly

most powerful unbiased test (Lehmann [1986]), and it is equivalent to the LR test, since

the LR-statistic and Td are equivalent. This is shown in the following Lemma.

Lemma 3.1 If x1 − x2 < θ0 holds, the LR-statistic for θd is a strictly monotone

transformation of the t-statistic Td.

Proof: The unconstrained MLE for µ1, µ2 and σ2, respectively, is given by x1, x2, and

σ̂2 :=
n1 + n2 − 2

n1 + n2

s2
p .

Due to Theorem 2.1 the MLEs constrained to H0 are located at the boundary of the

null space and are given (using the results of Mood et al. [1974, Ch. IX, 4.3]) by

µ∗
1 =

n1x1 + n2(x2 + θ0)

n1 + n2

,

µ∗
2 =

n1(x1 − θ0) + n2x2

n1 + n2

,

σ2∗ = σ̂2 +
n1n2

(n1 + n2)2
(x1 − x2 − θ0)

2 .

Thus, for x1 − x2 < θ0 the LR-statistic λ is given by

λ =

[
1 +

n1n2

n1 + n2

(x1 − x2 − θ0)
2

(n1 + n2 − 2)s2
p

]−n1+n2
2

=

[
1 +

T 2
d

n1 + n2 − 2

]−n1+n2
2

.

�
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3. Two normal samples

Using the ratio θr as the distance measure, Sasabuchi [1980] has shown that the LR test

is equivalent to a t-test as well. The test statistic is

Tr :=
x1 − θ0x2

sp

√
1
n1

+
θ2
0

n2

∼ tn1+n2−2,δr ,

where

δr :=
µ1 − θ0µ2

σ
√

1
n1

+
θ2
0

n2

=
θr − θ0

σ
µ2

√
1
n1

+
θ2
0

n2

.

For θr = θ0 the distribution simplifies to a central t-distribution. Thus, the null hypothesis

is rejected for Tr < (tn1+n2−2)α.

For the standardized difference θs the test statistic Td is used with θ0 = 0:

Ts :=
x1 − x2

sp

√
1
n1

+ 1
n2

.

This statistic is noncentrally t-distributed with n1 + n2 − 2 degrees of freedom and non-

centrality parameter

δs :=
µ1 − µ2

σ
√

1
n1

+ 1
n2

=
θs√

1
n1

+ 1
n2

. (3.2)

In order to make a test decision the α-quantile of the noncentral t-distribution has to be

calculated. The null hypothesis is rejected for Ts < (tn1+n2−2,δ(θ0))α where δ(θ0) is the

noncentrality parameter from (3.2) with θs = θ0.

Lehmann [1986, p. 294] has shown that this noncentral t-test is the uniformly most

powerful invariant test with respect to the group of scale transformations. Note, that

this test is different from the LR test. Since the difference in means is constrained in

terms of the standard deviation, numerical calculations are required to determine the

constrained MLE for the LR test. However, the LR test for the standardized difference

is omitted here, since any reasonable statistical tests has to be invariant with respect to

the choice of the measuring scale.
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3. Two normal samples

3.3 Power and sample size calculation

It is possible to calculate the power for a given sample size and to calculate the minimum

sample size for a given power for all three distance measures, since the distribution of

the test statistics Td, Tr and Ts is known for normal data. This will be briefly indicated

in the following.

The test statistic Td is noncentrally t-distributed with n1 + n2 − 2 degrees of freedom

and the noncentrality parameter δd given in (3.1). Thus, the power for specified sample

sizes n1 and n2 and a distance θd (< θ0) is calculated as

1 − β := Pθd
(Td < (tn1+n2−2)α) = Fn1+n2−2,δd

((tn1+n2−2)α) , (3.3)

where Fm,δ(x) is the cumulative distribution function of the noncentral t-distribution

with m degrees of freedom and noncentrality parameter δ which is available in many

statistical software packages.

In planning a clinical trial the required sample size has to be calculated to obtain a given

power 1 − β. If the ratio ε := n1/n2 is fixed, the power in (3.3) is isotonic in n1. Thus,

the minimal sample size n∗
1 is given by

n∗
1 = min{n1 ∈ N : Fn1+n2−2,δd

((tn1+n2−2)α) ≥ 1 − β} , (3.4)

where n2 is replaced by n1/ε. If no statistical software package is available for calculating

the noncentral t-distribution, the following approximation of the α-quantile of the non-

central t-distribution can be used (Johnson and Welch [1940, p. 207]). For large sample

sizes, as min{n1, n2} → ∞,

(tn1+n2−2)α = uα + o(1) ,

(tn1+n2−2,δ)α = δ + uα

√
1 +

1

2(n1 + n2 − 2)
(δ2 − u2

α) + o(1) , (3.5)

where uα denotes the α-quantile of the standard normal distribution. Therefore, an

approximation for n∗
1 from (3.4) is obtained by means of the normal distribution. With

∆d := θd−θ0

σ
(and thus δd = ∆d

√
n1

1+ε
) the requirement (tn1+n2−2,δd

)1−β ≥ (tn1+n2−2)α

is asymptotically equivalent to

∆d

√
n1

1 + ε
+ u1−β

√
1 +

1

2(n1(1 + ε−1) − 2)
(∆2

d

n1

1 + ε
− u2

α) ≥ uα ,

which implies that

n1 ≥ (1 + ε)

(
uα − u1−β

√
1 +

∆2
d

2(1+ε−1)(1+ε)

)2

∆2
d

+ o(1) . (3.6)
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3. Two normal samples

Hence, by (3.6) the total sample size N := n1 +n2 = n1(1+ ε−1) depends on ε only via

the term (1+ ε)(1+ ε−1). Thus, the optimal (in terms of a minimal N) group allocation

is given for ε = 1, since the term (1 + ε)(1 + ε−1) is minimal for ε = 1 and the function

f(x) = x
(−a − b

√
1 + c

2x

)2
is isotonic for positive constants a, b, c and x > 0.

Analogously, for θr (< θ0) and fixed sample sizes n1 and n2 the power of the t-test is

given by

1 − β := Pθr(Tr < (tn1+n2−2)α) = Fn1+n2−2,δr((tn1+n2−2)α) .

For a given power 1 − β and an allocation ε, the minimal n∗
1 is also obtained using

(3.4). However, the noncentrality parameter δd in (3.4) has to be replaced by δr. An

approximation for n∗
1 is given by (analogously to (3.6))

n1 ≥ (1 + εθ2
0)

(
uα − u1−β

√
1 + ∆2

r

2(1+ε−1)(1+εθ2
0)

)2

∆2
r

,

where ∆r := µ2
θr−θ0

σ
(and thus δr = ∆r

√
n1

1+εθ2
0
).

In contrast to the difference θd, the 1:1 allocation n1 = n2 is not optimal when using the

ratio as the distance measure. To minimize the overall sample size for a fixed power 1−β,

the allocation ε = θ−1
0 has to be chosen, since this is the minimum of (1+ ε−1)(1+ εθ2

0).

Using the standardized difference θs as the distance measure, the power for θs (< θ0) is

calculated by

1 − β := Pθs(Tr < (tn1+n2−2,δ(θ0))α) = Fn1+n2−2,δs((tn1+n2−2,δ(θ0))α) ,

where δ(θ0) is the noncentrality parameter from (3.2) with θs = θ0. With (3.5) an

approximation for the required sample size n∗
1 is given by

min{n1 ∈ N : n1 ≥ (1 + ε)
(uα − u1−β)2

(θs − θ0)2
} .

As for the difference, asymptotically the samples have to be equally sized (ε = 1) to

maximize the power for θs.
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4 Three normal samples

Several clinical trials aim at comparing three or more parallel groups. Some reasons

are mentioned in Chapter 1. For one-sided hypotheses and more than two groups the

statistical theory is based on methods of order restricted statistical inference which

was extensively developed since the early 1950s. Barlow et al. [1972] have summarized

much of the early work. For k independent normally distributed groups with means

µ = (µ1, . . . , µk) they considered the null hypothesis H0 : µ1 = . . . = µk versus various

types of ordered alternatives. Robertson et al. [1988] extended this work. Additionally,

hypotheses of the type

H0 : µ is isotonic with respect to � vs. ¬H0 ,

are considered, where � is a partial ordering of µ. Robertson et al. developed the LR

test for different partial orderings.

Another possibility to deal with more than two groups is the application of multiple

comparison procedures (pairwise comparisons) which are more commonly used in clinical

research. The following sections will show that the LR test for some of the hypotheses

introduced in Chapter 1 is indeed equivalent to a multiple comparison procedure. For

other hypotheses the LR principle cannot be reduced to pairwise comparisons and, thus,

yields different statistical tests. This will be investigated in detail in the subsequent

sections.

4.1 Model and hypotheses

Throughout the following, a sample of independent normally distributed random variables

of three homoscedastic groups is given by

yij ∼ N(µi, σ
2) (i = 1, 2, 3 ; j = 1, . . . , ni) ,

where µ = (µ1, µ2, µ3) is the vector of the group means, σ the common standard devi-

ation, and ni the sample size of group i, i = 1, 2, 3 .

Following the hypotheses a) - c) stated in Chapter 1, three kinds of null hypotheses are
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4. Three normal samples

investigated specified by the differences of means:

Ha
0 : µ1 − µ2 ≥ θ1 ∨ µ1 − µ3 ≥ θ2 ,

Hb
0 : µ1 − µ2 ≥ θ1 ∧ µ1 − µ3 ≥ θ2 , (4.1)

Hc
0 : µ1 − µ2 ≥ θ1 ∨ µ2 − µ3 ≥ θ2 .

Without changing the likelihood and hence the testing problem, the two equivalence

margins θ1, θ2 can be set to zero when adding θ1 to the values of group 2 and θ2 to the

values of group 3. Hence, throughout the following we assume θ1 = θ2 = 0.

Of course, when other distance measures are specified, shifting of the margins may no

longer be possible (e.g. for the standardized difference). Nevertheless, in this chapter we

restrict to the difference, since it is the most commonly used distance measure in clinical

research.

4.2 Multiple comparison procedures

The testing problems (4.1) can be solved by using two pairwise two-sample tests. When

applying multiple comparison procedures, the common type I error probability has to be

taken into consideration, i.e. the probability under H0 to reject at least one of the tests.

It depends heavily on the arrangement of the hypotheses whether a level adjustment is

needed or not.

Referring to the hypotheses a) and c), the null hypotheses are rejected if both pair-

wise comparisons are rejected. This testing procedure is called an intersection-union

test (IUT), since the null hypothesis is the union of two subhypotheses and the alter-

native hypothesis is the intersection of the complements of the subhypotheses. Berger

[1982,Theorem 1] showed that intersection-union tests keep the nominal size α with

each of the multiple tests carried out as a level α test. Therefore, the global hypotheses

Ha
0 and Hc

0 are rejected if the pairwise two-sample t-tests are both rejected without level

adjustment. It will be seen in the next section that this procedure is nearly equivalent to

the LR test.

Focussing on the hypothesis Hb
0, the testing problem is different. One way to deal with

this situation is to reject Hb
0 if at least one of the two pairwise tests is rejected. Here,

a level adjustment is necessary in order to guarantee the global level. Various authors

suggested several strategies to handle this problem. This includes so called single step

procedures, i.e. all pairwise comparisons are carried out simultaneously, as well as step

up/down procedures. For these procedures the pairwise comparisons are arranged (in

order of their p-values) and the subhypotheses are rejected, iteratively, until given criteria

are fulfilled. For the general theory confer Dunnett and Tamhane [1997], Hsu [1996],
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4. Three normal samples

D’Agostino and Heeren [1991], or Hochberg and Tamhane [1987]. We give a short

overview over the most commonly used procedures in the particular situation of Hb
0.

Throughout the following, let p1, p2 be the p-values of the pairwise t-tests for the null

hypotheses Hb
01

: µ1 −µ2 ≥ θ1 and Hb
02

: µ1 −µ3 ≥ θ2, and p(1), p(2) the smaller and the

larger of both p-values, respectively.

The easiest single step method to adjust the global level α for the hypothesis Hb
0 is

the Bonferroni adjustment. Here α is evenly divided to each pairwise comparison, i.e.

Hb
0 is rejected if p(1) < α

2
. Holm [1979] suggested a step down procedure improving

Bonferroni’s adjustment. Note that for Hb
0 both procedures are equal.

A further improvement was introduced by Hochberg [1988] for multiple tests with in-

dependent test statistics. This step up procedure applied to the hypothesis Hb
0 starts

with the larger p-value. If p(2) < α, both subhypotheses Hb
01

, Hb
02

are rejected. If p(2) is

larger than α and p(1) < α
2
, then only the subhypothesis corresponding to the smaller

p-value is rejected. Otherwise no subhypothesis is rejected. Applied to Hb
0 the hypothesis

is rejected, if p(2) < α or p(1) < α
2
. Note that the test statistics are not independent for

Hb
0. Hence, Hochberg’s procedure applied to our setting does not guarantee to keep the

nominal level α. Nevertheless, we will consider this method in the following, since we

found numerically quite satisfactory results.

Dunnett [1955] has introduced a single step approach which provides simultaneous one-

sided confidence intervals for normally distributed data. The multivariate t-distribution

is used with a particular correlation matrix (for explicit formulae confer Dunnett’s work).

Applying Dunnett’s procedure (e.g. using the SAS-function PROBMC ), the hypothesis

Hb
0 is rejected if the upper confidence limit for µ1 − µ2 is smaller than θ1 or the upper

confidence limit for µ1 − µ3 is smaller than θ2.

It will be seen that the LR test for Hb
0 is different from the above mentioned pairwise

procedures, even if the differences are small in practice.

4.3 Likelihood ratio statistic

The general methodology deriving the LR test is embraced by the term order restricted

inference (see e.g. Robertson et al. [1988]). In this section the required formulae are

given for the hypotheses Ha
0 , Hb

0 and Hc
0.

The likelihood function is given by

L(µ, σ) = (2πσ2)
N
2 exp

[
− 1

2σ2

3∑
i=1

ni∑
j=1

(yij − µi)
2

]
,
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4. Three normal samples

where N := n1 + n2 + n3.

Robertson et al. [1988, p. 63] showed for H ⊂ R
3 that

arg max
µ∈H

L(µ, σ) = arg max
µ∈H

L(µ, 1) =: µ∗
H = (µ∗

H,1, µ
∗
H,2, µ

∗
H,3) ,

arg max
σ

L(µ, σ) = arg max
σ

L(µ∗
H , σ) =

[∑3
i=1

∑ni

j=1(yij − µ∗
H,i)

2

n1 + n2 + n3

] 1
2

=: σ∗
H .

It follows that the LR for H0 vs. H1 is given by

λ =

[
σ∗

H0∪H1

σ∗
H0

]N

⇔ λ
2
N =

SSW∑3
i=1

∑ni

j=1(yij − µ∗
i )

2
, (4.2)

where SSW :=
∑3

i=1

∑ni

j=1(yij − yi)
2, yi =

∑ni

j=1 yij/ni, and µ∗
i is the i-th component

of the vector arg maxµ∈H0 L(µ, 1).

The denominator from the right hand side of (4.2) is equal to

SSW +
∑3

i=1

∑ni

j=1(yi − µ∗
i )

2 − 2
∑3

i=1

∑ni

j=1(yij − yi)(µ
∗
i − yi) .

The last term is zero (Robertson et al. [1988, Th. 1.3.6]), therefore

λ
2
N =

SSW

SSW + Z
,

with Z :=
∑3

i=1 ni(yi − µ∗
i )

2. Since (1 − x)/x is a monotone transformation of (0, 1),

the test statistic

S =
Z

SSW

(4.3)

can be used instead of λ
2
N . The determination of the constrained MLE µ∗

i as

arg maxµ∈H0 L(µ, 1) is equivalent to determine arg minµ∈H0 Z.

Hypothesis Ha
0

Here we derive the test statistic and its asymptotic null distribution for

Ha
0 : µ1 − µ2 ≥ 0 ∨ µ1 − µ3 ≥ 0 vs. ¬Ha

0 .

