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Abstract

We derive multiscale statistics for deconvolution in order to detect qualitative fea-

tures of the unknown density. An important example covered within this framework is

to test for local monotonicity on all scales simultaneously. We investigate the moder-

ately ill-posed setting, where the Fourier transform of the error density in the deconvo-

lution model is of polynomial decay. For multiscale testing, we consider a calibration,

motivated by the modulus of continuity of Brownian motion. We investigate the per-

formance of our results from both the theoretical and simulation based point of view. A

major consequence of our work is that the detection of qualitative features of a density

in a deconvolution problem is a doable task although the minimax rates for pointwise

estimation are very slow.
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1 Introduction and Notation

Assume that we observe Y = (Y1, . . . , Yn) according to the deconvolution model

Yi = Xi + εi, i = 1, . . . , n, (1.1)

where Xi, εi, i = 1, . . . , n are assumed to be real valued and independent, Xi
i.i.d.∼ X, εi

i.i.d.∼ ε

and Y1, X, ε have densities g, f and fε, respectively. Our goal is to develop multiscale test

statistics for certain structural assumptions on f , where the density fε of the blurring

distribution is assumed to be known.

Structural assumptions or shape constraints are conveniently expressed in this paper as

(pseudo)-differential inequalities of the density f, assuming for the moment that f is suffi-

ciently smooth. Important examples are f ′ ≷ 0 to check local monotonicity properties as

well as f ′′ ≷ 0 for local convexity or concavity. To give another example, suppose that we

are interested in local monotonicity properties of the density f̃ of exp(aX) for a given a > 0.

Since f̃(s) = (as)−1f(a−1 log(s)), one can easily verify that local monotonicity properties

of f̃ may be expressed in terms of the inequalities f ′ − af ≶ 0.

Hypothesis testing for deconvolution and related inverse problems is a relatively new area.

Current methods cover testing of parametric assumptions (cf. [4, 33, 6]) and, more recently,

testing for certain smoothness classes such as Sobolev balls in a Gaussian sequence model

(Laurent et al. [32, 33] and Ingster et al. [27]). All these papers focused on regression

deconvolution models. Exceptions for density deconvolution are Holzmann et al. [24], Bal-

abdaoui et al. [3], and Meister [36] who developed tests for various global hypotheses, such

as global monotonicity based on classical Fourier inversion (see e.g. Carroll and Hall [7]).

The latter test has been derived for one fixed interval and allows to check whether a density

is monotone on that interval at a preassigned level of significance.

Throughout this work let F(f) =
∫
R exp (−ix·) f(x)dx denote the Fourier transform of

f ∈ L1 (R) or f ∈ L2 (R) (depending on the context). As shape constraints, we consider a

general class of differential operators op(p) with symbol p, which can be written for nice f

as

(op(p)f)(x) =
1

2π

∫
eixξp(x, ξ)F(f)(ξ)dξ. (1.2)

This class will be an enlargement of (elliptic) pseudo-differential operators by fractional

differentiation. Given data from model (1.1) the goal is to identify intervals at a controlled

error level on which Re(op(p)f) 6≤ 0 or Re(op(p)f) 6≥ 0, where Re denotes the projection

on the real part. If applied to op(p) = D or D2 (i.e. p(x, ξ) = iξ and p(x, ξ) = −ξ2,
respectively) with the differentiation operator Df := f ′, our method yields bounds for the
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number and confidence regions for the location of modes and inflection points of f . More-

over, we discuss an example related to Wiksell’s problem with shape constraint described

by fractional differentiation. Our work can be viewed as an extension of Chaudhuri and

Marron [8] as well as Dümbgen and Walther [13] who treated the case op(p) = Dm (with

m = 1 in [13]) in the direct case, i.e. when ε = 0. However, the approach in [8] does not

allow for sequences of bandwidths tending to zero and yields limit distributions depending

on the unknown quantities again. The methods in [13] require a deterministic coupling

result. This allows to consider the multiscale approximation for f = I[0,1] only but cannot

be transfered to deconvolution. Thus, a new theoretical framework as well as completely

different proving strategies have to be developed.

The statistic introduced in this paper investigates shape constraints of the unknown density

f on all scales simultaneously. Although qualitative hypotheses such as local monotonicity

seem, at a first glance, not to be expressible in terms of the Fourier transform, we can make

use of the following trick: Define St,h(·) = (· − t)/h and for a sufficiently smooth, positive

kernel φ supported on [0, 1], consider the test statistic Tt,h := n−1/2
∑n

k=1 Re vt,h(Yk) with

vt,h(u) :=
1

2π

∫
F
(

op(p)?(φ ◦ St,h)
)
(s)

eisu

F(fε)(−s)
ds

and op(p)? is the adjoint of op(p) (in a certain space) with respect to the L2-inner product

〈h1, h2〉 :=
∫
R h1(x)h2(x) dx. Then, in expectation, using Parseval’s identity,

ETt,h =

√
n

2π
Re

∫
F
(

op(p)?(φ ◦ St,h)
)
(s)F(f)(s)ds

=
√
n Re

∫ (
op(p)?(φ ◦ St,h)

)
(x)f(x)dx =

√
n
〈
φ ◦ St,h,Re op(p)f

〉
(1.3)

for sufficiently regular functions f and φ. As an example, consider op(p) = D. Then, the

functions φ◦St,h can serve as localized test functions for local monotonicity in the following

sense: Whenever we know that 〈φ ◦ St,h, f ′〉 > 0, we may conclude that f(s1) < f(s2) for

some points s1 < s2 in [t, t+ h]. This gives rise to a multiscale statistic

Tn = sup
(t,h)

wh

(∣∣Tt,h − ETt,h
∣∣

̂Std(Tt,h)
− w̃h

)
,

where wh and w̃h are chosen in order to calibrate the different scales with equal weight,

while ̂Std(Tt,h) is an estimator of the standard deviation of Tt,h.

The key result in this paper is the approximation of Tn by a distribution-free statistic

that allows us to compute critical values. As mentioned before, our multiscale calibration

requires new techniques in order to determine the speed of convergence between Tn and

its approximation. The main tool will be a strong approximation based on Hungarian
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construction. This allows us on the one hand to extend the approach of [13], resulting for

example in simultaneous confidence statements for the existence and location of regions of

increase and decrease. On the other hand, our approach is statistically more informative

than pure testing. In fact, for given shape constraint, we construct objects which appear

to be similar to superpositions of confidence bands. These will be denoted as confidence

rectangles and allow us to identify regions where the shape constraints expressed in terms of

differential inequalities, as mentioned at the beginning of this section, hold with prescribed

probability. The strength of this approach lies in the fact that in contrast to sup norm bands

all scales can be used simultaneously and the control of the bias becomes dispensable. For

a more precise statement see Section 3.