If y1 ≥ min{y2, y3}, it follows that Z = S = 0. If y1 < min{y2, y3}, the statistic Z is

calculated by

Z =

{
n1n2

n1+n2
(y1 − y2)

2 if
√

n2

n1+n2
(y2 − y1) <

√
n3

n1+n3
(y3 − y1)

n1n3

n1+n3
(y1 − y3)

2 else
,
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4. Three normal samples

since

min
{µ1≥µ2}∪{µ1≥µ3}

Z = min{ min
µ1≥µ2

Z, min
µ1≥µ3

Z} ,

and arg minµ1≥µg Z is given by

µ∗
1 = µ∗

g =
n1y1 + ngyg

n1 + ng

for g = 2, 3 (cf. Robertson et al. [1988, p. 63]).

The LR test rejects Ha
0 for small values of S. The probability that the test statistic (4.3)

exceeds a margin c > 0 is given by

P (Z > c SSW ) = P
(√

cSSW < min
{√

n1n2

n1+n2
(y2 − y1),

√
n1n3

n1+n3
(y3 − y1)

})
.

Since the distribution of SSW is independent of the means µi, the probability

P (Z > c SSW ) is isotonic in µ2 and µ3 and antitonic in µ1. The worst case, i.e. the

maximal probability under Ha
0 , results if two of the three means are equal and the third

mean is infinity (cf. Berger [1982, Th. 2]). Thus it is

max
µ∈Ha

0

Pµ(Z > c SSW ) = lim
µ3→∞

Pµ1=µ2(Z > c SSW )

= lim
µ2→∞

Pµ1=µ3(Z > c SSW )

= Pµ1=µ2(
√

c SSW <
√

n1n2

n1+n2
(y2 − y1))

= Pµ1=µ2(
√

c(N − 3) <
√

n1n2(N−3)
n1+n2

y2 − y1√
SSW

).

The random variable on the right hand side of the last term is tN−3-distributed. Therefore,

the hypothesis Ha
0 is rejected for (N − 3)Z > SSW (tN−3)1−α .

Hypothesis Hc
0

Following the same arguments as for Ha
0 , the test statistic (4.3) for

Hc
0 : µ1 − µ2 ≥ 0 ∨ µ2 − µ3 ≥ 0 vs. ¬Hc

0

is zero if y1 ≥ y2 or y2 ≥ y3. If y1 < y2 < y3, the test statistic Z is calculated as

Z =

{
n1n2

n1+n2
(y1 − y2)

2 if
√

n1

n1+n2
(y2 − y1) <

√
n3

n2+n3
(y3 − y2)

n2n3

n2+n3
(y2 − y3)

2 else
.

Further, the worst case under Hc
0 is given by

max
µ∈Hc

0

Pµ(Z > c SSW ) = Pµ1=µ2(
√

c(N − 3) <
√

n1n2N
n1+n2

y2 − y1√
SSW

) .

Therefore, the hypothesis Hc
0 is rejected for (N − 3)Z > SSW (tN−3)1−α.
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Remark 4.1 The LR test is equivalent to the IUT if for the IUT test the two-sample

variance estimates are replaced by the pooled three-sample variance estimates. The global

hypotheses Ha
0 and Hc

0 are rejected if both the subhypotheses are rejected at level α by

using the pairwise two-sample t-tests. This leads to an improvement over the pairwise

estimation using the two-sample pooled standard deviation due to the larger number of

N − 3 degrees of freedom.

Hypothesis Hb
0

This hypothesis is a particular case of a simple tree hypothesis for k > 2 groups (Robert-

son et al. [1988]). In the following the formulae for the particular case of three ho-

moscedastic groups will be derived.

The test statistic for

Hb
0 : µ1 − µ2 ≥ 0 ∧ µ1 − µ3 ≥ 0 vs. ¬Hb

0

is (cf. Robertson et a. [1988, p. 65 (2.2.13)] given by

S = 1 − λ
2
N . (4.4)

The constrained MLEs µ∗
i (i = 1, 2, 3) are µ∗

i = yi, if y1 ≥ max{y2, y3}. If y1 < y2 and

y2 > y3 (for the case y2 ≤ y3 exchange y2 and y3), the constrained MLEs are calculated

as follows (cf. Robertson et al. [1988, p. 19]). If y12 ≥ y3, we obtain

µ∗
1 = µ∗

2 = y12 :=
n1y1 + n2y2

n1 + n2

, µ∗
3 = y3 ,

and if y12 < y3 ,

µ∗
1 = µ∗

2 = µ∗
3 = y123 :=

n1y1 + n2y2 + n3y3

n1 + n2 + n3

,

where y12 and y123 are the weighted arithmetic means of group 1 and 2, and 1, 2 and

3, respectively.

Since PHb
0
(S > c) ≤ Pµ1=µ2=µ3(S > c) for all c > 0 (cf. Robertson et al. [1988, p. 68,

69]), the critical value c to reject the null hypothesis is determined by the equation

PHb
0
(S > c) = p[1] P (B1,(n1+n2+n3−3)/2 > c)

+ p[2] P (B1/2,(n1+n2+n3−3)/2 > c)

= α .

where B.,. is the Beta-distribution. The values p[i] are the probabilities for the following

event: The vector µ∗ = (µ∗
1, µ

∗
2, µ

∗
3) includes exactly i different values.
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4. Three normal samples

The probabilities p[i] can be calculated using Formula (10) from Childs [1967]: For

two normally distributed random variables Z1 and Z2 with correlation coefficient ρ and

E(Z1) = E(Z2) = 0, it is

P (Z1 < 0, Z2 < 0) =
1

4
+

1

2π
arcsin ρ .

Since p[1] + p[2] + p[3] = 1 and

p[1] = P (y3 − y2 < 0 ,
n1y1 + n2y2

n1 + n2

− y3 < 0)

+P (y2 − y3 < 0 ,
n1y1 + n3y3

n1 + n3

− y2 < 0) ,

p[3] = P (y3 − y1 < 0 , y2 − y1 < 0) ,

p[1] and p[2] are calculated by

p[1] =
1

2
+

1

2π

(
arcsin

[
−
√

n1 + n2 + n3

(1 + n3

n2
)(n1 + n2)

]

+ arcsin

[
−
√

n1 + n2 + n3

(1 + n2

n3
)(n1 + n3)

])
,

p[2] = 1 − 1

4
− 1

2π
arcsin

[(
(1 +

n1

n2

)(1 +
n1

n3

)

)−1/2
]
− p[1] .

To sum up, the LR test for the hypotheses Ha
0 and Hc

0 is reduced to commonly known

two-sample procedures. In case of hypothesis Hb
0, Robertson et al. [1988] developed the

LR test for more than two groups which results in the above mentioned formulae for

three groups.

4.4 Power investigation

It is shown that for Ha
0 and Hc

0 the LR principle leads to the IUT, i.e. the pairwise two-

sample t-tests at level α have to be calculated, using the data of all the three groups

to estimate the pooled standard deviation. A power investigation is omitted for the

hypotheses Ha
0 and Hc

0, since the LR test is equivalent to standard methods extensively

investigated in the past. Therefore, it is focussed on hypothesis Hb
0. The interesting

question is whether the power is increased by the LR test in comparison to the pairwise

comparison procedures described above.

The power of the LR test and its pairwise competitors are computed by simulations

(100,000 replications in each scenario) for different sample sizes and means µ1, µ2, µ3.
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4. Three normal samples

Table 4.1: The simulated power (times 100) of the LR test and its corresponding pair-

wise test procedures using Bonferroni’s, Dunnett’s and Hochberg’s level adjustment for

different parameter constellations.

n1 n2 n3 µ1 µ2 µ3 LR test Bonferroni Dunnett Hochberg

20 20 20 0 0 0.97 85.6 85.3 86.4 85.3

30 30 30 0 0 0.78 85.2 85.0 86.0 85.0

40 40 40 0 0 0.67 84.8 84.5 85.6 84.5

50 50 50 0 0 0.59 84.1 83.9 85.0 83.9

60 60 60 0 0 0.55 84.9 84.7 85.7 84.7

80 80 80 0 0 0.48 85.5 85.3 86.3 85.3

100 100 100 0 0 0.42 84.9 84.7 85.7 84.7

40 20 20 0 0 0.84 85.6 86.0 86.7 86.1

60 30 30 0 0 0.69 85.7 86.2 86.7 86.2

80 40 40 0 0 0.59 85.7 86.2 86.8 86.2

100 50 50 0 0 0.53 85.9 86.4 86.9 86.4

20 40 40 0 0 0.83 84.6 84.8 85.6 84.9

30 60 60 0 0 0.67 84.4 84.7 85.4 84.7

40 80 80 0 0 0.58 84.3 84.6 85.3 84.6

50 100 100 0 0 0.52 85.2 85.4 86.1 85.4

20 20 20 -0.78 0 0 85.3 82.7 84.0 84.2

30 30 30 -0.63 0 0 84.4 81.7 83.0 83.2

40 40 40 -0.55 0 0 85.0 82.4 83.7 83.9

50 50 50 -0.48 0 0 84.6 82.0 83.3 83.4

60 60 60 -0.44 0 0 84.0 81.4 82.7 82.9

80 80 80 -0.38 0 0 84.7 82.2 83.4 83.6

100 100 100 -0.34 0 0 85.1 82.6 83.8 84.0

40 20 20 -0.64 0 0 85.1 81.7 82.5 83.2

60 30 30 -0.52 0 0 84.3 81.0 81.8 82.4

80 40 40 -0.45 0 0 85.4 82.4 83.1 83.7

100 50 50 -0.41 0 0 85.5 82.5 83.2 83.8

20 40 40 -0.58 0 0 84.7 81.9 82.9 83.3

30 60 60 -0.47 0 0 84.3 81.6 82.6 82.9

40 80 80 -0.41 0 0 84.6 81.9 82.9 83.3

50 100 100 -0.37 0 0 85.1 82.6 83.5 83.9
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4. Three normal samples

All pairwise comparisons are calculated applying Bonferroni’s, Dunnett’s and Hochberg’s

procedure. The data of all three groups are included to estimate the pooled standard

deviation for the pairwise comparisons, simultaneously.

Table 4.1 shows the power for sample sizes of 20 - 100 per group; balanced and un-

balanced cases are incorporated. According to the medical problem 2 (one treatment T

compared with two controls C1, C2) and 3 (two treatments T1, T2 compared with one

control C) of Chapter 1, two different constellations are investigated. First, suppose that

T is better than C1 but not better than C2, or suppose that T1 is better than C but T2

is not better than C. Then in both cases the power for µ1 = µ2 < µ3 may be of inter-

est. W.l.o.g. µ1 = µ2 = 0 and µ3 > 0. Another constellation is given by µ1 < µ2 = µ3,

supposing T is better than two equal controls, or supposing T1 is equal to T2 and both

are better than C. W.l.o.g. µ2 = µ3 = 0 and µ1 < 0. We have chosen those values for

µ3 and µ1, respectively, where the power is approximately 0.85.

From Table 4.1 we draw that in general the power differences between the LR test and

the pairwise procedures are small. For µ1 = µ2 < µ3 the LR test, Bonferroni’s and

Hochberg’s procedure are almost indistinguishable, whereas Dunnett’s procedure gives

a slight improvement in power. The differences in power are slightly larger for the case

µ1 < µ2 = µ3. Here the LR test leads to an improvement.

As an overall conclusion the LR test is comparable to the best of the pairwise procedures

with respect to power. For the case µ1 < µ2 = µ3 the power can be slightly increased

using the LR test.

As mentioned above applying Hochberg’ procedure it is not guaranteed that the nominal

level α is strictly kept. Nevertheless, the comparison to the other procedures is valid,

since we found for the investigated parameter constellations (with µ1 = µ2 = µ3) that

the level of Hochberg’s procedure ranges between 0.045 and 0.049.

In a more extensive simulation study we found that the differences for smaller power

values (e.g. 0.3 or 0.5) are negligible (not displayed).

In this chapter we assumed homoscedasticity. It would be a goal in further investigations

to derive and analyze the LR test in case of unequal group variances.
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5 Two binomial samples

5.1 Introduction and hypotheses

The most common set-up in non-inferiority trials is the comparison of two treatments,

where the primary endpoint is a dichotomous quantity, such as a success or failure

rate. Several statistical methods have been suggested during the last years. See Chan

[1998], Farrington and Manning [1990] or Roebruck and Kühn [1995] for a survey on

testing methods for the difference of the failure rates. However, there is a controver-

sial discussion on how to measure non-inferiority properly. In addition to the difference

θDI := ϑ1 −ϑ2, various authors suggest the relative risk θRR := ϑ1/ϑ2 or the odds ratio

θOR := ϑ1 (1 − ϑ2) / (ϑ2 (1 − ϑ1)). The ASSENT-2 trial [1999] compared two throm-

bolytic therapies with respect to 30-days mortality rates. Here θDI as well as θRR were

evaluated.

Proper null hypotheses associated with these quantities are of the form

H0 : θDI,RR,OR ≥ θ0, where θ0 is a positive quantity to be specified. Typical values are

θ0 = 0.1, 0.15, 0.2 for the difference and θ0 = 1.1, 1.2, 1.5 for the relative risk or odds ra-

tio, say (Committee for Proprietary Medicinal Products [1997, 1999], FDA [1992, 1998],

ILAE [1998], InTIME-II [2000], Moliterno and Topol [2000]). Phillips [2003] considered

hypotheses with linear inequalities ϑ1 ≥ a + b ϑ2 for fixed a and b and provided an

asymptotic test (based on a standardized z-statistic with unpooled variance estimates).

Recently, Röhmel and Mansmann [1999b] argued forcefully that even more general hy-

potheses are of interest. These authors considered various types of hypotheses which can

be described as

H0 : ϑ1 ≥ h (ϑ2) versus H1 : ϑ1 < h (ϑ2) . (5.1)

Here h is an increasing curve h : [0, 1] → [0, 1] which has to be specified in advance.

This includes in particular the above mentioned quantities for

hDI (ϑ2) = ϑ2 + θ0, hRR (ϑ2) = ϑ2 θ0, hOR (ϑ2) =
θ0

θ0 + ϑ−1
2 − 1

, (5.2)

or Phillips’ [2003] hypotheses.
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0 1
0

1

Figure 5.1: Parameter space FDA.

More generally, h might take into account that different measures of discrepancy as

well as different values of θ0 have to be combined in one quantity, depending on the

underlying response rate.

Based on recent guidelines of the FDA [1992] and CPMP [1997, 1999], Röhmel and

Mansmann [1999b] (see also Bristol [1996]) considered such curves h. Some of them

may even be discontinuous, while always being increasing.

As an example, the FDA [1992] requires that non-inferiority can be claimed if the two-

sided 95% confidence interval around the difference in response rates must be within θ0,

with

θ0 =


20% < 80%

15% if max
{

ϑ̂1, ϑ̂2

}
∈ [80%, 90%)

10% ≥ 90%

.

If this rule is applied by replacing the observed rates with the true rates and extrapolating

the margins in a symmetric way for small rates (< 0.5), it results in the curve displayed

in Figure 5.1. For a careful discussion and other examples see [Röhmel and Mansmann,

1999b, p. 151-153].

The issue of the most appropriate hypotheses is not pursued further, instead a general

statistical methodology will be presented which allows in principle to deal with any

isotonic curve h.
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5.2 Asymptotic theory

5.2.1 The LR test for general hypotheses

In this section the likelihood ratio test for (5.1) will be constructed and it will be shown

that for smooth h the asymptotic distribution is 1
2
+ 1

2
Fχ2

1
, exactly as for the case where

h is the identity (cf. Robertson and Wright [1981, Th. 4.2]).

Further, it will be shown that uniqueness of the MLE depends heavily on the function h.

Even for strictly increasing and smooth h uniqueness cannot be guaranteed, in general.