It is a well-known fact (cf. Delaigle and Gijbels [11]) that selection of an appropriate band-

width is a delicate issue in deconvolution models. One of the main advantages of multiscale

methods is that essentially no smoothing parameter is required. The main choice will be

the quantile of the multiscale statistic, which has a clear probabilistic interpretation. Fur-

thermore, our multiscale statistic allows to construct estimators for the number of modes

and inflection points which have a number of nice properties: On one hand, modes and

inflection points are detected with the minimax rate of convergence (up to a log-factor).

On the other hand, the probability that the true number is overestimated is very low, and

completely controlled by the quantile of the multiscale statistic. To state it differently, it

is highly unlikely that artefacts will be included in the reconstruction, which is a desirable

property in many applications. It is worth to note that neither assumptions are made on

the number of modes nor additional model selection penalties are necessary.

This paper deals with the moderately ill-posed case, meaning that the Fourier transform of

the blurring distribution decays at polynomial rate. In fact, we work under the well-known

assumption of Fan [16] (cf. Assumption 2), which essentially assures that the inversion op-

erator, mapping g 7→ f, is pseudo-differential. This nicely combines with the assumption on

the class of shape constraints. Our framework includes many important error distributions

such as Exponential, χ2, Laplace and Gamma distributed random variables. The special

case ε = 0 (i.e. no deconvolution or direct problem) can be treated as well, of course.

For practical applications, we may use these models if for instance the error variable ε is an

independent waiting time. For example let Xi be the (unknown) time of infection of the i-th

patient, εi the corresponding incubation time, and Yi is the time when diagnosis is made.

Then, it is convenient to assume ε ∼ Γ (r, θ) (see for instance [10], Section 3.5). By the

techniques developed in this paper one will be able to identify for example time intervals

where the number of infections increased and decreased for a specified confidence level.

Another application is single photon emission computed tomography (SPECT), where the
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detected scattered photons are blurred by Laplace distributed random variables (cf. Floyd

et al. [17], Kacperski et al. [28]).

The paper is organized as follows. In Section 2 we show how distribution-free approxima-

tions of multiscale statistics can be derived for general empirical processes under relatively

weak conditions. For the precise statement see Theorem 1. These results are transfered

to shape constraints and deconvolution models in Section 3. In Section 4 we discuss the

statistical consequences and show how confidence statements can be derived. Theoretical

questions related to the performance of the multiscale method and numerical aspects are

discussed in Sections 5 and 6. In particular, for a number of cases, we are even able to

identify the asymptotically optimal kernel function φ as a beta kernel, where the degree

increases with the ill-posedness of the problem. Proofs and further technicalities are shifted

to the appendix and a supplementary part, which contains additionally various lemmas,

enumerated by B.1, B.2, . . . , C.1, C.2, . . .

Notation: We write T for the set [0, 1]× (0, 1]. . and & means larger (smaller) or equal up

to a constant and bxc is the largest integer which is not larger than x. suppφ denotes the

support of φ. In the following, N is the set of non-negative integers. 〈·, ·〉 denotes the L2-

inner product and ‖·‖p, the Lp norm on R. Furthermore, set TV(·) for the total variation of

functions on R. As custom in the theory of Sobolev spaces, we define 〈s〉 := (1+|s|2)1/2. If it

is clear from the context, we write xkφ to denote the function x 7→ xkφ(x) and similar 〈x〉kφ
for the function x 7→ 〈x〉kφ(x). The Sobolev space Hr is defined as the class of functions

with norm

‖φ‖Hr :=
(∫
〈s〉2r|F(φ)(s)|2ds

)1/2
<∞.

For any q and ` ∈ N, define Hq
` as the following Sobolev type space

Hq
` :=

{
ψ | xkψ ∈ Hq, for k = 0, 1, . . . , `

}
.

The norm on Hq
` is given by ‖ψ‖Hq

`
:=
∑`

k=0 ‖xkψ‖Hq for ψ ∈ Hq
` .

2 A general multiscale test statistic

In this section, we shall give a fairly general convergence result which is of interest on its

own. The presented result does not use the deconvolution structure of model (1.1). It only

requires that we have observations Yi = G−1(Ui), i = 1, . . . , n with Ui i.i.d. uniform on

[0, 1] and G an unknown distribution function with Lebesgue density g in the class

G := Gc,C,q :=
{
G
∣∣ G is a distribution function with density g,

c ≤ g
∣∣
[0,1]

, ‖g‖∞ ≤ c−1, and g ∈ J (C, q)
}

(2.1)
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for fixed c, C ≥ 0, 0 ≤ q < 1/2, and the Lipschitz type constraint

J := J (C, q) :=
{
h
∣∣ |√h(x)−

√
h(y)| ≤ C(1 + |x|+ |y|)q|x− y|, for all x, y ∈ R

}
.

For a set of real-valued functions (ψt,h)t,h define the test statistic (empirical process) Tt,h =

n−1/2
∑n

k=1 ψt,h(Yk). Note that Std(Tt,h) = (
∫
ψ2
t,h(s)g(s)ds)1/2 ≈ ‖ψt,h‖2

√
g(t) if ψt,h is

localized around t. It will turn out later on that one should allow for a slightly regularized

standardization and therefore we consider

|Tt,h − E[Tt,h]|
Vt,h

√
ĝn(t)

with Vt,h ≥ ‖ψt,h‖2 and ĝn an estimator of g, satisfying

sup
G∈G
‖ĝn − g‖∞ = OP (1/ log n). (2.2)

Unless stated otherwise, asymptotic statements refer to n → ∞. We combine the single

test statistics for an arbitrary subset

Bn ⊂
{

(t, h)
∣∣ t ∈ [0, 1], h ∈ [ln, un]

}
(2.3)

and consider for ν > e and

wh =

√
1
2 log ν

h

log log ν
h

, (2.4)

distribution-free approximations of the multiscale statistic

Tn := sup
(t,h)∈Bn

wh

(∣∣Tt,h − E[Tt,h]
∣∣

Vt,h
√
ĝn(t)

−
√

2 log ν
h

)
. (2.5)

Assumption 1 (Assumption on test functions). Given functions (ψt,h)(t,h)∈T , numbers

(Vt,h)(t,h)∈T , and a set Bn of the form (2.3), suppose that the following assumptions hold.

(i) For all (t, h) ∈ T , ‖ψt,h‖2 ≤ Vt,h.

(ii) We have uniform bounds on the norms

sup
(t,h)∈T

√
hTV(ψt,h) +

√
h‖ψt,h‖∞ + h−1/2‖ψt,h‖1
Vt,h

. 1.

(iii) There exists α > 1/2, such that

κn := sup
(t,h)∈Bn, G∈G

wh
TV

(
ψt,h(·)

[√
g(·)−

√
g(t)

]
〈·〉α

)
Vt,h

→ 0.
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(iv) There exists a constant K, such that for all (t, h), (t′, h′) ∈ T ,
√
h ∧
√
h′

Vt,h ∨ Vt′,h′

[
‖ψt,h − ψt′,h′‖2 + |Vt,h − Vt′,h′ |

]
≤ K

√
|t− t′|+ |h− h′|.