Conditions on the ”boundary function” h will be given which guarantee uniqueness of

the MLE. This highlights an interesting difference between superiority and non-inferiority

trials. In superiority trials often the null hypothesis will be convex which immediately

implies uniqueness of the MLE, whereas in non-inferiority trials convexity of H0 is not

the typical case. This will be worked out in detail for the difference hDI , the relative risk

hRR, and the odds ratio hOR. In particular, it is possible to give explicit expressions for

the MLE, constrained to ϑ1 = h(ϑ2) in these cases.

Throughout the following let X1, . . . , Xn1

i.i.d.∼ Bi (1, ϑ1) and Y1, . . . , Yn2

i.i.d.∼ Bi (1, ϑ2)

be two independent Bernoulli samples with failure rates ϑ1 and ϑ2, respectively. Hence,

the joint likelihood is given as

L(ϑ1, ϑ2) =

(
n1

x

)
ϑ1

x (1 − ϑ1)
n1−x

(
n2

y

)
ϑ2

y (1 − ϑ2)
n2−y , (5.3)

where x =
∑n1

i=1 xi denotes the number of negative responses in treatment group 1 and

y =
∑n2

j=1 yj in control group 2, respectively.

Theorem 2.1 guarantees that the MLE constrained to H0 in (5.1) can be computed on the

set {ϑ1 = h(ϑ2)}. The next Lemma gives conditions on h which guarantee the uniqueness

of the MLE constrained to H0. Surprisingly, this is not always the case and counter-

examples will be given. Let ϑ = (ϑ1, ϑ2), Θ = [0, 1]2. Let ϑ̂ = (ϑ̂1, ϑ̂2) = ( x
n1

, y
n2

), the

unconstrained MLE.

Lemma 5.1 Let Θ0 = {ϑ : ϑ1 ≥ h (ϑ2)} and assume X1, . . . , Xn1 ∼ Bi (1, ϑ1) i.i.d.

and independently Y1, . . . , Yn2 ∼ Bi (1, ϑ2) i.i.d., where n1, n2 ≥ 1. Let h be continuous

and increasing, and not identically 1. Let h be twice differentiable, h ∈ C2[0, 1]. The

constrained MLE ϑ̂∗ is unique, if on the set Θh = {ϑ2 | ϑ1 = h(ϑ2), ϑ1 ∈ [0, 1]} we have

that

(i) −(h′)2 + h · h′′ ≤ 0 and −(h′)2 − h′′ + h · h′′ ≤ 0 ,
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5. Two binomial samples

or if

(ii) h is convex.

Proof: Define the function Ψ(ϑ2) = �(h(ϑ2), ϑ2), where

�(ϑ1, ϑ2) := x log ϑ1 + (n1 − x) log(1 − ϑ1) + y log ϑ2 + (n2 − y) log(1 − ϑ2)

denotes the log-likelihood, � = log L (omitting the constant term log
(

n1

x

)
+ log

(
n2

y

)
).

We have

Ψ′′(ϑ2) = − y

ϑ2
2

− n2 − y

(1 − ϑ2)2
− x

h2(ϑ2)
(h′(ϑ2))

2 +
x

h(ϑ2)
h′′(ϑ2)

− n1 − x

(1 − h(ϑ2))2
(h′(ϑ2))

2 − n1 − x

1 − h(ϑ2)
h′′(ϑ2)

= − y

ϑ2
2

− n2 − y

(1 − ϑ2)2
+

x

h2(ϑ2)

(− (h′(ϑ2))
2 + h(ϑ2) · h′′(ϑ2)

)
+

n1 − x

(1 − h(ϑ2))2

(− (h′(ϑ2))
2 − (1 − h(ϑ2))h

′′(ϑ2)
)

.

Now, if (i) is fulfilled, Ψ′′(ϑ2) < 0, and hence Ψ is strictly concave on the set Θh.

In order to prove (ii), observe that � is strictly concave and hence the maximum on Θ0

which is convex since h is convex, is unique. �

If Theorem 2.1 is applied to the functions in (5.2), it is found that the MLE can always

be computed on the set Θh for h = hDI , hRR, hOR, respectively, and that the MLE is

unique. This follows from Lemma 5.1 for hDI and hRR by (ii), whereas for hOR observe

that the left hand side of (i) reads as

−(h′(ϑ2))
2 + h(ϑ2) · h′′(ϑ2) = − θ2

0

(1 + ϑ2(θ0 − 1))3
≤ 0 ,

and the right hand side of (i) as

−(h′(ϑ2))
2 − h′′(ϑ2) + h(ϑ2) · h′′(ϑ2) = − θ0

(1 + ϑ2(θ0 − 1))3
≤ 0 .

It is interesting to note that condition (ii) is in general not satisfied by most hypotheses for

non-inferiority (see Röhmel and Mansmann [1999b, Fig. 1d-1f]). However, in superiority

trials these hypotheses are more important, since here H0 will be a convex set in many

cases. This makes a subtle distinction between non-inferiority and superiority trials: The

constrained MLE in the latter case will be typically a projection onto a convex set (the
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5. Two binomial samples

null hypothesis), and hence unique, in non-inferiority trials often the alternative is a

convex set, hence uniqueness has to be checked carefully, e.g. by means of Lemma 5.1

(i). Observe finally that (i) guarantees that the likelihood function is strictly convex on

Θh which allows a quick computation by the use of any standard maximization routine.

The constrained ML estimators for ϑ1 and ϑ2 are calculated as follows (cf. also Miettinen

and Nurminen [1985]):

a) The difference hDI :

ϑ̂∗
1 = 2

√
r2 − 3s

3
cos

1

3
arccos

−
2r3

27
− rs

3
+ t

2
(√

r2−3s
3

)3

+
4

3
π

− r

3
,

ϑ̂∗
2 = ϑ̂∗

1 − θ0 , (5.4)

with

r = −x + y + n1 (1 + 2θ0) + n2 (1 + θ0)

n1 + n2

,

s =
y + x(1 + 2θ0) + θ0(n2 + n1(1 + θ0)

n1 + n2

,

t =
−xθ0 (1 + θ0)

n1 + n2

.

b) The relative risk hRR:

ϑ̂∗
2 =

1

2 (n1 + n2) θ0

[
x + n2 + yθ0 + n1θ0

+

√
(x + n2 + yθ0 + n1θ0)

2 − 4 (x + y) (n1 + n2) θ0

]
,

ϑ̂∗
1 = θ0ϑ̂

∗
2 . (5.5)

c) The odds ratio hOR:

ϑ̂∗
2 =

1

2n2 (θ0 − 1)

[
θ0(x + y − n1) − x − y − n2

+

√
(x + y + n2 − xθ0 − yθ0 + n1θ0)

2 + 4 (x + y) n2 (θ0 − 1)

]
,

ϑ̂∗
1 =

[
1 + θ−1

0 (ϑ̂∗−1

2 − 1)
]−1

.
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0

1

0 1

Figure 5.2: Two solutions of the constrained MLE, where n1 = n2 = n

and x = n − y, for the hypotheses in (5.6). Here the contour plot of

the two sample binomial likelihood shows the existence of two MLEs

ϑ̂∗
A and ϑ̂∗

B on each branch A and B of the boundary of the hypothesis

H0, respectively.

These expressions result from straightforward maximization, where the zero of a

quadratic (relative risk, odds ratio) or a cubic (difference) polynomial has to be com-

puted.

Remark 5.2 As mentioned above, uniqueness of the MLE (albeit always located on the

set {ϑ : ϑ1 = h(ϑ2)}) is not valid for arbitrary increasing functions h. In fact, various

global maxima can occur for certain outcomes (x, y) and hypotheses H0. A simple class

of counter-examples is as follows. Let n1 = n2 = n and x
n

= 1− y
n
, and consider the case

where (x
n
, y

n
) ∈ H1, i.e. where the constrained MLE does not equal the unconstrained

one. Let h be defined as

h(ϑ2) =

{
1
γ

ϑ2 for ϑ2 ≤ γ
1+γ

γ ϑ2 + 1 − γ else
(5.6)

for some constant 0 < γ < 1 (cf. Figure 5.2, here γ = 0.33). Observe that h is piecewise

linear and symmetric (as well as L) with respect to D = {(ϑ1, ϑ2) : ϑ1 = 1 − ϑ2}. For

any γ ∈ (0, 1) there are exactly two solutions of the MLE (denoted by ϑ̂∗
A and ϑ̂∗

B in

Figure 5.2) which are symmetrical w.r.t. D, located on each of the two branches A and

B of h in (5.6), respectively.

Proof: For the following arguments it is helpful to consult Figure 5.2. Denote the two

branches of h in (5.6) as A and B, respectively. Then, a similar argument as in the proof
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of Lemma 5.1 shows that the function Ψ(ϑ2) = �(h(ϑ2), ϑ2) (defined in the proof of

Lemma 5.1) is strictly concave on each branch A and B, respectively. Hence, on each

branch a global maximum exists, and by symmetry it attains the same value. It remains

to show that the maximum is not attained on D, i.e. on the intersection ϑ̃ = (1− ϑ̃2, ϑ̃2)

of A and B. Now, by symmetry

grad �(1 − ϑ̃2, ϑ̃2) = (−a, a)

for some value a > 0, since � is strictly concave on D and by assumption the maximum

which is located in ϑ̂ ∈ D is in H1. Further,

Ψ′(ϑ̃2) = grad �(1 − ϑ̃2, ϑ̃2) · (α−1, 1)� = a(1 − α−1) < 0 .

This yields a unique maximum of � restricted to A\{ϑ̃}, and thus it is not attained on

D. �

In Figure 5.2 the contour lines of the likelihood are displayed for this particular case and

γ = 0.33. The solutions ϑ̂∗
A, ϑ̂∗

B are such that the hypothesis function h is tangent to

the likelihood. From this it can also be drawn that various other hypotheses may even

lead to more than two solutions of the MLE.

Remark 5.3 Theorem 2.1 is related to a Theorem of Röhmel and Mansmann [1999b,

p. 161], who showed that for fixed (x, y) := ϑ̂ the supremum over ϑ ∈ Θ0 of∑
T (x,y)≤T (x,y) L (ϑ) is attained at the boundary of Θ0, provided that the statistic

T satisfies a convexity condition ”C” introduced by Barnard [1947]. It states that

for any (x, y) ∈ CR (the critical region of a test) it holds that (x, y + 1) ∈ CR and

(x − 1, y) ∈ CR. Note, however, that Theorem 2.1 is different and the proof relies es-

sentially on the uniqueness of the unconstrained MLE.

Theorem 5.4 Let h be increasing, h : [0, 1] → [0, 1], and h ∈ C(1)[0, 1]. Then, under

the assumption of Lemma 5.1, for ϑ1 = h (ϑ2) and for any solution ϑ̂∗ it holds that

−2 ln λ
D−→ 1

2
+ 1

2
Fχ2

1
,

as min {n1, n2} → ∞, such that n1

n2
→ c ∈ (0,∞), where λ is the likelihood ratio given

in (2.1) and Fχ2
1

denotes the cumulative distribution function of the square of a standard

normal random variable.

Proof: First, note that by means of Lemma 5.1 we have

λ =


1 if ϑ̂ ∈ Θ0

L(ϑ̂∗)

L(ϑ̂ )
if ϑ̂ /∈ Θ0

. (5.7)
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Furthermore, for t ≥ 0,

P (−2 ln λ ≤ t) = P
(
{−2 ln λ ≤ t} ∩

{
ϑ̂1 ≥ h(ϑ̂2)

})
+ P

(
{−2 ln λ ≤ t} ∩

{
ϑ̂1 < h(ϑ̂2)

})
=: I + II .

By means of (5.7) we have ϑ̂1 ≥ h(ϑ̂2) ⇔ λ = 1 ⇔ −2 ln λ = 0, and hence, if

ϑ1 = h (ϑ2) ,

I = P
(
ϑ̂1 ≥ h(ϑ̂2)

)
= P

(
ϑ̂1 − ϑ1 ≥ h(ϑ̂2) − h (ϑ2)

)
n2,n1→∞−→ P (Z1 ≥ Z2) ,

where Z1 and Z2 are independent normal random variables with mean zero and variance

τ1 = ϑ1 (1 − ϑ1) and τ2 = c (h′ (ϑ2))
2 ϑ2 (1 − ϑ2), respectively [Ferguson, 1996, p. 45,

Theorem 7]. Observe that P (Z1 ≥ Z2) = 1
2

always, even if h′ (ϑ2) = 0. Now,

II = P
(
−2 ln λ ≤ t|ϑ̂1 < h(ϑ̂2)

)
P
(
ϑ̂1 < h(ϑ̂2)

)
=

1

2
P
(
−2 ln λ ≤ t|ϑ̂1 < h(ϑ̂2)

)
+ o (1)

=
1

2
P (−2 ln λ ≤ t| − 2 ln λ > 0) + o (1) ,

and Theorem 2.4 is applied. In order to apply this Theorem, note that −2 ln λ > 0

ensures that ϑ̂∗ ∈ Θh and ϑ̂ ∈ [0, 1]2 \Θ0. Referring to the notation of Theorem 2.4

(exception: the function h of the theorem is denoted by g and the index n is suppressed

here), we obtain

U(ϑ) =
(

x
ϑ1

− n1−x
1−ϑ1

, y
ϑ2

− n2−y
1−ϑ2

)�
, Γ = diag

(
1√
n1

, 1√
n2

)
,

Σ(ϑ) = B(ϑ) = diag
(

1
ϑ1(1−ϑ1)

, 1
ϑ2(1−ϑ2)

)
,

and for the constrained model

ϑ = (η , h(η))� = g(η) , (η ∈ (0, 1))

we have

Γ∗ = 1√
n1

, C(η) = (
√

c , h′(η))� (with c =
n2

n1

) ,

and thus

Σ∗(η) = B∗(η) =
c

η(1 − η)
+

(h′(η))2

h(η)(1 − h(η))
.

Hence Theorem 2.4 gives II = 1
2
P (χ2

1 ≤ t) + o (1) . �
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Table 5.1: The actual probability (times 100) for −2 ln (λ) > (1
2

+ 1
2
Fχ2

1
)0.95.

exact level

difference relative risk odds ratio

n1, n2 ϑ2 θ0 = 0.1 θ0 = 1.5 θ0 = 1.5

10,10 0.1 8.93 5.69 6.15

10,25 10.22 9.46 10.25

25,25 5.33 5.59 6.17

25,10 5.27 6.27 7.01

50,50 5.45 6.32 4.4

50,100 5.19 5.22 6.01

100,100 5.22 5.24 4.52

100,50 5.37 4.86 4.31

500,500 5.05 4.97 4.98

10,10 0.4 5.95 4.76 5.72

10,25 5.63 5.45 5.63

25,25 4.46 5.26 4.36

25,10 5.00 5.47 5.00

50,50 4.51 5.16 4.33

50,100 4.84 4.97 4.61

100,100 5.05 4.86 5.05

100,50 4.74 4.91 4.57

500,500 5.18 4.91 5.04
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Unfortunately, the approximation using the asymptotics of Theorem 2.4 does not perform

very well for small sample sizes.

In Table 5.1 the actual exact levels are drawn for different parameter constellations when

using the 95% quantile (1
2
+ 1

2
Fχ2

1
)0.95 of the asymptotic distribution as the critical value

for a level 5% test.

From Table 5.1 it can be seen that the nominal level is exceeded up to twice for small

sample sizes. As a very rough rule of thumb it can be stated that the asymptotic test

can be recommended if n1, n2 ≥ 100, say. Of course, this will depend on the underlying

(unknown) response rates. Note that as ϑ1, ϑ2 → 0, Theorem 5.4 does not hold anymore,

instead a Poisson limit is valid. To overcome this drawback in Section 5.3.1, an exact

modification of the asymptotic LR test is presented, i.e. a test which keeps its nominal

level exactly.