Theorem 1. Given a multiscale statistic of the form (2.5). Work in model (1.1) under

Assumption 1 and suppose that on T the process (t, h) 7→
√
hV −1t,h

∫
ψt,h(s)dWs has con-

tinuous sample paths. Assume that lnn log−3 n → ∞ and un = o(1). Then, there exists a

(two-sided) standard Brownian motion W , such that for ν > e,

sup
G∈Gc,C,q

∣∣∣Tn − sup
(t,h)∈Bn

wh

(∣∣ ∫ ψt,h(s)dWs

∣∣
Vt,h

−
√

2 log ν
h

)∣∣∣ = OP (rn), (2.6)

with

rn = sup
G∈G

∥∥ĝn − g∥∥∞ log n

log logn
+ l−1/2n n−1/2

log3/2 n

log log n
+

√
un log(1/un)

log log(1/un)
+ κn.

Moreover,

sup
(t,h)∈T

wh

(∣∣ ∫ ψt,h(s)dWs

∣∣
Vt,h

−
√

2 log ν
h

)
<∞, a.s. (2.7)

Hence, the approximating statistic in (2.6) is almost surely bounded from above by (2.7).

The proof of the coupling in this theorem (cf. Appendix A) is based on generalizing tech-

niques developed by Giné et al. [18], while finiteness of the approximating test statistic

utilizes results of Dümbgen and Spokoiny [12]. Note that Theorem 1 can be understood as

a multiscale analog of the L∞-loss convergence for kernel estimators (cf. [19, 18, 5, 20]).

To give an example, let us assume that ψt,h = ψ( ·−th ) is a kernel function. By Lemmas C.2

and C.5, Assumption 1 holds for Vt,h = ‖ψt,h‖2 =
√
h‖ψ‖2, whenever ψ 6= 0 on a Lebesgue

measurable set, TV(ψ) < ∞ and suppψ ⊂ [0, 1]. Furthermore, by partial integration, we

can easily verify that the process (t, h) 7→ ‖ψ‖−12

∫
ψt,h(s)dWs has continuous sample paths

(cf. [12], p. 144).

Remark 1. As a side remark let us mention that it is also possible to choose Bn in order

to construct (level-dependent) values for simultaneous wavelet thresholding. To this end

observe that d̂j,k = Tk2−j ,2−j and dj,k = ETk2−j ,2−j =
∫
ψk2−j ,2−j (s)g(s)ds =

∫
ψ(2js −

k)g(s)ds are the (estimated) wavelet coefficients and if j0n and j1n are integers satisfying

2−j1nn log−3 n→∞ and j0n →∞, then, for α ∈ (0, 1), and

Bn =
{

(k2−j , 2−j)
∣∣ k = 0, 1, . . . , 2j − 1, j0n ≤ j ≤ j1n, j ∈ N

}
,
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Theorem 1 yields in a natural way level-dependent thresholds qj,k(α), such that

lim
n→∞

P
(∣∣d̂j,k − dj,k∣∣ ≤ qj,k(α), for all j, k, with (k2−j , 2−j) ∈ Bn

)
= 1− α.

Let us close this section with a result on the lower bound of the approximating statistic.

Theorem 1 shows that the approximating statistic is almost surely bounded from above.

Note that we have the trivial lower bound

Tn ≥ − inf
(t,h)∈Bn

log ν
h

log log ν
h

,

which converges to −∞ in general and describes the behavior of Tn, provided the cardinality

of Bn is small (for instance if Bn contains only one element). However, if Bn is sufficiently

rich, Tn can be shown to be bounded from below, uniformly in n. Let us make this more

precise. Assume, that for every n there exists a Kn such that Kn →∞ and

B◦Kn :=
{(

i
Kn
, 1
Kn

) ∣∣ i = 0, . . . ,Kn − 1
}
⊂ Bn. (2.8)

Then, the approximating statistic is asymptotically bounded from below by −1/4. This

follows from Lemma C.1 in the appendix. It is a challenging problem to calculate the

distribution for general index set Bn explicitly. Although the tail behavior has been studied

for the one-scale case (cf. [18, 5]) this has not been addressed so far for the approximating

statistic in Theorem 1. For implementation, later on, our method relies therefore on Monte

Carlo simulations.

3 Testing for shape constraints in deconvolution

We start by defining the class of differential operators in (1.2). However, before we make

this precise, let us define pseudo-differential operators in dimension one as well as fractional

integration and differentiation. Given a real m, consider Sm the space of functions a :

R× R→ C such that for all α, β ∈ N,

|∂βx∂αξ a(x, ξ)| ≤ Cα,β(1 + |ξ|)m−α for all x, ξ ∈ R. (3.1)

Then the pseudo-differential operator Op(a) corresponding to the symbol a can be defined

on the Schwartz space of rapidly decreasing functions S by

Op(a) : S → S

Op(a)φ(x) :=
1

2π

∫
eixξa(x, ξ)F(φ)(ξ)dξ.
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It is well-known that for any s ∈ R, Op(a) can be extended to a continuous operator

Op(a) : Hm+s → Hs. In order to simplify the readability, we only write Op for pseudo-

differential operators and op in general for operators of the form (1.2). Throughout the

paper, we write ιαs = exp(απi sign(s)/2) and understand as usual (±is)α = |s|αι±αs . The

Gamma function evaluated at α will be denoted by Γ(α). Let us further introduce the

Riemann-Liouville fractional integration operators on the real axis and for α > 0, by(
Iα+h

)
(x) :=

1

Γ(α)

∫ x

−∞

h(t)

(x− t)1−α
dt and

(
Iα−h

)
(x) :=

1

Γ(α)

∫ ∞
x

h(t)

(t− x)1−α
dt. (3.2)

For β ≥ 0, we define the corresponding fractional differentiation operators (Dβ
+h)(x) :=

Dn(In−β+ h)(x) and (Dβ
−h)(x) = (−D)n(In−β− f)(x), where n = bβc + 1. For any s ∈ R, we

can extend Dβ
+ and Dβ

− to continuous operators from Hβ+s → Hs using the identity (cf.

[29], p.90),

F
(
Dβ
±h
)
(ξ) = (±iξ)βF

(
h
)
(ξ) = ι±βξ |ξ|

βF
(
h
)
(ξ). (3.3)

In this paper, we consider operators op(p) which “factorize” into a pseudo-differential oper-

ator and a fractional differentiation in Riemann-Liouville sense. More precisely, the symbol

p is in the class

Sm :=
{

(x, ξ) 7→ p(x, ξ) = a(x, ξ)|ξ|γιµξ | a ∈ S
m, m = m+ γ, γ ∈ {0} ∪ [1,∞), µ ∈ R

}
.

Let us mention that we cannot allow for all γ ≥ 0 since in our proofs it is essential that

∂2ξp(x, ξ) is integrable. The results can also be formulated for finite sums of symbols, i.e.∑J
j=1 pj and pj ∈ Sm. However, for simplicity we restrict us to J = 1.