5.2.2 Other asymptotic approaches

Various other methods for the testing problem in (5.1) have been suggested during the

last two decades. It is a difficult task to compare all of these methods simultaneously,

since many of them are developed from different viewpoints. For example, exact proce-

dures (Section 5.3) aim at keeping the nominal level exactly (see Chan [1998], Röhmel

and Mansmann [1999b], Kang and Chen [2000]) whereas asymptotic procedures aim

at a maximal power under the constraint of controlling the nominal level at least quite

reasonably. A comprehensive numerical comparison of level and power of three asymp-

totic procedures for the difference was made by Roebruck and Kühn [1995], who came

to the conclusion that Farrington and Manning [1990]’s procedure (FM test hereafter)

represents a reasonable compromise between a test which keeps its nominal level quite

accurately but still has a very good power. It was demonstrated that with respect to this

criterion the FM test outperforms the methods by Dunnett and Gent [1977], Blackwelder

[1982] and Rodary et al. [1989].

All asymptotic tests for the difference are similar in spirit, since they are based on the

asymptotic normality of the test statistic

TDI =
ϑ̂1 − ϑ̂2 − θ0√
Var(ϑ̂1 − ϑ̂2)

, (5.8)

where ϑ̂1 and ϑ̂2 are the estimated failure rates from independent Bernoulli samples,

X1, . . . , Xn1 and Y1, . . . , Yn2 , respectively. Here n1 and n2 refer to the number of patients
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of the estimators (right hand side).

receiving test treatment 1 and control therapy 2, respectively. The above mentioned

approaches differ only in using different estimates for the variance

σ2
DI := Var

[
ϑ̂1 − ϑ̂2

]
=

ϑ1 (1 − ϑ1)

n1

+
ϑ2 (1 − ϑ2)

n2

. (5.9)

To this end Blackwelder [1982] estimated σ2
DI by the unconstrained MLE,

ϑ̂1

(
1 − ϑ̂1

)
n1

+
ϑ̂2

(
1 − ϑ̂2

)
n2

,

whereas Dunnett and Gent [1977] and Rodary et al. [1989] suggested to estimate σ2
DI

by an MLE constrained to the line ϑ1 = ϑ2 + θ0 separating H0 and H1, keeping the

marginal totals fixed, i.e. n1ϑ̃1 + n2ϑ̃2 = n1ϑ̂1 + n2ϑ̂2. This leads to the estimators

ϑ̃1 =
ϑ̂1 + n2

n1

(
ϑ̂2 + θ0

)
1 + n2

n1

, ϑ̃2 =
ϑ̂1 + n2

n1
ϑ̂2 − θ0

1 + n2

n1

(5.10)

which are inserted in (5.9) instead of ϑ1 and ϑ2. In some instances (see grey areas in

Figure 5.3) the estimators in (5.10) may fail in that their values may not lie in the range

(0,1), respectively. Hence, valid values can be obtained only if the following inequalities

are satisfied:

θ0 ≤ ϑ̂1 +
n2

n1

ϑ̂2 ≤ 1 +
n2

n1

(1 − θ0) .

Farrington and Manning [1990] circumvent this drawback by using the MLE constrained

to ϑ1 = ϑ2 + θ0 which strictly lies in the range (0,1). The explicit solution of the

maximum likelihood equations is given in (5.4). In order to obtain an estimator of σ2
DI ,

ϑ̂∗
1 and ϑ̂∗

2 from (5.4) have to be plugged into (5.9) for ϑ1 and ϑ2.
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5. Two binomial samples

For the relative risk and the odds ratio, respectively, asymptotic tests can be constructed

analogously to the difference by using score statistics. The resulting test statistic for the

relative risk is also introduced by Farrington and Manning [1990] and is given by

TRR =
ϑ̂1 − θ0ϑ̂2√

Var(ϑ̂1 − θ2
0ϑ̂2)

.

Analogously to the difference, the MLE constrained to ϑ1 = θ0ϑ2 is used to estimate

the variance by

σ̂2
RR :=

ϑ̂∗
1

(
1 − ϑ̂∗

1

)
n1

+ θ2
0

ϑ̂∗
2

(
1 − ϑ̂∗

2

)
n2

, (5.11)

where ϑ̂1 and ϑ̂2 are given in (5.5).

If the hypothesis is specified in terms of the odds ratio, a score statistic is given by

TOR =
log θ̂ − log θ0√

Var(log θ̂)
,

where θ̂ = x(n2 − y)/(y(n1 − x)) is the observed odds ratio. The variance of log θ̂ can

be estimated by (cf. Chen et al. [2000])

σ̂2
OR :=

1

n1ϑ̂1

+
1

n1(1 − ϑ̂1)
+

1

n2ϑ̂2

+
1

n2(1 − ϑ̂2)
.

Under the null hypothesis the test statistics TRR and TOR are asymptotically standard

normally distributed. Thus, the null hypotheses are rejected if the test statistics are

smaller than uα, respectively.

5.2.3 Level and power comparisons

The asymptotic LR test is compared with the asymptotic score test for hDI , hRR and

hOR, respectively. The following parameter settings are included:

• Equivalence margin: θ0 ∈ {0.05, 0.075, 0.1, 0.125, 0.15, 0.175, 0.2} for hDI and

θ0 ∈ {1.05, 1.1, 1.25, 1.5, 1.75, 2} for hRR and hOR.

• Sample sizes: n2 ∈ {100, 150, 200, . . . , 500} and n1 ∈ {n2, 1.5 n2, 2 n2}.

This gives 189 different parameter constellations for hDI and 162 constellations for hRR

and hOR, respectively. The nuisance parameter ϑ2 is chosen such that the resulting power
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Figure 5.4: The level of the asymptotic 2-sample LR test (vertical axis)

in comparison to the asymptotic score test (horizontal axis) for several

parameter constellations using the difference, the relative risk and the

odds ratio.

for ϑ1 = ϑ2 is in the range [0.8, 0.9], at least for one of the tests compared. If no test

leads to a power in this range, the constellation is omitted. Cases of non-feasible settings

(i.e. ϑ2 ≥ 1 − θ0 for hDI , ϑ2 ≥ 1/θ0 for hRR) are omitted, as well. Finally, for hDI 84

parameter constellations were extracted, for hRR 95 parameter constellations and for

hOR 64 parameter constellations.

All levels and power values are exactly calculated by computing the exact binomial

probabilities given in (5.3) for all (x, y) leading to the rejection of the null hypothesis.

Figure 5.4 shows the level of the asymptotic LR test (vertical axis) and its asymptotic

score test (horizontal axes) for the three distance measures difference, relative risk and

odds ratio. For the difference the level of the LR test and the score test results between

0.047 and 0.055. The LR test yields slightly smaller levels than its competitor. For the

relative risk and the odds ratio the situation is clearer. The level of the LR test almost

never exceeds the nominal level 0.05, whereas the level of the score test almost always

results in values larger than 0.05. Overall, for sample sizes larger than 100 all tests keep

the nominal level sufficiently, ranging between 0.045 and 0.055. It is found that the

asymptotic LR test tends to keep the nominal level more accurately.

In Figure 5.5 the power of the asymptotic LR test and its competitors regarding the

above mentioned parameter constellations are displayed. Overall, the power differences

are minor, in particular for the difference as the distance measure. We find a slight

inferiority of the LR test’s power for the relative risk and the odds ratio. However, taking

into account the more accurate level of the LR test, this inferiority is to be expected.

As a conclusion, the LR test is preferred due to its more accurate approximation of the

nominal level.
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5.3 Unconditional exact tests

Exact tests for general hypotheses (5.1) were first introduced in two seminal papers

by Barnard [1945, 1947]. It will be shown, however, that Barnard’s original test bears

intrinsic numerical difficulties due to its specific iterative way to construct the region

of rejection. During the last two decades various other exact methods were suggested,

most of them were developed for H0 : ϑ1 = ϑ2 (Boschloo [1970], McDonald et al. [1977],

Upton [1982], D’Agostino et al. [1988]) or for specific hypotheses in (5.1) (see e.g. Mart́ın

Andrés and Silva Mato [1994], Chan [1998]). Finally, Röhmel and Mansmann [1999b]

presented a general exact method for arbitrary hypotheses in (5.1), based on ideas of

Barnard [1947].

In general, the actual level α∗ for a statistical test which specifies the critical region, i.e.

the subset CR of the sample space (0, . . . , n1)× (0, . . . , n2) for which H0 is rejected, is

calculated by

P ((X,Y ) ∈ CR | (ϑ1, ϑ2)) =
∑

(x,y)∈CR

L(ϑ1, ϑ2) , (5.12)

where L(ϑ1, ϑ2) is given in (5.3).

A commonly used approach is to eliminate the unknown parameters ϑ1 and ϑ2 by max-

imizing the function (5.12) over H0, yielding

α∗ = α∗(CR) = max
ϑ1≥h(ϑ2)

P ((X,Y ) ∈ CR | (ϑ1, ϑ2)) . (5.13)

Hence, an exact test fulfills α∗ ≤ α, such that equality is attained for some (ϑ1, ϑ2) ∈ H0.
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5. Two binomial samples

5.3.1 The exact LR test

In this section an exact modification of the asymptotic test is given which is based on an

idea of Storer and Kim [1990]. This is investigated numerically with various competitors

from the literature. It will be shown that the exact (modification of the) LR test in

general provides a slightly larger power than its competitors for all specified curves hDI ,

hRR and hOR.

To guarantee that the LR test keeps its nominal level α, the following modification of

the LR statistic λ is applied. In a first step, based on an idea of Storer and Kim [1990],

the exact distribution of the LR statistic is estimated by inserting the constrained ML

estimates (ϑ̂∗
1, ϑ̂

∗
2) into (5.3). With that, p-values can be estimated for any outcome

(x, y) by calculating

p∗ (x, y) =
∑

(a,b): λ(a,b)≤λ(x,y)

L
(
ϑ̂∗

1, ϑ̂
∗
2

)
, (5.14)

where λ (a, b) is the likelihood ratio given in (2.1) as a function of the number of failures

in both groups.

In a second step these estimated p-values p∗(x, y) are used to sort all possible outcomes

(xi, yi) = Si in ascending order. The resulting vector is denoted by

S =
(
S1, . . . , S(n1+1)·(n2+1)

)
,

and the corresponding increasing values p∗(Si) = p∗i . Now define

α∗
i = α∗

(
i⋃

j=1

Sj

)
, (5.15)

which denotes the maximal actual level of the rejection region
⋃i

j=1 Sj of the ”i” smallest

values in S with respect to the ordering induced by p∗. Finally, the critical region CR is

defined by

arg max
i

{α∗
i ≤ α} .

Remark 5.5 Obviously, it is computationally more feasible to calculate the maximum

on the boundary of H0, if possible. Röhmel and Mansmann [1999a] have shown that the

maximum is attained always at the boundary ϑ1 = h(ϑ2), if the test fulfills Barnard’s

convexity condition ”C”. Even if we were not able to prove that condition ”C” holds

for the modified LR test (denoted by exact LR test in the following), the calculation of

the maximum in (5.15) can be restricted to the boundary of H0, since we have checked

condition ”C” in an extensive numerical investigation and we have found no violation

of this condition.
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5.3.2 Other unconditional exact approaches

Barnard’s test

Barnard [1947] has constructed an unconditional exact test for H0 : ϑ1 ≥ ϑ2 versus

H1 : ϑ1 < ϑ2. Röhmel and Mansmann [1999b] have recognized that the principle of

constructing Barnard’s test is directly transferable to the testing problem (5.1). The

idea of calculating the critical region is to start with the outcome (n2, 0), i.e. the

most extreme outcome with respect to condition ”C” (cf. Remark 5.3). Then the

critical region is extended iteratively. Potential next outcomes are the adjacent points

(n2 − 1, 0) and (n2, 1) which fulfill condition ”C”. The actual levels α∗ (see (5.13))

for CR = {(n2, 0) , (n2 − 1, 0)} and CR = {(n2, 0) , (n2, 1)} are compared. From these

adjacent points the outcome is included into the critical region which increases the ac-

tual level by the smallest amount. Now, the next adjacent points and their amount to

the actual level are calculated to determine the next point to be included in the critical

region. This procedure is continued as long as α∗ is smaller than the nominal level.

Loosely speaking, the critical region is based on the principle to include as much as

possible points under the constraint ”C” and α∗ ≤ α, where α∗ is given in (5.13).

It is found, however, that a serious difficulty encountered with the practical use of

Barnard’s test consists of the effective numerical computation of its rejection region.

To this end the maximum α∗ in (5.13) has to be determined numerically for any possible

extension of the critical region. Numerically, this can only be achieved by calculating α∗

on a discrete grid of the interval [0, 1], the domain of p2, say. The following algorithm

was implemented for computing critical regions:

1) The initial critical region consists of the most extreme possible outcome only:

CR1 = {(n2, 0)}.
2) The adjacent outcomes which do not violate condition C are

(n2 − 1, 0) and (n2, 1). α∗ is computed for CR = CR1 ∪ {(n2 − 1, 0)}
and CR = CR1 ∪ {(n2, 1)}, respectively. The maxima are deter-

mined by calculating P ((X,Y ) ∈ CR | pT = pC + ∆0) iteratively for

pC ∈ {ε, 2ε, . . . , 1 − ∆0 − 2ε, 1 − ∆0 − ε} with, e.g., ε = 1/1000. The critical

region is extended by the outcome with the smaller α∗. If α∗ is (numerically) equal

for both outcomes (e.g. if nT = nC), then CR2 = CR1 ∪ {(nC − 1, 0) , (nC , 1)}.
3) Step 2 is iterated according to condition ”C” until α∗ exceeds the nominal level.

4) Stop the iteration and choose the preceding critical region.

Note that in step 2 the selection of a possible point to be included in the critical region

depends heavily on the grid width ε chosen to determine α∗. It is found that this yields
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Figure 5.6: Exact level as a function of ϑ2 (left hand) for calculated

rejection regions (right hand) using a grid width of 1/200 (thin line),

1/1000 (thick line), and 1/2000 (medium line).

an intrinsic numerical difficulty, since the corresponding values α∗ to be compared are

below the numerical precision of any standard software. Due to the iterative structure

of the algorithm, a wrong selection of a point in iteration step i will affect the entire

subsequent construction and may lead to completely wrong rejection regions. This is in

contrast to the subsequent algorithms for the exact LR test, the πlocal test and Chan’s

test described below.

Figure 5.6 shows the exact levels as a function of the nuisance parameter ϑ2 (with

n1 = n2 = 100 and H0 : ϑ1 ≥ ϑ2 + 0.01) on the basis of rejection regions which are

calculated using three different grid widths (1/200, 1/1000 and 1/2000). For a width of

1/1000, the rejection region is completely degenerated. The right hand figure displays

the corresponding rejection regions.

This will be illustrated with the following numerical example. For the construction of

the rejection region it is essential that the probabilities corresponding to the potential

points are ordered correctly. These probabilities may be extremely small, in particular for

larger sample sizes. E.g., for n1 = n2 = 100, θ0 = 0.01 and the initial critical region

CR = {(100, 0)} the maximum is α∗ ≈ 8.34 ∗ 10-62 (for p2 = 0.495). In contrast,

for unconditional exact tests which use a test statistic T as an ordering criterion this

is a minor problem (just rounding errors may cause difficulties). As a consequence, if

Ti and Tj are wrongly ordered in the sequence T1, . . . , Ti, Tj, this will not affect the

subsequent Tk. However, by constructing the critical region of Barnard’s test the preced-

ing sequence of the points in the rejection region essentially determines all subsequent

points. To illustrate this, assume that the correct ”Barnard ordering” with zi := (xi, yi)

is z1, . . . , zi, zi+1, and

max
(ϑ1,ϑ2)∈H0

P ((X,Y ) ∈ {z1, . . . , zi, zi+1} | (ϑ1, ϑ2)) ≤ α .
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Assume further, that instead of zi the outcome z′i is wrongly inserted into the critical

region. Then it may happen that the ”correct” outcomes zi and/or zi+1 will not be

included into the critical region, since

max
(ϑ1,ϑ2)∈H0

P ((X,Y ) ∈ {z1, . . . , z
′
i, zi} | (ϑ1, ϑ2)) > α ,

max
(ϑ1,ϑ2)∈H0

P ((X,Y ) ∈ {z1, . . . , z
′
i, zi+1} | (ϑ1, ϑ2)) > α ,

or

max
(ϑ1,ϑ2)∈H0

P ((X,Y ) ∈ {z1, . . . , z
′
i, zi, zi+1} | (ϑ1, ϑ2)) > α .