Throughout the remaining part of the paper, we will always assume that op(p)f is continu-

ous. A closed and axes-parallel rectangle in R2 with vertices (a1, b1), (a1, b2), (a2, b1), (a2, b2),

a1 < a2, b1 < b2 will be denoted by [a1, a2]× [b1, b2].

The main objective of this paper is to obtain uniform confidence statement of the following

kinds:

(i) The number and location of the roots and maxima of op(p)f.

(ii) Simultaneous identification of intervals of the form [ti, ti + hi], ti ∈ [0, 1], hi > 0, i

in some index set I, with the following property: For a pre-specified confidence level

we can conclude that for all i ∈ I the functions (op(p)f)|[ti,ti+hi] attain, at least on a

subset of [ti, ti + hi], positive values.

(ii′) Same as (ii), but we want to conclude that (op(p)f)|[ti,ti+hi] has to attain negative

values.
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(iii) For any pair (t, h) ∈ Bn with Bn as in (2.3), we want to find b−(t, h, α) and b+(t, h, α),

such that we can conclude that with overall confidence 1 − α, the graph of op(p)f

(denoted as graph(op(p)f) in the sequel) has a non-empty intersection with every

rectangle [t, t+ h]× [b−(t, h, α), b+(t, h, α)].

In the following we will refer to these goals as Problems (i), (ii), (ii′) and (iii), respec-

tively. Note that (ii) follows from (iii) by taking all intervals [t, t+ h] with b−(t, h, α) > 0.

Analogously, [t, t + h] satisfies (ii′) whenever b+(t, h, α) < 0. The geometrical ordering of

the intervals obtained by (ii) and (ii′) yields in a straightforward way a lower bound for

the number of roots of op(p)f , solving Problem (i) (cf. also Dümbgen and Walther [13]). A

confidence interval for the location of a root can be constructed as follows: If there exists

[t, t + h] such that b−(t, h, α) > 0 and [t̃, t̃ + h̃] with b+(t̃, h̃, α) < 0, then, with confidence

1−α, op(p)f has a zero in the interval
[
min(t, t̃),max(t+ h, t̃+ h̃)

]
. The maximal number

of disjoint intervals on which we find zeros is then an estimator for the number of roots.

Example 1. Suppose op(p) = D. In this case we want to find a collection of intervals [t, t+

h] such that with overall probability 1−α for each such interval there exists a nondegenerate

subinterval on which f is strictly monotonically increasing.

To state it differently, suppose that f ′ is continuous and φ ≥ 0 is a kernel with support on

[0, 1], i.e. φ ≥ 0 with
∫ 1
0 φ(x)dx = 1. If

∫
φt,h(x)f ′(x)dx > 0, then there is a nondegenerate

subinterval of [t, t+h] on which f ′ > 0. In particular, we can reject the null hypothesis that

f ′ ≤ 0 on [t, t + h] at level 1 − α. More generally,
∫
φt,h(x)f ′(x)dx ∈ [a, b] implies by the

intermediate value theorem that the graph of f ′ intersects the rectangle [t, t+h]×[ah−1, bh−1]

in at least one point.

Example 2. Suppose that we want to analyze the convexity/concavity properties of U =

q(X) (for instance U = eX), where q is a function, which is strictly monotone increasing

on the support of the distribution of X. Let fU denote the density of U . Then, by change

of variables

fU (y) =
1

q′
(
q−1(y)

)f(q−1(y)
)
,

and there is a pseudo-differential operator Op(p) with symbol

p(x, ξ) = − 1

(q′(x))2
ξ2 − q′′(x)q′(x) + 2q′′(x)

(q′(x))4
iξ +

3(q′′(x))2 − q′′′(x)q′(x)

(q′(x))5
,

such that f ′′U (y) = (op(p)f)(q−1(y)). Therefore,

graph(op(p)f) ∩ [t, t+ h]× [b−(t, h, α), b+(t, h, α)] 6= ∅

10



implies

graph(f ′′U ) ∩ [q(t), q(t+ h)]× [b−(t, h, α), b+(t, h, α)] 6= ∅.

In particular, if b−(t, h, α) > 0 then, with confidence 1 − α, we may conclude that fU is

strictly convex on a nondegenerate subinterval of [q(t), q(t+ h)].

Example 3 (Noisy Wiksell problem). In the classical Wiksell problem, cross-sections of

planes with randomly distributed balls in three-dimensional space are observed. From these

observations the distribution H or density h = H ′ of the squared radii of the balls has to be

estimated (cf. Groeneboom and Jongbloed [22]). Statistically speaking, we have observations

X1, . . . , Xn with density f satisfying the following relationship (cf. Golubev and Levit [21])

1−H(x) ∝
∫ ∞
x

f(t)

(t− x)1/2
dt = Γ(12)(I

1/2
− f)(x), for all x ∈ [0,∞),

where ∝ means up to a positive constant and I
1/2
− as in (3.2). Suppose now, that we are

interested in monotonicity properties of the density h = H ′ on [0, 1]. For x > 0, −h′ ≶ 0

iff the fractional derivative of order 3/2 satisfies (D
3/2
− f)(x) = D2(I

1/2
− f)(x) ≶ 0. It is

reasonable to assume in applications that the observations are corrupted by measurement

errors, which means we only observe Yi = Xi + εi, as in model (1.1). This means we

are in the framework described above and the shape constraint is given by op(p)f ≶ 0 for

p(x, ξ) = ι
−3/2
ξ |ξ|3/2.

In order to formulate our results in a proper way, let us introduce the following definitions.

We say that a pseudo-differential operator Op(a) with a ∈ Sm and Sm as in (3.1), is elliptic,

if there exists ξ0, such that |a(x, ξ)| > K|ξ|m for a positive constant K and all ξ satisfying

|ξ| > |ξ0|. For instance in the framework of Example 2, ellipticity holds if ‖q′‖∞ < ∞.
Furthermore, for an arbitrary symbol p ∈ Sm let us denote by Op(p?) the adjoint of Op(p)

with respect to the inner product 〈·, ·〉. This is again a pseudo-differential operator and

p? ∈ Sm. Formally, we can compute p? by p?(x, ξ) = e∂x∂ξp(x, ξ), where p denotes the

complex conjugate of p. Here the equality holds in the sense of asymptotic summation (for

a precise statement see Theorem 18.1.7 in Hörmander [25]). Now, suppose that we have a

symbol in Sm of the form a|ξ|γιµξ = a(x, ξ)|ξ|γιµξ with a ∈ Sm and m + γ = m. Since for

any u, v ∈ Hm,

〈op(a|ξ|γιµξ )u, v〉 = 〈Op(a) op(|ξ|γιµξ )u, v〉 = 〈op(|ξ|γιµξ )u,Op(a?)v〉

= 〈u, op(|ξ|γι−µξ ) Op(a?)v〉 (3.4)

we conclude that F(op(a|ξ|γιµξ )?φ) = |ξ|γι−µξ F(Op(a?)φ) for all φ ∈ Hm.

In order to formulate the assumptions and the main result, let us fix one symbol p ∈ Sm

and one factorization p(x, ξ) = a(x, ξ)|ξ|γιµξ with a, γ, µ as in the definition of Sm.

11



Assumption 2. We assume that there is a positive real number r > 0 and constants

0 < Cl ≤ Cu < ∞ such that the characteristic function of ε is bounded from below and

above by

Cl〈s〉−r ≤ |E e−isε| = |F(fε)(s)| ≤ Cu〈s〉−r for all s ∈ R.

Moreover, suppose that the second derivative of F(fε) exists and

〈s〉|DF(fε)(s)|+ 〈s〉2|D2F(fε)(s)| ≤ Cu〈s〉−r for all s ∈ R.

These are the classical assumptions on the decay of the Fourier transform of the error

density in the moderately ill-posed case (cf. Assumptions (G1) and (G3) in Fan [16]).

Heuristically, we can think of F(fε) as an elliptic symbol in S−r.

Let Re denote the projection on the real part. For sufficiently smooth φ, consider the test

statistic

Tt,h :=
1√
n

n∑
k=1

Re vt,h(Yk) =
1√
n

n∑
k=1

Re vt,h(G−1(Uk)) (3.5)

with

vt,h = F−1
(
λµγ(·)F

(
Op(a?)(φ ◦ St,h)

))
(3.6)

and

λ(s) = λµγ(s) =
|s|γι−µs
F(fε)(−s)

. (3.7)

From (1.3) and (3.4), we find that for f ∈ Hm,

ETt,h =
√
n

∫
(φ ◦ St,h)(x) Re

(
op(p)f

)
(x)dx.

Proceeding as in Section 2 we consider the multiscale statistic

Tn = sup
(t,h)∈Bn

wh

(∣∣Tt,h − E[Tt,h]
∣∣√

ĝn(t) ‖vt,h‖2
−
√

2 log ν
h

)
, (3.8)

i.e. with the notation of (2.5), we set ψt,h := Re vt,h and Vt,h := ‖vt,h‖2. Define further

T∞n (W ) := sup
(t,h)∈Bn

wh

(∣∣ ∫ Re vt,h(s)dWs

∣∣
‖vt,h‖2

−
√

2 log ν
h

)
.

Theorem 2. Given an operator op(p) with symbol p ∈ Sm and let Tn be as in (3.8). Work

in model (1.1) under Assumption 2. Suppose that

12



(i) lnn log−3 n→∞ and un = o(log−3 n),

(ii) φ ∈ Hbr+m+5/2c
4 , suppφ ⊂ [0, 1], and TV(Dbr+m+5/2cφ) <∞,

(iii) Op(a) is elliptic.

Then, there exists a (two-sided) standard Brownian motion W , such that for ν > e,

sup
G∈Gc,C,q

∣∣∣Tn − T∞n (W )
∣∣∣ = oP (rn), (3.9)

with

rn = sup
G∈G

∥∥ĝn − g∥∥∞ log n

log log n
+ l−1/2n n−1/2

log3/2 n

log logn
+ u1/2n log3/2 n.

Moreover,

sup
(t,h)∈T

wh

(∣∣ ∫ Re vt,h(s)dWs

∣∣
‖vt,h‖2

−
√

2 log ν
h

)
<∞, a.s. (3.10)

Hence, the approximating statistic T∞n (W ) is almost surely bounded from above by (3.10).

One can easily show using Lemma C.1, that if Bn contains (2.8) and the symbol p does not

depend on t, then, the approximating statistic is also bounded from below. Furthermore,

the case ε = 0 can be treated as well (we can define F(fε) = 1 in this case). In particular,

our framework allows for the important case ε = 0 and op(p) the identity operator, which

cannot be treated with the results from [13].

For special choices of p and fε the functions (vt,h)t,h have a much simpler form, which allows

to read off the ill-posedness of the problem from the index of the pseudo-differential operator

associated with vt,h. Let us shortly discuss this. Suppose Assumption 2 holds and addition-

ally 〈s〉k|DkF(fε)(s)| ≤ Ck〈s〉−r for all s ∈ R and k = 3, 4, . . . Then (x, ξ) 7→ F(fε)(−ξ) de-

fines a symbol in S−r. Because of the lower bound in Assumption 2, Cl〈ξ〉−r ≤ |F(fε)(−ξ)|,
the corresponding pseudo-differential operator is elliptic and (x, ξ) 7→ 1/F(fε)(−ξ) is the

symbol of a parametrix and consequently an element in Sr (cf. Hörmander [25], Theorem

18.1.9). If φ ∈ Hr+m and p ∈ Sm ∩ Sm, then

vt,h(u) =
1

2π

∫
F
(

Op
(

1
F(fε)(−·)

)
◦Op(p?)

(
φ ◦ St,h

))
(s)eisuds

= Op
(

1
F(fε)(−·)

)
◦Op(p?)

(
φ ◦ St,h

)
(u).

Pseudo-differential operators are closed under composition. More precisely, pj ∈ Smj ,

j = 1, 2 implies that the symbol of the composed operator is in Sm1+m2 . Therefore, there
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is a symbol p̃ ∈ Sm+r such that vt,h = Op(p̃)(φ ◦ St,h). Hence, for fixed h, the function

t 7→ vt,h can be viewed as a kernel estimator with bandwidth h. Furthermore, the problem

is completely determined by the composition Op(p̃) and this yields a heuristic argument

why (as it will turn out later) the ill-posedness of the detection problem Re op(p)f ≶ 0 in

model (1.1) is determined by the sum m+ r, i.e.

ill-posedness of the shape constraint + ill-posedness of the deconvolution problem.

Suppose further that r and m are integers and Op(p) is a differential operator of the form

m∑
k=1

ak(x)Dk (3.11)

with smooth functions ak k = 1, . . . ,m and am bounded uniformly away from zero. If

1/F(fε)(−·) is a polynomial of degree r (which is true for instance if ε is Exponential,

Laplace or Gamma distributed) then Op(p̃) is again of the form (3.11) but with degree m+r

and hence vt,h(u) is essentially a linear combination of derivatives of φ evaluated at (u−t)/h.
However, these assumptions on the error density are far to restrictive. In the following

paragraph we will show that even under more general conditions the approximating statistic

has a very simple form.

Principal symbol. In order to perform our test, it is necessary to compute quantiles of

the approximating statistic in Theorem 2. Since the approximating statistic has a relatively

complex structure let us give conditions under which it can be simplified considerably. First,

we impose a condition on the asymptotic behavior of the Fourier transform of the errors.

Similar conditions have been studied by Fan [15] and Bissantz et al. [5]. Recall that for

any α, a ∈ R, s 6= 0, Dιαs |s|a = D(is)a1(−is)a2 = aiια−1s |s|a−1 with a1 = (a + α)/2 and

a2 = (a− α)/2.