Remark 5.6 There is some different terminology in the literature. In various papers

and software packages ”Barnard’s test” does not refer to the test introduced by Barnard

[1947]. E.g., the software product StatXact refers to ”Barnard’s test” as the uncon-

ditional exact test from Chan (see below) in case of the testing problem (5.1). The

software product Testimate advertises the ”Barnard type exact test for non-inferiority

using the Röhmel-Mansmann procedure” which is equal to the πlocal test (see below).

The πlocal test

Röhmel and Mansmann [1999b] have suggested an additional unconditional exact test for

the problem (5.1). Here probabilities πmin (x, y) are calculated for all possible outcomes

(x, y) (0 ≤ x ≤ n1, 0 ≤ y ≤ n2) which are denoted by the ”smallest possible p-values

according to Barnard’s condition C”. These are the null probabilities for an outcome

(i, j) with i ≤ x and j ≥ y:

πmin (x, y) = max
H0

∑
i≤x

(
n1

i

)
ϑ1

i (1 − ϑ1)
n1−i

∑
j≥y

(
n2

j

)
ϑ2

j (1 − ϑ2)
n2−j .

The set of all possible outcomes (x, y) is sorted in ascending order by πmin (x, y). The

test is constructed in the same way as the exact LR test (Section 5.3.1), but it uses

πmin (x, y) as the ordering criterion. This test is applicable for all specifications of a

monotone curve h.

Chan’s test

In an approach recommended by Chan [1998], the test statistic of Farrington and Man-

ning [1990] (cf. Section 5.2.2) is used to construct an unconditional exact test for hDI

and hRR. The critical region of Chan’s test is constructed in the same way as the exact
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LR test. However, Farrington and Manning’s test statistic is used as the ordering cri-

terion. Röhmel and Mansmann [1999a] have remarked that searching for the maximum

at the boundary of H0 might be not correct here, since Chan did not prove that his

ordering criterion fulfills the condition ”C”- in contrast to Barnard’s test and the πlocal

test. However, Chan (author’s reply) has given a heuristic argument that the condition

is satisfied. In the meantime Mart́ın Andrés and Herranz Tejedor [2003] have given a

rigorous proof for this statement.

Fisher’s exact unconditional test

McDonald et al. [1977] have suggested to use the conditional exact p-values of Fisher’s

exact test (x + y is fixed, see e.g. Gart [1971]) as the ordering criterion to construct

an unconditional exact version for the classical null hypothesis H0 : ϑ1 = ϑ2. For shifted

hypotheses H0 : ϑ1 = hOR(ϑ2), the conditional version (cf. Lehmann [1986, Chapter

4.5]) using the generalized hypergeometric distribution yields conditional exact p-values:

p∗C := P (X ≤ x | X + Y = t) =

∑x
i=0

(
n1+n2

t−i

)(
n1

i

)
θi
0∑t

j=0

(
n1+n2

t−j

)(
n1

j

)
θj
0

.

An unconditional exact version is constructed in the same way as before using the

conditional exact p-values p∗C as the ordering criterion. This adaptation, denoted by

Fisher’s exact unconditional test in the following, is included in the comparison using

the odds ratio.

5.3.3 Power investigation

The exact LR test is compared with the above described unconditional exact approaches.

For the difference and the relative risk Chan’s approach and the πlocal test are contrasted

with the exact LR test.

For the odds ratio, only the πlocal test and Fisher’s exact unconditional test are appli-

cable from the above described approaches. The power properties of these tests are not

documented in the literature so far, hence this will be done in the following.

Remark 5.7 The comparison with Barnard’s test (more precise: with Röhmel and Mans-

mann’s adaptation of Barnard’s test for the hypothesis (5.1)) is omitted since the inves-

tigations in Section 5.3.2 have shown that this test is not applicable in practice due to

intrinsic numerical difficulties.

All tests under investigation are exact methods, i.e. they all keep the nominal level

exactly. In the following, these tests are compared numerically for the three distance
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Figure 5.7: The power of the exact LR test (vertical axis) in comparison

to the πlocal test and Chan’s test (horizontal axis) for several parameter

constellations with hDI (ϑ2) = ϑ2 + θ .

measures difference, relative risk and odds ratio w.r.t. power for a broad scenario of

parameter settings (θ0, n1, n2, ϑ2):

• Equivalence margin: θ0 ∈ {0.05, 0.1, 0.15, 0.2, 0.25} for hDI and

θ0 ∈ {1.1, 1.25, 1.5, 2, 2.5} for hRR and hOR.

• Sample size: Balanced sample sizes

n1 = n2 ∈ {20, 25, 30, 35, 40, 50, 60, 80, 100} and unbalanced sample sizes

(n1, n2) ∈ {(30, 20), (40, 20), (50, 25), (60, 30), (60, 40), (80, 40), (80, 50),

(80, 60), (100, 50), (100, 60), (100, 80)}.
• Nuisance parameter : ϑ2 ∈ {0.1, 0.2, 0.3, 0.5, 0.8, 0.9}.

This gives 600 different parameter configurations for every function h. Configurations

regarding the difference and the relative risk are omitted in case of non-feasible settings

(i.e. ϑ2 ≥ 1 − θ0 for hDI , ϑ2 ≥ 1/θ0 for hRR). The parameters θDI ≤ 0, θRR ≤ 1,

and θOR ≤ 1 are chosen such that the resulting power is larger than 0.8, at least for

one of the tests compared. Of course, for small sample sizes and small θ0 there exist

parameter constellations, for which no test achieves a power larger than 0.8. On the

other hand, for large sample sizes and large θ0 some parameter constellations result in

a power larger than 0.9 for all tests. These cases are omitted, too. Finally, for hDI 410

parameter constellations were extracted, for hRR 330, and for hOR 522. The resulting

values of the power function are calculated exactly for all tests under investigation by

computing the exact binomial probabilities given in (5.3) for all (x, y) ∈ CR.

The Figures 5.7, 5.8 and 5.9 show the power of the exact LR test (vertical axes) and

its competitors (horizontal axes) for the three distance measures hDI , hRR and hOR,

respectively.
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Figure 5.10: Boxplot (whiskers are the 5% and 95% quantiles) for

the power differences (times 100) between the exact LR test and its

competitors for the three distance measures difference, relative risk and

odds ratio.

It is found that in general the power differences between the exact LR test and its

competitors are small. Nevertheless, for all three distance measures the power of the

exact LR test tends to be larger. In some cases the power enhancement is up to 0.1,

whereas the inferiority is much smaller, if present at all. In order to illustrate this, the

differences of the exact LR test’s power and the power of its competitors are displayed

in Figure 5.10 (results of all distance measures combined). The LR test performs better

in most cases of parameter constellations, but the median power enhancement is always

near zero.

The most extreme power differences and its parameter constellations are displayed in

the Appendix (Tables B.1, B.2 and B.3). Those values are displayed separately, where

the power of the exact LR test differs from the largest power of its competitors by more

than 0.015 (for hDI or hRR) and 0.03 (for hOR), respectively.

The computational time in order to compute the critical regions of all tests is different.

It is found that Chan’s test is the fastest method. The other methods are more time con-

suming: Fisher’s exact unconditional test requires about 1.5 times of the computational

time of Chan’s test, the πlocal test 4 times and the exact LR test about 6 times. In sum-

mary, however, all tests under consideration are computationally feasible and numerically

stable.
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Figure 5.11: Visualization of sample sizes (n1, n2), for which the power

is larger (black dots) or less (white dots) than 0.8, specifying θ0 = 0.15,

α = 0.05 and p2 = 0.1 .

5.3.4 Sample size determination

In this section we briefly discuss various issues encountered with the sample size deter-

mination when planning a non-inferiority trial in order to control the type II error. One

might think at a first glance that this will be in general achieved when the sample sizes

n1 and n2 in both groups are equal. This is, however, not true (e.g. mentioned by Far-

rington and Manning [1990], Blackwelder [1993]) when the total number of observations

n1 + n2 is kept fixed.

In order to illustrate this effect, in Figure 5.11 the allocations of sample sizes where

40 ≤ n1, n2 ≤ 80 are displayed for the LR test and Chan’s test, specifying θ0 = 0.15,

α = 0.05 and p2 = 0.1. The black dots indicate an allocation of sample sizes for which

the test results in a power larger than 80%. For the white dots the power is less than

80%. From this figure the following conclusions can be drawn. The choice of equal

sample sizes (displayed on the diagonal n1 = n2) is not optimal in the sense that the

total sample size can be reduced for a different allocation.

In fact, Figure 5.11 shows that the total sample size can be reduced by overweighting

group 1 (i.e. n1/n2 > 1). This was found for various other values of p2. We need

56 patients per group for a balanced allocation in order to achieve a power of 80%.

Minimizing the total number of observations, where the power of 80% is kept fixed,

gives in this particular case for the exact LR test and Chan’s test the same result,

(n1, n2) = (60, 40). Hence, the total sample size can be reduced by 12, i.e. by about

10% of the total sample size using a balanced design.
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Figure 5.12: Exact power of the exact LR test, Chan’s test and the

πlocal test as a function of the sample size (balanced).

As described in Skipka and Trampisch [2001] and Finner and Strassburger [2001], exact

tests do not have a monotone increasing power function, in general. In particular, Figure

5.11 shows that for all tests there are pairs of (n1, n2), for which the power is larger than

for n1 + 1 or n2 + 1. This is found for all tests under investigation. Figure 5.12 shows

the exact power as a function of n1 = n2.

Due to the lack of monotonicity of the power function of these tests, it is computationally

extremely intensive to determine the optimal allocation of sample size. A way out of this

problem might consist in asymptotic considerations. However, we will not pursue this

topic here and leave it as a challenging task for further research.

5.4 Examples

Heliobacter pylori: In a multicenter randomized double-blind study in Heliobacter

pylori-positive patients, Dammann et al. [2000] compared the eradication rate of two

pantoprazole-based triple therapies of different length. One group (PCM-7) received a

combination of pantoprazole, clarithromycin and metronidazole during the first 7 days,

followed by 7 days with placebo tablets. The other group (PCM-14) received the same

combination of drugs for 14 days. An equivalence margin for the odds ratio of θ0 = 0.33

was specified. For the intention-to-treat (ITT) population, eradication rates of 89/121

for PCM-7 and 92/123 for PCM-14 were obtained. In the notation of the previous sec-

tions (referring to failure rates), this results in ϑ̂1 = 32/121 and ϑ̂2 = 31/123. All tests
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described above show the non-inferiority of PCM-7 as compared to PCM-14 for the odds

ratio, with θ0 = 3.03 ≈ 1/0.33 (p-values: 0.00021 with exact LR test, 0.00025 with the

πlocal test and Fisher’s exact unconditional test, respectively). The exact LR test gives

a slightly smaller p-value than its competitors.

The corresponding test-based upper 95%-confidence limits for the odds ratio (the small-

est θ0, for which the p-value is smaller than 0.05) are 1.76 (exact LR test) and 1.74

(πlocal and Fisher’s exact unconditional test). Interestingly, the confidence limit based

on the exact LR test is slightly larger, albeit in general this test was seen to be more

powerful than πlocal and Fisher’s exact unconditional version. Dammann et al. [2000]

calculated a lower 95% confidence limit (for the eradication rates) of 0.579, based on

the Mantel-Haenszel test - presumably stratified for centers (it is not exactly described

in their paper). In the previously used notation this results in 1/0.579 ≈ 1.73 which is

similar to our findings, altogether.

Human scabies: In a randomized controlled clinical trial Chouela et al. [1999] com-

pared the therapeutic equivalence of ivermectin (an antihelmintic agent) and lindane

(control) for the treatment of human scabies. The sample size was 43; 19 patients re-

ceived ivermectin and 24 patients received lindane. Chouela et al. fixed the equivalence

margin to 0.2 for the difference and argued that ivermectin is much simpler applicable

than lindane. It is drawn from Chouela et al. that 29 days after the treatments were

administered, 18 of 19 patients treated with ivermectin (5.3% failure rate) and 23 of

24 patients who received lindane (4.2% failure rate) had healing of their scabies. The

statistical analysis was performed using Blackwelder’s asymptotic test with α = 0.05.

The p-value was found to be 0.002, hence therapeutic equivalence of ivermectin and

lindane was claimed.

In Figure 5.13 the exact levels of the tests of Blackwelder, Chan, and the exact likelihood

ratio test are displayed for this example. Figure 5.13 shows that the actual level of

Blackwelder’s test is heavily exceeded for small and large values of ϑ2 (up to twice of

the nominal level), hence this test is not appropriate here. For example, if the observed

failure rate 0.042 is equated with the exact one, the actual level of Blackwelder’s test is

to be expected as 0.09. The exact LR test has a maximum actual level of 0.049. Finally,

the p-value of the data in Chouela et al. for the exact LR test is 0.0087. The p-values for

the πlocal test (0.0152) and Chan’s test (0.0172) are somewhat larger. In summary, all

of these tests significantly show the therapeutic equivalence of ivermectin and lindane.
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Figure 5.13: Exact level of different statistical tests as a function of ϑ2

for the parameter constellation of the example ”Human scabies”.

Remark 5.8 The stronger condition θ0 = 0.15 may also be imposed in order to demon-

strate therapeutic equivalence. The corresponding p-values are 0.0309 for the exact LR

test, 0.04 for Chan’s test, and 0.0434 for the πlocal test. Even if the equivalence margin

is chosen smaller, θ0 = 0.13, say, the exact LR test gives a significant (α = 0.05) result

(p-value = 0.0493). However, Chan’s test (p-value = 0.0544) and the πlocal test (p-value

= 0.0677) do not yield equivalence for θ0 = 0.13.
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As seen in Chapter 1, it is often necessary to extend the comparison of a new treatment

and a control by a third group. The third group can be a placebo to ensure the assay

sensitivity of a clinical trial. Other three-armed clinical trials aim to show that a new

treatment is relevantly superior or non-inferior with respect to two standard treatments.

Furthermore, if a new treatment is applied using two different formulations or doses,

three groups are required in order to compare the new treatment to a control. In this

chapter, the LR tests for the hypotheses a) - c) described in the introduction are derived.

Analogously to the two-sample case, the methodology is given for hypotheses using

general functions h (cf. Section 5.1). Power comparisons based on the commonly used

distance measures for binomial distributions (difference of rates, relative risk and odds

ratio) are carried out for asymptotic and unconditional exact approaches.

6.1 Model and hypotheses

Let Xij ∼ Bi(1, ϑi) be three independent Bernoulli samples with failure rates ϑi and

sample sizes ni (j = 1, . . . , ni, i = 1, 2, 3). The following null hypotheses are investigated

(analogously to the hypotheses a) - c) of Chapter 1):

Ha
0 : ϑ3 ≥ h1(ϑ1) ∨ ϑ3 ≥ h2(ϑ2) ,

Hb
0 : ϑ3 ≥ h1(ϑ1) ∧ ϑ3 ≥ h2(ϑ2) , (6.1)

Hc
0 : ϑ3 ≥ h1(ϑ1) ∨ ϑ1 ≥ h2(ϑ2) .

The functions h1 and h2 in (6.1) are specified as for the two-sample case (cf. Chapter

5), i.e. both functions are twice differentiable and strict isotonic.

Figure 6.1 shows the null space Ha
0 and Hb

0 for the three commonly used distance

measures (for definition see (5.2)) difference, relative risk and odds ratio. The null space

Hc
0 is omitted in the figure, since it is Ha

0 with interchanged axes.
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Figure 6.1: Null space for Ha
0 and Hb

0 .

6.2 Likelihood ratio statistics and asymptotic distribution

In this section the LR statistics and their asymptotic distribution are derived for each of

the problems in (6.1). It will be seen that the LR principle for the hypotheses Ha
0 and

Hc
0 leads to the IUT using the pairwise two-sample tests. For Hb

0 it will be found that

the LR approach is more complicated, since the roots of a 5-degree polynomial have to

be calculated.