Assumption 3. Suppose that there exists β0 > 1/2, ρ ∈ [0, 4), and positive numbers A,Cε,

such that∣∣Aιρs |s|rF(fε)(s)− 1
∣∣+
∣∣Ar−1iιρ+1

s |s|r+1DF(fε)(s)− 1
∣∣ ≤ Cε〈s〉−β0 , for all s ∈ R.

Assumption 4. Given m = {0}∪ [1,∞) suppose there exists a decomposition p = pP + pR

such that pR ∈ Sm
′

for some m′ < m, and

pP (x, ξ) = aP (x)|ξ|mιµξ , for all x, ξ ∈ R,

with (x, ξ) 7→ aP (x) ∈ S0, aP real-valued and |aP (·)| > 0.
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For s 6= 0, ι2s = −1. Assume that in the special case m = 0 we have |ρ+µ| ≤ r. Then, we can

(and will) always choose ρ and µ in Assumptions 3 and 4 such that σ = (r+m+ ρ+ µ)/2

and τ = (r + m − ρ − µ)/2 are non-negative. The symbol pP is called principal symbol.

We will see that, together with the characteristics from the error density, it completely

determines the asymptotics. The condition basically means that there is a smooth function

b, such that the highest order of the pseudo-differential operator coincides with aP (x)Dm.

Note that principal symbols are usually defined in a slightly more general sense, however

Assumption 4 turns out to be appropriate for our purposes.

In the following, we investigate the approximation of the multiscale test statistic

TPn := sup
(t,h)∈Bn

wh

(
hr+m−1/2

∣∣Tt,h − E[Tt,h]
∣∣√

ĝn(t) |AaP (t)| ‖Dr+m
+ φ‖2

−
√

2 log ν
h

)
, (3.12)

by

TP,∞n (W ) := sup
(t,h)∈Bn

wh

(∣∣ ∫ Dσ
+D

τ
−φ
(
s−t
h

)
dWs

∣∣
‖Dr+m

+ φ
( ·−t
h

)
‖2

−
√

2 log ν
h

)
.

Theorem 3. Work under Assumptions 2, 3 and 4. Suppose further, that

(i) lnn log−3 n→∞ and un = o(log−(3∨(m−m
′)−1) n),

(ii) φ ∈ Hbr+m+5/2c
3 , suppφ ⊂ [0, 1], and TV(Dbr+m+5/2cφ) <∞,

(iii) If m = 0 assume that r > 1/2 and |µ+ ρ| ≤ r.

Then, there exists a (two-sided) standard Brownian motion W , such that for ν > e,

sup
G∈Gc,C,q

∣∣∣TPn − TP,∞n (W )
∣∣∣ = oP (1),

and the approximating statistic TP,∞n (W ) is almost surely bounded from above by

sup
(t,h)∈T

wh

(∣∣ ∫ Dσ
+D

τ
−φ
(
s−t
h

)
dWs

∣∣
‖Dr+m

+ φ
( ·−t
h

)
‖2

−
√

2 log ν
h

)
<∞, a.s. (3.13)

4 Confidence statements

4.1 Confidence rectangles

Suppose that Theorem 2 holds. The distribution of T∞n (W ) depends only on known quan-

tities. By ignoring the oP (1) term on the right hand side of (3.9), we can therefore simulate
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the distribution of Tn. To formulate it differently, the distance between the (1−α)-quantiles

of Tn and T∞n (W ) tends asymptotically to zero, although T∞n (W ) does not need to have a

weak limit. The (1− α)-quantile of T∞n (W ) will be denoted by qα(T∞n (W )) in the sequel.

In order to obtain a confidence band one has to control the bias which requires a Hölder

condition on op(p)f. However, since we are more interested in a qualitative analysis, it

suffices to assume that op(p)f is continuous (and f ∈ Hm in order to define the scalar

product of op(p)f properly). Moreover, instead of a moment condition on the kernel φ, we

require positivity, i.e. for the remaining part of this work, let us assume that φ ≥ 0 and∫
φ(u)du = 1. Therefore, we can conclude that asymptotically with probability 1 − α, for

all (t, h) ∈ Bn,

〈φt,h, op(p)f〉 ∈
[Tt,h − dt,h√

n
,
Tt,h + dt,h√

n

]
, (4.1)

where

dt,h :=
√
ĝn(t)

∥∥vt,h∥∥2√2 log ν
h

(
1 + qα(T∞n (W ))

log log ν
h

log ν
h

)
.

Using the continuity of op(p)f , it follows that asymptotically with confidence 1 − α, for

all (t, h) ∈ Bn, the graph of x 7→ op(p)f(x) has a non-empty intersection with each of the

rectangles [
t, t+ h

]
×
[Tt,h − dt,h

h
√
n

,
Tt,h + dt,h
h
√
n

]
. (4.2)

This means we find a solution of (iii) by setting

b−(t, h, α) :=
Tt,h − dt,h
h
√
n

, b+(t, h, α) :=
Tt,h + dt,h
h
√
n

. (4.3)

If instead Theorem 3 holds, we obtain by similar arguments that asymptotically with con-

fidence 1− α, for all (t, h) ∈ Bn, the graph of x 7→ op(p)f(x) has a non-empty intersection

with each of the rectangles [
t, t+ h]×

[Tt,h − dPt,h
h
√
n

,
Tt,h + dPt,h
h
√
n

]
(4.4)

with

dPt,h :=
√
ĝn(t)|AaP (t)|h1/2−m−r

∥∥Dr+m
+ φ

∥∥
2

√
2 log ν

h

(
1 + qα(TP,∞n (W ))

log log ν
h

log ν
h

)
(4.5)

and qα(TP,∞n (W )) the 1− α-quantile of TP,∞n (W ). Therefore we find a solution with

b−(t, h, α) :=
Tt,h − dPt,h
h
√
n

, b+(t, h, α) :=
Tt,h + dPt,h
h
√
n

.

Finally let us mention that instead of rectangles we can also cover op(p)f by ellipses. Note

that in particular a rectangle is an ellipse with respect to the ‖ · ‖∞ vector norm on R2, i.e.

(up to translation) a set of the form {(x1, x2) : max(a|x1|, b|x2|) = 1} for positive a, b.
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Figure 1: If the graph of op(p)f intersects R1 and R2, then also R (left). If graph(op(p)f)

intersects R and R1, then also R′ (right).

4.2 Structure on confidence rectangles

For any (t, h) ∈ Bn the multiscale method returns a rectangle of the form (4.2) (or (4.4)).

However, most of the rectangles are redundant since the fact that graph(op(p)f) intersects

these rectangles can be deduced already from the position of other rectangles (see for in-

stance Figure 1) and the assumption that op(p)f is continuous. Naturally, we are interested

in the set of rectangles, which are informative in the sense that they contain information on

the signal, which cannot be deduced from other rectangles. Let us describe in three steps

(A), (B), (B’), how to discard redundant rectangles.

(A) Fix (t, h) ∈ Bn. Suppose there exists (t1, h1), (t2, h2) ∈ Bn ((t1, h1) and (t2, h2) not nec-

essarily different) such that [t1, t1+h1], [t2, t2+h2] ⊂ [t, t+h], b+(t1, h1, α) ≤ b+(t, h, α) and

b−(t2, h2, α) ≥ b−(t, h, α). Denote by R,R1, R2 the rectangle obtained from (t, h), (t1, h1)

and (t2, h2), respectively (for an illustration see Figure 1). Since op(p)f is further as-

sumed to be continuous, then by intermediate value theorem, graph(op(p)f)∩R1 6= ∅ and

graph(op(p)f) ∩ R2 6= ∅ imply that graph(op(p)f) ∩ R 6= ∅. Hence, in this case, R is

non-informative and will be discarded.

(B) Fix (t, h) ∈ Bn and denote the induced rectangle by R. Suppose there exists (t1, h1) ∈
Bn, such that [t1, t1 + h1] ⊂ [t, t + h] and b−(t1, h1, α) ≤ b−(t, h, α) ≤ b+(t1, h1, α) <

b+(t, h, α) (see Figure 1). Define R′ := [t, t + h] × [b−(t, h, α), b+(t1, h1, α)]. Then, R′ is

contained in R and graph(op(p)f) ∩R′ 6= ∅. Therefore, we replace R by R′.

(B′): Same as (B), but consider the case b−(t, h, α) < b−(t1, h1, α) ≤ b+(t, h, α) ≤ b+(t1, h1, α).
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With R′ := [t, t+h]×[b−(t1, h1, α), b+(t, h, α)] we obtain graph(op(p)f)∩R′ 6= ∅. Therefore,

we replace R by R′.

Throughout the following, let us refer to the remaining rectangles after application of

(A), (B) and (B′) as (set of) minimal rectangles.

4.3 Comparison with confidence bands

Let us shortly comment on the relation between confidence rectangles and confidence bands.

Fix one scale h = hn and consider Bn = [0, 1] × {h}. For simplicity let us further restrict

to the framework of Theorem 2. From (4.1), we obtain that

t 7→
[Tt,h − dt,h

h
√
n

,
Tt,h + dt,h
h
√
n

]
(4.6)

is a uniform (1− α)-confidence band for the locally averaged function t 7→ 1
h〈φt,h, op(p)f〉.

Restricting to scales on which the stochastic error dominates the bias | op(p)f− 1
h〈φt,h, op(p)f〉|

(for instance by slightly undersmoothing) we can, inflating (4.6) by a small amount, eas-

ily construct asymptotic confidence bands for op(p)f as well. Note that Theorem 2 does

not require that srF(fε)(s) converges to a constant and therefore we can construct confi-

dence bands for situations which are not covered within the framework of [5]. For adaptive

confidence bands in density deconvolution see the recent work by Lounici and Nickl [35].

However, the construction of confidence bands described above will not work on scales

where we oversmooth or if bias and stochas-

tic error are of the same order. The strength

of the multiscale approach lies in the fact that

for confidence rectangles all scales can be used

simultaneously. This allows for another view

on confidence rectangles. The figure on the

right displays a band (4.6) computed for a large

scale/bandwidth which obviously does not cover

op(p)f. Now, take a point, t0 say, then (4.2)

is equivalent to the existence of a point t′0 ∈
[t0, t0+h] such that the confidence interval [A,B]

at t0 shifted to t′0 contains op(p)f(t′0). Thus,

confidence rectangles also account for the un-

certainty of t 7→ op(p)f(t) along the t-axis.

Figure: Obtaining confidence

rectangles from bands.
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5 Choice of kernel and performance of the multiscale statis-

tic

In this section, we investigate the size/area of the rectangles constructed in the previous

paragraphs. Recall that by (1.3) the expectation of the statistic Tt,h depends in general

on op(p). In contrast, Theorem 3 shows that the variance of Tt,h depends asymptotically

only on the principal symbol, which acts on φ as a differentiation operator of order m+ r.

Therefore, the m + r-th derivative of φ appears in the approximating statistic TP,∞n (W ),

but no other derivative does. In fact, we shall see in this section that the scaling property of

the confidence rectangles can be compared to the convergence rates appearing in estimation

of the (m+ r)-th derivative of a density.

5.1 Optimal choice of the kernel

In the following, we are going to study the problem of finding the optimal function φ.

If m + r ∈ N and the confidence statements are formulated based on the conclusions of

Theorem 3 this can be done explicitly.

Note that for given (t, h) ∈ Bn, the width of the rectangle (4.4) is given by 2dPt,h/(h
√
n).

Further, the choice of φ influences the value of dPt,h in two ways, namely by the factor∥∥Dr+m
+ φ

∥∥
2

=
∥∥Dr+mφ

∥∥
2

as well as the quantile qα(TP,∞n (W )) (cf. the definition of dPt,h
given in (4.5)). Since α is fixed, we have

qα(TP,∞n (W ))
log log ν

h

log ν
h

= o(1).

Therefore, dPt,h depends in first order on
∥∥Dr+mφ

∥∥
2

and our optimization problem can be

reformulated as

minimize
∥∥Dr+mφ

∥∥
2
, subject to

∫
φ(u)du = 1.

This is in fact easy to solve if we additionally assume that φ ∈ Hq with r + m ≤ q <

r + m + 1/2. By Lagrange calculus, we find that on (0, 1), φ has to be a polynomial

of order 2m + 2r. Under the induced boundary conditions φ(k)(0) = φ(k)(1) = 0 for

k = 0, . . . , r +m− 1, the solution φm+r has the form

φm+r(x) = cm+rx
m+r(1− x)m+rI(0,1)(x). (5.1)

Due to the normalization constraint
∫
φm+r(u)du = 1, it follows that φm+r is the density

of a beta distributed random variable with parameters α = m+ r + 1 and β = m+ r + 1,
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implying, cm+r = (2m+ 2r+ 1)!/((m+ r)!)2. It is worth mentioning that φ
(m+r)
m+r , restricted

to the domain [−1, 1), is (up to translation/scaling) the (m + r)-th Legendre polynomial

Lm+r, i.e.

φ
(m+r)
m+r = (−1)m+r (2m+ 2r + 1)!

(m+ r)!
Lm+r(2 · −1)

(this is essentially Rodrigues’ representation, cf. Abramowitz and Stegun [1], p. 785). For

that reason, we even can compute

∥∥φ(m+r)
m+r

∥∥
L2 =

(2m+ 2r)!

(m+ r)!

√
2m+ 2r + 1.

In the particular case r = 0, m = 1 we obtain φ
(1)
1 (x) ∝ 1− 2x and this is known from the

work of Dümbgen and Walther [13], where the authors use locally most powerful tests to

derive φ
(1)
1 .

To summarize, we can find the “optimal” kernel but it turns out that it has less smoothness

than it is required by the conditions for Theorem 3 due to its behavior on the boundaries

{0, 1}. However, if the multiplicative inverse of the characteristic function of the noise

density can be written as a polynomial, we were able to prove the theorems under weaker

assumptions on φ including as a special case the optimal beta kernels.