Let xi =
∑ni

j=1 xij, i = 1, 2, 3. Then, the likelihood function is found to be

L(ϑ) =
3∏

i=1

(
ni

xi

)
ϑxi

i (1 − ϑi)
ni−xi , (6.2)

where ϑ = (ϑ1, ϑ2, ϑ3)
�. The unconstrained MLE is given by ϑ̂ = (xi/ni)i=1,2,3, whereas

the MLE constrained to H0 is given by

ϑ̂∗ = arg max
ϑ∈H0

L(ϑ) .

Thus, the transformed LR −2 ln λ is calculated by

T = T (ϑ̂) := 2[log L(ϑ̂) − log L(ϑ̂∗)] . (6.3)

We will show in the next sections that for the hypotheses Ha
0 and Hc

0 the LR-statistic

reduces to a function of the corresponding pairwise two-sample LR-statistics. Therefore,

the constrained two-sample MLEs introduced in Chapter 5.2.1 are required. Throughout

the following the constrained two-sample MLEs are denoted by

ϑ̂∗
n1,n2,x1,x2,h := arg max

ϑ
ϑx1(1 − ϑ)n1−x1(h(ϑ))x2(1 − h(ϑ))n2−x2 . (6.4)
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Hypotheses Ha
0 and Hc

0

Here we derive the test statistic and its asymptotic null distribution for

Ha
0 : ϑ3 ≥ h1(ϑ1) ∨ ϑ3 ≥ h2(ϑ2) vs. ¬Ha

0 .

Obviously, if ϑ̂ ∈ Ha
0 , the LR-statistic equals zero. Thus, let ϑ̂ /∈ Ha

0 . The boundaries of

the pairwise null spaces are denoted by

S1 := {ϑ ∈ Ha
0 |ϑ3 = h1(ϑ1)} ,

S2 := {ϑ ∈ Ha
0 |ϑ3 = h2(ϑ2)} . (6.5)

Since

max
ϑ∈Ha

0

L(ϑ)
Th. 2.1

= max
ϑ∈∂Ha

0

L(ϑ) ≤ max
S1∪S2

L(ϑ) ≤ max
ϑ∈Ha

0

L(ϑ) ,

the maximum over Ha
0 is calculated by

max
ϑ∈∂Ha

0

L(ϑ) = max
S1∪S2

L(ϑ) = max{max
S1

L(ϑ), max
S2

L(ϑ)} .

The parameter ϑ2 is unconstrained in S1 and ϑ1 is unconstrained in S2. Thus, with (6.4)

the MLE constrained to Ha
0 is one of the constrained two-sample MLEs:

ϑ̂∗
S1

:= (ϑ̂∗
n1,n3,x1,x3,h1

, ϑ̂2 , h1(ϑ̂
∗
n1,n3,x1,x3,h1

))� ,

ϑ̂∗
S2

:= (ϑ̂1 , ϑ̂∗
n2,n3,x2,x3,h2

, h2(ϑ̂
∗
n2,n3,x2,x3,h2

))� .

Therefore, the test statistic (6.3) is given by

T = 2[ln L(ϑ̂) − ln max{L(ϑ̂∗
S1

), L(ϑ̂∗
S2

)}] = min{T1, T2} ,

where

Ti = 2[ln L(ϑ̂) − ln L(ϑ̂∗
Si

)] , i = 1, 2 . (6.6)

Hence, the test statistic T is equal to the two-sample test for the hypothesis

H0 : ϑ3 ≥ h1(ϑ1) in case of L(ϑ̂∗
S1

) ≥ L(ϑ̂∗
S2

), otherwise it is equal to the two-sample

test for the hypothesis H0 : ϑ3 ≥ h2(ϑ2).

The following theorem guarantees that, asymptotically, Ha
0 is rejected at level α if T is

larger than the (1 − α)-quantile of the distribution of 1
2

+ 1
2
Fχ2

1
.

Theorem 6.1 Let t > 0. Then, for all ϑ ∈ ∂Ha
0 it holds that

P (T > t) ≤ P (Z > t) + o(1) , (6.7)

where Z is distributed as 1
2

+ 1
2
Fχ2

1
. Furthermore, for some ϑ ∈ ∂Ha

0 we have strict

equality in (6.7).
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Proof: First note that

P (T > t) = P (T1 > t , L(ϑ̂∗
S1

) ≥ L(ϑ̂∗
S2

))

+P (T2 > t , L(ϑ̂∗
S1

) < L(ϑ̂∗
S2

)) .

In case of ϑ3 = h1(ϑ1), ϑ3 < h2(ϑ2) ,

P (L(ϑ̂∗
S1

) ≥ L(ϑ̂∗
S2

)) = 1 + o(1) ,

and thus,

P (T > t) = P (T1 > t) + o(1) .

Analogously, in case of ϑ3 = h2(ϑ2), ϑ3 < h1(ϑ1) ,

P (T > t) = P (T2 > t) + o(1) .

Hence, if ϑ is not located on the edge S1 ∩ S2, the test statistic follows the same

distribution (1
2

+ 1
2
χ2

1) as in the two-sample case (see. Theorem 5.4).

If ϑ is located on the edge ϑ3 = h1(ϑ1) = h2(ϑ2),

P (T > t) = P (T1 > t , T2 > t) ≤ P (T1 > t) ,

i.e. P (T > t) ≤ α for t = (1
2

+ 1
2
Fχ2

1
)1−α �

Remark 6.2 Theorem 6.1 shows that the LR test for Ha
0 is equal to the IUT, i.e. Ha

0

is rejected, if both of the pairwise two-sample LR tests are rejected at level α.

Following the same arguments as before, the test statistic and its null distribution for

Hc
0 : ϑ3 ≥ h1(ϑ1) ∨ ϑ1 ≥ h2(ϑ2) vs. ¬Hc

0

can be derived. The MLE constrained to Hc
0 is calculated by using one of the constrained

two-sample MLEs (see (6.4)):

ϑ̂∗
S1

:= (ϑ̂∗
n1,n3,x1,x3,h1

, ϑ̂2 , h1(ϑ̂
∗
n1,n3,x1,x3,h1

))� ,

ϑ̂∗
S2

:= (h2(ϑ̂
∗
n2,n1,x2,x1,h2

) , ϑ̂∗
n2,n1,x2,x1,h2

, ϑ̂3)
� .

Analogously to Ha
0 , the test statistic (6.3) is calculated by

T = min{T1, T2} ,

where Ti (i = 1, 2) is given in (6.6).

Hence, the test statistic T is equal to the two-sample test for the hypothesis

H0 : ϑ3 ≥ h1(ϑ1) in case of L(ϑ̂∗
S1

) ≥ L(ϑ̂∗
S2

), otherwise it is equal to the two-sample

test for the hypothesis H0 : ϑ1 ≥ h2(ϑ2).

Asymptotically, Hc
0 is rejected if T is larger than the (1−α)-quantile of the distribution

of 1
2

+ 1
2
Fχ2

1
which can be proven in the same way as Theorem 6.1.
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Hypothesis Hb
0

For hypothesis Hb
0 the situation is different, i.e. the LR test is not a combination of two

pairwise comparisons. The boundary of the hypotheses

Hb
0 : ϑ3 ≥ h1(ϑ1) ∧ ϑ3 ≥ h2(ϑ2) vs. ¬Hb

0

is given by the union of the surfaces

K1 := {ϑ ∈ [0, 1]3 | ϑ3 = h1(ϑ1) ∧ ϑ3 ≥ h2(ϑ2)} ,

K2 := {ϑ ∈ [0, 1]3 | ϑ3 = h2(ϑ2) ∧ ϑ3 ≥ h1(ϑ1)} .

In contrast to the hypothesis Ha
0 , the calculation of the LR-statistic cannot be reduced

to the two-sample case in general, since K1 and K2 are proper subsets of S1 and S2 (cf.

(6.5)), respectively. Thus, the MLEs constrained to S1 and S2 are not included in Hb
0

for some outcomes. In that case the MLEs constrained to Hb
0 result at the ”edge” of

Hb
0, i.e. at K3 := K1 ∩ K2.

Theorem 6.3 Let ϑ̂ /∈ Hb
0. With the notation of Section 6.2 the constrained MLE for

the hypothesis Hb
0 is given by

ϑ̂∗ :=


ϑ̂∗

S1

ϑ̂∗
S2

ϑ̂∗
K3

if

ϑ̂∗
S1

∈ Hb
0, ϑ̂∗

S2
/∈ Hb

0 ∨ (ϑ̂∗
S2

∈ Hb
0, T1 ≤ T2)

ϑ̂∗
S2

∈ Hb
0, ϑ̂∗

S1
/∈ Hb

0 ∨ (ϑ̂∗
S1

∈ Hb
0, T1 > T2)

ϑ̂∗
S1

/∈ Hb
0, ϑ̂∗

S2
/∈ Hb

0

,

where ϑ̂∗
K3

:= arg maxK3 L(ϑ).

Proof: The maximum of L(ϑ) over Hb
0 is attained in ∂Hb

0 = K1 ∪ K2.

If ϑ̂∗
S1

/∈ Hb
0, we have that arg maxK1 L(ϑ) ∈ K3, since L(ϑ) is isotonic in ϑ2 (< ϑ̂2) for

fixed parameters ϑ3 = h1(ϑ1). Analogously, arg maxK2 L(ϑ) ∈ K3 holds for ϑ̂∗
S2

/∈ Hb
0.

It follows that ϑ̂∗ = ϑ̂∗
K3

.

If ϑ̂∗
S1

∈ Hb
0 and ϑ̂∗

S2
/∈ Hb

0, it follows that arg maxK2 L(ϑ) ∈ S1, since K3 ⊂ S1. If

ϑ̂∗
S1

∈ Hb
0 and ϑ̂∗

S2
∈ Hb

0, maxϑ∈Hb
0
L(ϑ) = L(ϑ̂∗

S1
) for T1 ≤ T2. This proves the case

ϑ̂∗ = ϑ̂∗
S1

, and by symmetry the case ϑ̂∗ = ϑ̂∗
S2

, also. �

It is shown in Theorem 6.3 that the calculation of the MLE can be reduced to the two-

sample case if ϑ̂∗
S1

∈ Hb
0 or ϑ̂∗

S2
∈ Hb

0. Otherwise, L(ϑ) has to be maximized under the

constraint ϑ3 = h1(ϑ1) = h2(ϑ2). In order to find the arg max in this situation, one has

to compute the zeros of

x3

ϑ3

− n3 − x3

1 − ϑ3

+
h′

1(ϑ1)(x1 − n1h1(ϑ1))

h1(ϑ1)(1 − h1(ϑ1))
+

h′
2(ϑ2)(x2 − n2h2(ϑ2))

h2(ϑ2)(1 − h2(ϑ2))
,
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which are the roots of a 5-degree-polynomial. This can be determined numerically by

Newton’s method. Note that any zero in the interior of the null hypothesis can be used

as a MLE.

The test statistic T is calculated as in (6.3) with ϑ̂∗ given by Theorem 6.3.

The asymptotic distribution of the LR-statistic T for Hb
0 is given by the following The-

orem.

Theorem 6.4 Let ϑ3 = h1(ϑ1) = h2(ϑ2) and X = (X1, X2, X3)
� a 3-dimensional

normally distributed random vector with zero mean and covariance matrix Σ−1(ϑ), where

Σ(ϑ) := diag

(
1

ϑ1(1 − ϑ1)
,

1

ϑ2(1 − ϑ2)
,

1

ϑ3(1 − ϑ3)

)
.

Let further, for i = 1, 2,

Σi(ϑ) := diag
(

1
ϑi(1−ϑi)

, 1
ϑ3(1−ϑ3)

)
,

Ci(ηi) := (
√

ci , h′
i(ηi))

� ,

Σ∗
i (ηi) := ci

ηi(1−ηi)
+

h′
i(ηi)

2

hi(ηi)(1−hi(ηi))
,

and

C(η) := (
√

c1 ,
√

c2[h
−1
2 (h1(η))]′ , h′

1(η))� ,

Σ∗(η) := c1
η(1−η)

+
h′
1(η)2

h1(η)(1−h1(η))
+

c2([h−1
2 (h1(η))]′)2

h−1
2 (h1(η))[1−h−1

2 (h1(η))]
.

Then, as mini=1,2,3{ni} → ∞, s.t. ni

n3
→ ci ∈ (0,∞) (i = 1, 2), it holds for t > 0 that

P (T > t) → p1(t) + p2(t) + p3(t), where

p1(t) := P

(
(X1, X3)

�A1

(
X1

X3

)
> t ∩ [X3 <

h′
1(ϑ1)√

c1

X1 ∪ X3 <
h′

2(ϑ2)√
c2

X2]

∩ B1X1 ≥ 1√
c2

X2 ∩
[
B2X2 <

1√
c1

X1

∪ {B2X2 ≥ 1√
c1

X1 ∩ (X1, X3)
�A1

(
X1

X3

)
≤ (X2, X3)

�A2

(
X2

X3

)
}
])

,

p2(t) := P

(
(X2, X3)

�A2

(
X2

X3

)
> t ∩ [X3 <

h′
2(ϑ2)√

c2

X2 ∪ X3 <
h′

1(ϑ1)√
c1

X1]

∩ B2X2 ≥ 1√
c1

X1 ∩
[
B1X1 <

1√
c2

X2

∪ {B1X1 ≥ 1√
c2

X2 ∩ (X1, X3)
�A1

(
X1

X3

)
> (X2, X3)

�A2

(
X2

X3

)
}
])

,

62



6. Three binomial samples

p3(t) := P

(
X�A1X > t ∩ [X3 <

h′
1(ϑ1)√

c1

X1 ∪ X3 <
h′

2(ϑ2)√
c2

X2]

∩ B1X1 <
1√
c2

X2 ∩ B2X2 <
1√
c1

X1

)
,

with (suppressing the arguments of the functions Σ(ϑ), Σi(ϑ), etc.)

A = Σ − ΣCΣ∗−1

C�Σ ,

Ai = Σi − ΣiCiΣ
∗−1

i C�
i Σi (i = 1, 2) ,

Bi = Σ∗−1

C�
i Σi (i = 1, 2) .

Proof: If ϑ̂∗ = ϑ̂∗
Si

(i = 1, 2), i.e. the MLE constrained to Hb
0 is in Si, the test statistic

Ti is given by (6.6). Since for ϑ̂∗ = ϑ̂∗
K3

the MLE is calculated under the constraint K3,

the test statistic is given by T3 := 2[ln L(ϑ̂) − ln L(ϑ̂∗
K3

)].

With Theorem 6.3 it holds for t > 0 that

P (T > t) = P (T1 > t ∩ ϑ̂ /∈ Hb
0 ∩ ϑ̂∗

S1
∈ Hb

0 ∩ [ϑ̂∗
S2

/∈ Hb
0 ∪ {ϑ̂∗

S2
∈ Hb

0 ∩ T1 ≤ T2}])
+P (T2 > t ∩ ϑ̂ /∈ Hb

0 ∩ ϑ̂∗
S2

∈ Hb
0 ∩ [ϑ̂∗

S1
/∈ Hb

0 ∪ {ϑ̂∗
S1

∈ Hb
0 ∩ T1 > T2}])

+P (T3 > t ∩ ϑ̂ /∈ Hb
0 ∩ ϑ̂∗

S1
/∈ Hb

0 ∩ ϑ̂∗
S2

/∈ Hb
0) .

From Lemma 2.5 it follows that Ti (i = 1, 2, 3) is asymptotically equivalent to

(X̂i, X̂3) Ai (X̂i, X̂3)
� if ϑ = h(η) = (ηi, hi(ηi))

� for i = 1, 2, and to X̂�A X̂ if

ϑ = h(η) = (η, h−1
2 (h1(η)), h1(η))� for i = 3, where

X̂ = (X̂1, X̂2, X̂3)
� = (

√
nj(ϑ̂j − ϑj))j=1,2,3 .

Since ϑ̂ ∈ Hb
0 is equivalent to ϑ̂3 ≥ h1(ϑ̂1) ∩ ϑ̂3 ≥ h2(ϑ̂2) and hence to√

n3(ϑ̂3 − ϑ3) ≥
√

n1

c1
(h1(ϑ̂1) − h1(ϑ1)) ∩ √

n3(ϑ̂3 − ϑ3) ≥
√

n2

c2
(h2(ϑ̂2) − h2(ϑ2)),

with hi(ϑ̂i) − h1(ϑi) = h′
i(ϑi)(ϑ̂i − ϑi) + op(|ϑ̂i − ϑi|) as min{ni} → ∞, it holds that

[ϑ̂3 − hi(ϑ̂i)] − [X̂3 − h′
i(ϑi)√

ci

X̂i]
P−→ 0 .

Now ϑ̂∗
S1

∈ Hb
0 is equivalent to h1(ϑ̂

∗
S1,1) ≥ h2(ϑ̂2) and hence to

√
n3(ϑ̂

∗
S1,1 − ϑ1) ≥

√
n1

c1
[h−1

1 (h2(ϑ̂2)) − h−1
1 (h2(ϑ2))], where ϑ̂∗

S1,1 is the first compo-

nent of ϑ̂∗
S1

(note that h−1
1 (h2(ϑ2)) = ϑ1). An application of Lemma 2.5 gives

[h1(ϑ̂
∗
S1,1) − h2(ϑ̂2)] − [Σ∗−1

1 C�
1 Σ1X̂1 − (h−1

1 [h2(ϑ2)])
′

√
c2

X̂2]
P−→ 0 .
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Figure 6.2: The asymptotic probability P (T > 3.84) as a function

of the rate ϑ1 for several parameter constellations of θ1, θ2, c1, c2

(solid line: 0.1, 0.2, 1, 1 for the difference, 1.5, 2, 1, 0.5 for the rela-

tive risk and the odds ratio; dotted line: 0.1, 0.1, 1, 0.5 for the differ-

ence, 1.5, 1.5, 1, 1 for the relative risk and the odds ratio; dashed line:

0.05, 0.1, 0.5, 0.5 for the difference, 1.25, 1.5, 0.5, 0.5 for the relative

risk and the odds ratio) and for hypothesis Hb
0 using the difference,

the relative risk and the odds ratio.

The proof for ϑ̂∗
S2

∈ Hb
0 is carried out analogously.

Since P (A∩ (B ∪C)) = P (A∩B ∩C) + P (A∩C ∩B) + P (A∩B ∩C) for arbitrary

events A,B,C, we find continuous functions fkj and finite k, j such that

P (T > t) =
∑

k

P

(⋂
j

fkj(X̂, t) > 0

)
+ o(1) .

Theorem 2.3 gives that X̂
D−→ N3(0, Σ

−1(ϑ)). Slutsky’s theorem finishes the proof. �

Theorem 6.4 shows that the asymptotic distribution of the LR depends on the parameter

ϑ1 and the functions hi for ϑ ∈ Hb
0. The main argument used in this Theorem is the

asymptotic linearity of the LR. The probability P (T > t) can be calculated by simulation.

To investigate the magnitude of the dependence of the probability P (T > t) in Theorem

6.4 on the nuisance parameter ϑ1, simulations are performed for several parameter con-

stellations. Figure 6.2 shows the asymptotic probability P (T > 3.84) for the difference,

the relative risk, and the odds ratio.

It is found that the asymptotic probability P (T > 3.84) is stronger influenced by the

nuisance parameter ϑ1 in case of the difference than in case of the relative risk or the

odds ratio, especially for small values of ϑ1. To construct a strict level α test for all
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6. Three binomial samples

ϑ1, the quantile could be determined by maximizing the asymptotic probability. This

approach will be not pursued for two reasons. From Theorem 6.4 it becomes apparent

that the limit distribution is hardly tractable numerically, and this concept will lead to a

very conservative test as can be seen from Figure 6.2.

In the following we will give a method which will be shown be numerically tractable

and which gives a quite accurate approximation of the nominal level. To this end we

determine the asymptotic probability for that ϑ1 which is most likely under the null

hypothesis. Therefore, the quantile t is specified such that Pϑ̂∗
1
(T > t) = α, where ϑ̂∗

1

is the MLE of ϑ1 constrained to ϑ3 = h1(ϑ1) = h2(ϑ2), i.e. ϑ̂∗
1 is the first component

of ϑ̂∗
K3

in Theorem 6.3. In Section 6.4 this approach is compared numerically to the

commonly used asymptotic methods with respect to level and power.

6.3 Exact version of the LR test

The asymptotic investigations of the LR test for two samples have shown that for small

sample sizes the asymptotic LR test tends to attain a somewhat liberal level. Analogously

to the two-sample case, an exact version of the LR test can be constructed. This is carried

out exactly as described for two samples in Section 5.3.1. In a first step, the p-values

can be estimated by calculating

p∗(ϑ̂) =
∑
ϑ̃∈Ψ

L(ϑ̂∗) ,

for any outcome ϑ̂ = (xi/ni)i=1,2,3, where

Ψ := {ϑ̃ ∈ (0, . . . , n1) × (0, . . . , n2) × (0, . . . , n3) | T (ϑ̃) ≥ T (ϑ̂)} (for T and L see

(6.2) and (6.3), respectively). These are the exact p-values under the assumption that

ϑ̂∗ (the MLE constrained to Hb
0) is the true parameter.

In a second step, these p-values p∗(ϑ̂) are used as an ordering criterion to define the

critical region. Hence, outcomes ϑ̂ with corresponding small p-values are included into

the critical region CR as long as

max
ϑ3=h1(ϑ1)=h2(ϑ2)

∑
ϑ̂∈CR

L(ϑ) ≤ α .

In the next section this unconditional exact modification of the LR test - denoted by

exact LR test in the following - is compared to pairwise two-sample tests.
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6. Three binomial samples

6.4 Level and power comparisons

The LR principle for the hypotheses Ha
0 and Hc

0 leads to a combination of the two-sample

LR tests, where no level adjustment is necessary. Therefore, no further investigations are

carried out for these hypotheses and we refer to the investigations for the two-sample

case in Section 5.3.3. However, as seen in Section 6.2, for the hypothesis Hb
0 the LR

test cannot be reduced to the two-sample case. This will be investigated more precisely

in the following.

The exact LR test is compared with the two-sample LR tests and with Chan’s uncondi-

tional exact two-sample tests. The pairwise two-sample tests are level adjusted applying

Bonferroni’s and Hochberg’s procedure, respectively. Even if Hochberg’s approach does

not guarantee a strict level α test (dependency of the pairwise test statistics), we in-

cluded it into the comparison, since we found numerically quite satisfactory results. The

level adjustment from Dunnett (cf. Section 4.2) is omitted, since for Dunnett’s approach

normally distributed data have to be assumed.

The exact procedures are investigated for small sample sizes (up to 50 per group). Note

that the computation time (approximately 20 minutes for a sample size of 25 per group

and 120 minutes for 50 per group with a Pentium III, 1.2 MHz, SAS V8) increases rapidly

for larger sample sizes. For sample sizes between 50 and 500 per group the asymptotic

LR test is numerically compared with the commonly used asymptotic two-sample tests

(see Section 5.2.2) applying Bonferroni’s and Hochberg’s adjustment.

The power is exactly calculated as in Section 5.3.3 comparing the exact LR test and its

competitors. A broad scenario of parameter settings (θ1, θ2, n1, n2, n3, ϑ1) is considered

for the distance measures difference, relative risk and odds ratio:

• Equivalence margins :

(θ1, θ2) ∈ {(0.15, 0.15), (0.15, 0.2), (0.15, 0.25), (0.2, 0.2), (0.2, 0.25), (0.25, 0.25)}
for hDI and (θ1, θ2) ∈ {(1.5, 1.5), (1.5, 2), (1.5, 2.5), (2, 2), (2, 2.5), (2.5, 2.5)} for

hRR and hOR .

• Sample size: Balanced sample sizes

n1 = n2 = n3 ∈ {20, 25, 30, 40, 50} and unbalanced sample sizes

(n1, n2, n3) ∈ {(20, 20, 40), (25, 25, 50), (40, 40, 20), (50, 50, 25)} .

• Nuisance parameter : ϑ1 ∈ {0.1, 0.2, 0.3, 0.5, 0.8, 0.9} .

• Distances between the groups: ϑ1 = ϑ2 ≤ ϑ3 and ϑ1 ≥ ϑ2 = ϑ3 .

Overall, 648 parameter constellations for each distance measure, respectively, are con-

sidered in a first step. Configurations are omitted in case of non-feasible settings (e.g.
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6. Three binomial samples

ϑ1 ≥ 1−θ1 for hDI , ϑ1 ≥ 1/θ1 for hRR). The parameters ϑ1, ϑ2, ϑ3 are chosen such that,

if possible, the resulting power is larger than 0.8, at least for one of the tests compared.

Here two settings are investigated: either the parameter ϑ3 is chosen equal to or smaller

than ϑ1 = ϑ2, or the parameter ϑ1 is chosen equal to or greater than ϑ2 = ϑ3. In a sec-

ond step, parameter constellations are omitted for which all tests achieve a power larger

than 0.9. Finally, 261 parameter constellations remain for the difference, 85 parameter

constellations remain for the relative risk, and 260 parameter constellations remain for

the odds ratio.

Figures 6.3, 6.4 and 6.5 represent the power of the exact LR test (vertical axes) and

its competitors (horizontal axes) for the three distance measures hDI , hRR and hOR,

respectively. The calculations show that the power of the exact LR test compared to

its pairwise competitors is larger in general. For nearly each parameter constellation and

distance measure the LR test outperforms the pairwise procedures using Bonferroni’s

adjustment. In comparison to Hochberg’s adjustment the power improvement is smaller.

Figure 6.6 gives Boxplots (results of all distance measures combined) of the power

differences between the exact LR test and its competitors for Bonferroni’s and Hochberg’s

adjustment, respectively. The power enhancement using the exact LR test is rather

substantial in comparison to Bonferroni’s adjustment.

The power of the LR test also tends to be larger (similar to the results of the two-sample

case) compared to Hochberg’s adjustment. However, the improvement is surprisingly

low.

We found no parameter constellation for which Hochberg’s adjustment led to an in-

creased level larger than α (data not displayed). However, recall that there is no rigid

result which reveals Hochberg’s test as a level α test. The reason for the good perfor-

mance of the pairwise two-sample procedures using Hochberg’s adjustment is illustrated

in Figure 6.7. Here the differences between the rejection regions of the exact LR test and

Chan’s test are displayed for an arbitrary setting. The small dots represent the outcomes

x1, x2, x3 for which the exact 3-sample LR test leads to the rejection of Hb
0 only, the big

dots represent the outcomes for which Chan’s test leads to the rejection of Hb
0 only. On

the left hand side Chan’s test with Hochberg’s adjustment is applied, on the right hand

side Bonferroni’s adjustment is applied. It is found that considerably more outcomes are

included into the critical region applying the LR test. However, those outcomes which

have largest probability under alternatives of interest (e.g. when ϑ1 = ϑ2 = ϑ3) are

placed at the ”edge” (x1 ≈ x2 ≈ x3). Hence, outcomes which are not placed near the

”edge” will provide a minor contribution to the power.

As a conclusion, the calculations show that the exact LR test improves the power com-

pared to the pairwise two-sample procedures. The improvement is quite substantial com-

pared to the Bonferroni adjusted procedures. Compared to the Hochberg adjusted proce-
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Figure 6.3: The power of the exact 3-sample LR test (vertical axis)

in comparison to the pairwise 2-sample tests by Chan with Bonfer-

roni’s (B) and Hochberg’s (H) adjustment (horizontal axis) for several

parameter constellations and for hypothesis Hb
0 using the difference.
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Figure 6.4: The power of the exact 3-sample LR test (vertical axis)

in comparison to the pairwise 2-sample tests by Chan with Bonfer-

roni’s (B) and Hochberg’s (H) adjustment (horizontal axis) for several

parameter constellations and for hypothesis Hb
0 using the relative risk.
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Figure 6.5: The power of the exact 3-sample LR test (vertical axis) in

comparison to the pairwise 2-sample unconditional exact tests by Fisher

with Bonferroni’s (B) and Hochberg’s (H) adjustment (horizontal axis)

for several parameter constellations and for hypothesis Hb
0 using the

odds ratio.
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Figure 6.6: Boxplot (whiskers are the 5% and 95% quantiles) for the

power differences (times 100) between the exact LR test and the mul-

tiple comparison procedures using Bonferroni’s and Hochberg’s adjust-

ment for the three distance measures difference (D), relative risk (RR)

and odds ratio (OR).
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Figure 6.7: The differences between the rejection regions of the exact

LR test and Chan’ test with Hochberg’s adjustment (left hand side)

and Bonferroni’s adjustment (right hand side). The small dots represent

the outcomes x1, x2, x3 for which the exact 3-sample LR test leads to

the rejection of Hb
0 only, the big dots represent the outcomes for which

Chan’s test leads to the rejection of Hb
0 only (n1 = n2 = n3 = 50,

θ1 = θ2 = 0.15).

dures the improvement tends to be slightly smaller, but it should be taken into account

that Hochberg’s adjustment does not guarantee to keep the level α in case of hypothesis

Hb
0.

The sample size can be significantly reduced applying the exact LR test instead of the

Bonferroni adjusted procedure. This will be illustrated by the following example. Let

(θ1, θ2) = (2, 2) and (ϑ1, ϑ2, ϑ3) = (0.8, 0.8, 0.6). Then a sample size of 25 per group is

required to give a power of 0.8 when using the Bonferroni adjusted procedure. Applying

the exact LR test, a sample size of 20 per group yields a power of 0.8, i.e. the sample

size can be reduced by 20%. As mentioned in the two-sample case, the sample size may

even be further reduced choosing unequal group sample sizes.

The asymptotic LR test is numerically investigated by simulations (100,000 repetitions)

for sample sizes between 50 and 500 per group. Level and power of the LR test is

compared to the pairwise asymptotic two-sample tests based on the score statistic which

are introduced in Section 5.2.2. The pairwise tests are applied using Bonferroni’s and

Hochberg’s adjustment. We have seen for normally distributed data that Hochberg’s

adjustment keeps the level α. Therefore, it is interesting to investigate this for binomial

data.

Table 6.1 shows the simulated level and power for the three distance measures difference,

relative risk and odds ratio, respectively. Different parameter settings are implemented,

analogously to the investigations mentioned above. The simulated levels are quite accu-
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rate for all approaches. Overall, it can be seen that the LR test is almost always slightly

superior to its competitors with respect to level and power.

6.5 Example

In a randomized double-blind comparison in patients with cancer Hesketh et al. [1996]

assess the efficacy of antiemetic agents in preventing cisplatin-induced nausea and vom-

iting. The trial was performed to show non-inferiority of dolasetron mesylate at doses of

1.8 mg/kg (T1) and 2.4 mg/kg (T2), respectively, over the standard ondansetron (C) at

its approved dose of 32 mg. The primary analysis was done by comparing the failure rates

of T1 and T2, respectively, with C. Patients having emetic episodes or receiving rescue

medication during 24 hours were classified as failures. For both comparisons the equiva-

lence margin for the odds ratio was specified as 2. It is not clearly described by Hesketh

et al. [1996] whether it was the goal to show non-inferiority of both doses of dolasetron

compared to ondansetron, or to show that at least one of the doses of dolasetron is

non-inferior to ondansetron.

The resulting failure rates were similar in the three groups: 110/198 (56%) in T1, 123/205

(60%) in T2, and 118/206 (57%) in C. Comparing T1 versus C and T2 versus C, the

authors calculated an odds ratio (upper 97.5% confidence limit) of 0.97 (1.47) and 1.16

(1.75), respectively. They concluded that dolasetron (1.8 or 2.4 mg/kg) has comparable

efficacy to ondansetron, since the upper confidence limits were smaller than 2 (without

specifying any level adjustment).

If we apply the asymptotic LR test (which equals the pairwise comparisons with level

α, respectively) for Ha
0 , i.e. for showing that at least one of the treatments T1, T2 is

non-inferior to C, we obtain p-values of 0.00007 and 0.0019 comparing T1 versus C and

T2 versus C, respectively. The same p-values result for the asymptotic score tests (see

Section 5.2.2). We can determine test-based upper 97.5% confidence limits by calculating

the hypotheses boundaries for which the LR tests do not reject the null hypotheses at

level 2.5%. This results in boundaries 1.38 for T1 versus C and 1.66 for T2 versus C

which are even a bit smaller than the boundaries given by Hesketh et al. [1996]. Even if

their boundaries - calculated with adjustment for covariates - are not directly comparable

to our boundaries, this indicates how powerful the LR test is. If it is of interest to show

non-inferiority of both doses of dolasetron compared to ondansetron, we can apply the

asymptotic LR test for Hb
0. For this example we get T = 15.9 (the test statistic (6.3)),

which is larger than the simulated quantile t = 3.81. The approximated p-value is smaller

than 0.0001.
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Table 6.1: The simulated power (level) (times 100) of the asymptotic LR test and its

corresponding asymptotic pairwise score tests using Bonferroni’s (B) and Hochberg’s

(H) adjustment for different parameter constellations and distance measures (θ̃1, θ̃2 as

the true differences, relative risks, or odds ratios, respectively).

n1 n2 n3 θ1 θ2 ϑ1 θ̃1=θ̃2 LR test score test (B) score test (H)

difference

50 50 100 0.1 0.15 0.2 -0.02 84.9 (5.0) 84.7 (5.0) 85.2 (5.1)

75 75 75 0.1 0.15 0.3 -0.05 85.3 (5.0) 83.6 (4.7) 84.8 (4.8)

75 75 150 0.1 0.15 0.25 0 80.5 (4.9) 79.2 (5.0) 80.7 (5.2)

100 100 100 0.1 0.15 0.2 0 80.9 (5.1) 77.8 (4.2) 79.5 (4.7)

100 100 200 0.1 0.15 0.3 0 85.7 (4.9) 84.5 (4.8) 85.6 (5.1)

200 200 200 0.1 0.1 0.25 0 80.7 (5.0) 78.1 (4.3) 79.6 (4.7)

200 200 400 0.1 0.1 0.4 0 86.4 (4.9) 84.3 (4.8) 85.2 (5.0)

400 400 400 0.05 0.1 0.5 0 83.8 (4.9) 82.9 (4.7) 83.3 (4.6)

500 500 500 0.05 0.1 0.5 0 90.6 (5.3) 90.0 (4.7) 90.5 (5.2)

relative risk

50 50 100 1.5 1.75 0.4 1 82.4 (4.8) 79.8 (5.2) 81.2 (5.2)

75 75 75 1.5 1.75 0.35 1 80.9 (4.9) 79.1 (5.2) 80.2 (5.1)

75 75 150 1.5 1.75 0.3 1 81.8 (5.0) 80.6 (5.2) 81.6 (5.5)

100 100 100 1.5 1.5 0.2 0.75 81.5 (5.0) 80.3 (4.9) 81.6 (5.2)

100 100 200 1.5 1.5 0.3 1 79.4 (5.0) 77.1 (5.2) 78.6 (5.2)

200 200 200 1.25 1.5 0.3 1 80.0 (5.1) 78.9 (4.9) 80.0 (5.2)

200 200 400 1.25 1.5 0.25 1 80.7 (4.8) 79.8 (5.1) 80.5 (5.1)

400 400 400 1.25 1.25 0.35 1 83.6 (4.9) 80.7 (4.6) 82.3 (4.8)

500 500 500 1.25 1.25 0.3 1 82.8 (4.8) 80.7 (4.6) 81.8 (4.7)

odds ratio

50 50 100 1.5 1.75 0.4 0.75 80.2 (4.7) 77.6 (4.9) 78.9 (4.9)

75 75 75 1.5 1.75 0.5 0.8 77.8 (4.9) 75.3 (4.5) 76.9 (4.7)

75 75 150 1.5 1.75 0.3 0.8 83.0 (4.9) 80.6 (5.0) 81.8 (5.2)

100 100 100 1.5 1.5 0.4 0.75 83.9 (5.3) 82.2 (4.8) 83.7 (5.2)

100 100 200 1.5 1.5 0.45 0.85 84.5 (4.9) 82.4 (4.9) 83.3 (5.2)

200 200 200 1.25 1.5 0.3 0.85 79.8 (5.0) 78.2 (4.6) 79.1 (4.9)

200 200 400 1.25 1.5 0.25 0.9 79.5 (5.0) 77.6 (4.9) 78.8 (5.2)

400 400 400 1.25 1.25 0.35 0.9 79.0 (5.1) 75.5 (4.6) 77.4 (4.9)

500 500 500 1.25 1.25 0.2 0.85 84.3 (4.9) 81.8 (4.5) 83.1 (4.7)
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7 Conclusions

In this work the LR test is investigated for hypotheses which allow to decide whether

a treatment group is non-inferior or relevantly superior to a control group. We have

assumed that the data follow a normal or binomial distribution.

In the first part the LR test is derived for normally distributed data comparing the

means. For the two-sample case we have shown that the LR test is equivalent to the

well known t-test when using the difference or the ratio of the means. For three-group

comparisons we have investigated various hypotheses which are of interest in medical

research. As seen, some of these hypotheses lead to the intersection-union test when

applying the LR principle. For other hypotheses the LR test results in tests well known

from order restricted inference. Finally, we have compared this method to commonly used

multiple comparison procedures (pairwise comparisons using Bonferroni’s, Dunnett’s, and

Hochberg’s level adjustment). The simulation results show that the LR test is similar

(but slightly superior) to the pairwise procedures with respect to power.

The main contribution of this work concerns the comparison of two and three binomial

distributions. The asymptotic methodology is derived for the LR test with respect to

smooth boundary functions of the hypotheses. In the two-sample case the asymptotics

for the likelihood ratio test for general hypotheses is found to follow a 1
2
+ 1

2
χ2

1-law. We

have seen that for small sample sizes this is not reliable. Nevertheless, for sample sizes

larger than 100, say, the asymptotic test yields quite accurate results. Our comparison

of the LR test to its asymptotic competitors based on score statistics shows that the

power is similar, irrespective of the chosen distance measure. However, we found that

the LR test keeps its nominal level more accurately than the competitors.

For small sample sizes we have derived an unconditional exact approach using the LR

statistic (exact LR test), and we have compared it to other unconditional exact methods

mentioned in the literature. Since a comprehensive comparison of unconditional exact

tests was never given in the literature, an extensive power investigation is performed. For

a broad scenario of parameter settings the exact power of the exact LR test is compared

to the commonly used unconditional exact approaches: Chan’s test, the πlocal test, and an

unconditional version of Fisher’s exact test. Irrespective of the chosen distance measure,

the power of the exact LR test tends to be larger, even if the improvement is small
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7. Conclusions

in general. As a by-product we found that Barnard’s test leads to intrinsic numerical

difficulties. Therefore, this test cannot be proposed in practice.

In the last part of this work the asymptotic distribution of the LR test for three binomial

distributions and general boundary functions of the hypotheses is derived. As for nor-

mally distributed data, the LR principle leads to multiple pairwise comparisons for some

of the hypotheses. However, for other hypotheses we obtain a test which is different

from multiple comparison procedures. We have shown that in this case the asymptotic

distribution is rather complicated. In particular, it depends on an unknown parameter

and cannot be used in practise. Therefore, we have proposed to estimate this parameter

under constraints which gives satisfactory results.

Finally, for small sample sizes we have analyzed an exact version based on the LR

statistic. A broad comparison to pairwise exact procedures shows that the power can be

substantially improved applying the exact LR test.

We have briefly discussed sample size calculations for the two-sample case. It is shown

that the power is not maximized by balanced sample sizes in case of non-inferiority trials.

An unequal allocation of patients may lead to a substantial power improvement. It would

be a challenging task for further research to investigate this topic more comprehensively,

and to extend it to more than two groups. Another task which is only briefly addressed

in this work will be the derivation of confidence intervals based on the statistical tests

investigated here. Especially the comparison of confidence intervals based on the exact

procedures for shifted hypotheses to the commonly applied approaches would be of

interest. Here shorter confidence intervals are to be expected.

74



A Symbols and abbreviations

Symbol Explanation (page of first occurrence)

R real numbers (11)

N integers (12)

f ′(x), f ′′(x) first, second derivative (13)

A� transposed matrix (13)

diag(x1, . . . , xk) diagonal matrix (62)

(xi)i=1,...,k vector (x1, . . . , xk)
� (58)

||x|| Euclidian norm of a vector (12)

∂Θ boundary of a set Θ (12)

Fχ2
1

cumulative distribution function of the Chi-squared distribution

with 1 degree of freedom (37)

(F )α α-quantile of a distribution F (15)
i.i.d.∼ independent identically distributed (15)

Bn,m Beta-distribution (26)

Bi(n, ϑ) Binomial distribution (33)

χ2
k Chi-squared distribution with k degrees of freedom (14)

N(µ, σ2), Nc(µ, Σ) univariate, c-variate normal distribution with mean µ

and variance σ2 or covariance matrix Σ (13)

uα lower α-quantile of the standard normal distribution (18)

tm, tm,δ central, noncentral t-distribution with noncentrality parameter δ

and m degrees of freedom (15)

ϑ̂ unconditional ML estimator (11)

ϑ̂∗ conditional ML estimator (11)
D−→ convergence in distribution (13)
P−→ convergence in probability (13)
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A. Symbols and abbreviations

Abbreviations:

CR Critical region of a statistical test

IUT Intersection-union test

LR Likelihood ratio

MLE Maximum likelihood estimator
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B. Tables

Table B.1: Difference: The exact power γ (times 100) for parameter constellations which

gives the most extreme power differences between the exact LR test and the best of its

competitors (|γexact LR − max{γcompetitors}| > 0.015) .

θ0 n1 n2 ϑ2 ϑ1 exact LR Chan πlocal

0.15 35 35 0.1 0.07 81.1 77 71.3

0.05 100 60 0.9 0.8 81.3 77.3 77.6

0.1 50 50 0.1 0.06 80.2 77 75.8

0.1 60 60 0.1 0.06 85.8 82.7 81.8

0.05 60 30 0.9 0.73 80.3 75.2 77.5

0.15 50 50 0.1 0.09 82.5 80 76.9

0.05 50 25 0.9 0.7 82 79.5 79.5

0.2 30 20 0.1 0.08 84.5 82.1 72.9

0.05 25 25 0.9 0.66 80.7 78.4 77.8

0.05 35 35 0.3 0.11 81 79 79

0.2 25 25 0.2 0.12 83.2 81.2 80.6

0.2 25 25 0.3 0.19 80.9 78.9 78.9

0.25 50 50 0.3 0.3 86.1 84.1 84.1

0.05 35 35 0.9 0.71 82.4 80.5 80.5

0.05 60 30 0.1 0.01 88.4 86.5 86.1

0.15 100 100 0.2 0.2 83.9 82 81.2

0.15 100 100 0.8 0.8 83.9 82 81.2

0.1 100 100 0.1 0.09 82.4 80.6 78.3

0.15 50 50 0.2 0.15 83 81.3 79.9

0.15 35 35 0.8 0.68 81.3 79.7 79.7

0.15 35 35 0.3 0.18 83.2 81.6 81.5

0.1 60 60 0.2 0.12 84.3 82.6 82.7

0.05 60 30 0.2 0.06 82.6 84.3 82.6

0.05 80 60 0.1 0.04 79.7 81.6 78.9

0.2 30 20 0.2 0.13 79.1 81.8 80.4

0.2 30 20 0.3 0.19 79.4 82.4 82.5

0.05 50 50 0.1 0.02 82.5 85.7 82.3

0.1 40 40 0.1 0.04 81.5 85.3 81.5
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B. Tables

Table B.2: Relative risk: The exact power γ (times 100) for parameter constellations

which gives the most extreme power differences between the exact LR test and the best

of its competitors (|γexact LR − max{γcompetitors}| > 0.015) .

θ0 n1 n2 ϑ2 ϑ1 exact LR Chan πlocal

1.1 60 30 0.3 0.09 84 78.4 81.2

1.5 60 40 0.2 0.07 82.8 78.1 80

2.5 100 50 0.1 0.04 82.3 74.1 79.5

2.5 50 25 0.2 0.09 81.1 75.3 78.4

1.1 100 50 0.9 0.81 84.1 74.9 81.8

1.1 80 40 0.3 0.12 81.6 76.1 79.4

1.1 60 60 0.8 0.64 87.6 85.7 85.7

2.5 30 30 0.3 0.24 81.4 79.5 79.6

2.5 80 40 0.1 0.025 82.4 76.6 80.6

1.1 100 100 0.9 0.855 84.7 82.3 83

1.1 100 60 0.9 0.81 88.7 86.9 86.9

1.1 60 40 0.9 0.765 86.5 82.2 84.8

1.1 60 30 0.9 0.72 88.5 81.3 86.8

1.1 30 20 0.9 0.675 80 74.3 78.4

1.25 60 60 0.5 0.35 85.5 83.2 84

1.5 30 30 0.3 0.12 78.5 78.5 80.2

1.25 25 25 0.5 0.225 82.1 83.9 83.9

1.1 80 80 0.1 0.015 80.4 82.3 78.4

2 30 30 0.3 0.18 79.2 78.5 81.3

2 80 60 0.1 0.035 78.4 81.3 78.3

2 25 25 0.2 0.04 78.7 82.2 76.2

1.5 40 40 0.2 0.05 81.2 84.7 81.1

2 40 20 0.2 0.04 77.6 81.7 77.6

2 80 40 0.1 0.02 76.1 80.4 75.8

2.5 30 20 0.2 0.05 78.4 82.8 78.4

1.1 80 60 0.1 0.01 78.6 83.4 78.6

1.5 60 60 0.1 0.015 76.7 81.6 76.7
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Table B.3: Odds ratio: The exact power γ (times 100) for parameter constellations which

gives the most extreme power differences between the exact LR test and the best of its

competitors (|γexact LR − max{γcompetitors}| > 0.03) .

θ0 n1 n2 ϑ2 ϑ1 exact LR Fisher’s exact πlocal

unconditional

1.25 100 50 0.1 0.011 85.4 77.3 77.3

2.5 40 40 0.1 0.016 81.6 74.3 74.3

1.5 80 50 0.1 0.016 82.2 75.1 75.1

2.5 50 50 0.1 0.027 81.7 74.7 74.7

1.1 35 35 0.2 0.024 83.8 77.2 77.2

2.5 20 20 0.2 0.036 81.8 75.2 75.2

1.25 30 30 0.2 0.024 80.4 74.3 74.3

2 80 80 0.1 0.043 80 74.7 74.7

1.1 60 60 0.2 0.059 81.2 76.4 76.4

2.5 80 40 0.1 0.022 82.6 78.1 78.1

2 50 50 0.1 0.011 85.2 80.7 80.7

1.5 100 60 0.1 0.022 83.2 78.9 78.9

1.25 35 35 0.2 0.024 86.3 82 82

1.1 60 30 0.2 0.024 86.6 82.5 82.5

2.5 100 60 0.1 0.048 80.8 76.8 76.8

2 80 50 0.1 0.027 81.1 77.2 76.4

2 25 25 0.2 0.024 84.9 81.1 81.1

1.1 100 80 0.1 0.016 83.8 80.2 80.2

1.25 40 40 0.2 0.036 84.4 80.8 80.8

2 100 100 0.1 0.053 81.2 77.8 77.8

1.1 40 40 0.2 0.036 80.5 77.1 77.1

1.25 80 60 0.1 0.011 85.5 82.1 82.1

1.25 60 60 0.2 0.07 80.3 77 77

2.5 60 60 0.1 0.037 80.7 77.4 77.4

1.1 50 50 0.2 0.048 81.5 78.3 78.3

2.5 100 80 0.1 0.058 82.5 79.3 78.8

1.25 100 60 0.1 0.016 80.2 77.1 77.1

2 80 50 0.2 0.121 80.5 77.5 77.3

1.5 35 35 0.2 0.036 81.6 84.6 84.6
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