5.2 Performance of the method

In this part, we give some theoretical insights. We start by investigating Problem (iii) (cf.

Section 3). After that, we will address issues related to (ii) and (i). It is easy to see that

‖vt,h‖2 . h1/2−m−r and thus, dt,h and dPt,h are of the same order. We can therefore restrict

ourselves in the following to the situation, where the confidence statements are constructed

based on the approximation in Theorem 2. In the other case, similar results can be derived.

Problem (iii): Recall that with confidence 1− α, for all (t, h) ∈ Bn,

graph(op(p)f) ∩
[
t, t+ h

]
×
[Tt,h − dt,h

h
√
n

,
Tt,h + dt,h
h
√
n

]
6= ∅.

The so constructed rectangles contain information on op(p)f , where the amount of infor-

mation is directly linked to the size of the rectangle. Therefore, it is natural to think of the

area and the length of the diagonal as measures of localization quality. For the rectangle

above, the area is given by

area(t, h) := 2dt,hn
−1/2 ∼ h1/2−m−rn−1/2

√
log

1

h
.
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There is an interesting transition: Suppose that m + r ≤ 1 (this includes for instance

monotonicity in the direct case and exponential deconvolution). Then, area(t, h) → 0

uniformly in h ∈ [ln, un]. In contrast, whenever m+ r > 1,

h� (log n/n)1/(2m+2r−1) ⇒ area(t, h)→ 0,

h ∼ (log n/n)1/(2m+2r−1) ⇒ area(t, h) = O(1),

h� (log n/n)1/(2m+2r−1) ⇒ area(t, h)→∞.

On the other hand, the length of the diagonal behaves like h ∨ h−m−r−1/2n−1/2
√

log 1/h.

If the rectangle is a square, then, h ∼ (log n/n)1/(3+2m+2r).

Problem (ii), (ii′): The following lemma gives a necessary condition in order to solve (ii).

Loosely speaking, it states that whenever

op(p)f
∣∣
[t,t+h]

& n−1/2h−m−r−1/2
√

log 1/h,

the multiscale test returns a rectangle [t, t + h] × [b−(t, h, α), b+(t, h, α)] which is in the

upper half-plane with high-probability. Or, to state it differently, we can reject that

op(p)f
∣∣
[t,t+h]

< 0.

Theorem 4. Work under the assumptions of Theorem 2. Suppose that φ ≥ 0. Let M−n
denote the set of tupels (t, h) ∈ Bn for which

op(p)f
∣∣
[t,t+h]

>
2dt,h
h
√
n
.

Similar, define M+
n := {(t, h) ∈ Bn | op(p)f |[t,t+h] < −(2dt,h)/(h

√
n)}. Then, if b+(t, h, α)

and b−(t, h, α) are given by (4.3), we obtain

lim
n→∞

P
(

(−1)∓b±(t, h, α) > 0, for all (t, h) ∈M±n
)
≥ 1− α.

Proof. For all (t, h) ∈M−n , conditionally on the event given by (4.1),

op(p)f
∣∣
[t,t+h]

>
2dt,h
h
√
n
⇒ 〈φt,h, op(p)f〉 >

2dt,h√
n
⇒ Tt,h > dt,h ⇒ b−(t, h, α) > 0.

Similar, one can argue for M+
n .

In order to formulate the next result, let us define

Cα :=
(√

8‖fε‖∞hm+r−1/2‖vt,h‖2(1 + qα(T∞n (W )))
)2/(2m+2r+1)

. (5.2)
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Corollary 1. Work under the assumptions of Theorem 2. Suppose that φ ≥ 0 and β ∈ R.

Let M−n denote the set of tupels (t, h) ∈ Bn satisfying

op(p)f
∣∣
[t,t+h]

>

(
log n

n

)β/(2β+2m+2r+1)

(5.3)

and

h ≥ Cα
(

log n

n

)1/(2β+2m+2r+1)

.

Let M+
n be as M−n , with (5.3) replaced by op(p)f |[t,t+h] < −(log n/n)β/(2β+2m+2r+1). Then,

if b−(t, h, α) and b+(t, h, α) are given by (4.3), we obtain

lim
n→∞

P
(

(−1)∓b±(t, h, α) > 0, for all (t, h) ∈M±n
)
≥ 1− α.

Proof. It holds that

dt,h ≤ ‖fε‖1/2∞
∥∥vt,h∥∥2√2 log ν/h

(
1 + qα(T∞n (W ))

)
.

For sufficiently large n, h ≥ ln ≥ ν/n. Therefore, we have for every (t, h) ∈M−n ,

2dt,h
h
√
n
≤
√

8 ‖fε‖∞
∥∥vt,h∥∥2(1 + qα(T∞n (W ))

)
h−1/2n−1/2

√
log n < op(p)f

∣∣
[t,t+h]

.

Similar for M+
n . Now, the result follows by applying Theorem 4.

The last result shows essentially that if op(p)f
∣∣
[t,t+h]

is positive, precisely, op(p)f
∣∣
[t,t+h]

∼
(log n/n)β/(2β+2m+2r+1), and if h ∼ (log n/n)1/(2β+2m+2r+1), then with probability 1 − α,

our method returns a rectangle in the upper half-plane. Another way to guarantee this is

by imposing the condition

op(p)f
∣∣
[t,t+h]

& hβ. (5.4)

We have three distinct regimes

β > 0 : op(p)f
∣∣
[t,t+h]

→ 0 h→ 0,

β = 0 : op(p)f
∣∣
[t,t+h]

= O(1) h ∼ (log n/n)1/(2m+2r+1) → 0,

−m− r − 1/2 < β < 0 : op(p)f
∣∣
[t,t+h]

→∞ h→ 0.

It is insightful to compare the previous result to derivative estimation of a density if m+ r

is a positive integer. As it is well known, Dm+rf can be estimated with rate of convergence( log n

n

)β/(2β+2m+2r+1)
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under L∞-risk assuming that op(p)f is Hölder continuous with index β > 0 and that

h ∼ (log n/n)1/(2β+2m+2r+1). This directly relates to the first case considered above.

Problem (i): At the beginning of Section 3 we shortly addressed construction of confidence

statements for the number of roots and their location. Note that estimators derived in this

way, have many interesting features. On the one hand, we know that with probability 1−α
the estimated number of roots is a lower bound for the true number of roots. Therefore,

these estimates do not come from a trade-off between bias and variance but they allow for

a clear control on the probability to observe artefacts. It is worth mentioning that for this

proper qualitative feature selection no additional penalization is required. In order to show

that the lower bound for the number of roots is not trivial, we need to prove that whenever

two roots are well-separated (for instance the distance between them shrinks not too fast),

they will be detected eventually by our test. This property follows if we can show that the

simultaneous confidence intervals for a fixed number of roots, say, shrink to zero.

Therefore, assume for simplicity that the number K and the locations (x0,j)j=1,...,K of the

zeros of op(p)f are fixed (but unknown) and x0,j ∈ (0, 1) for j = 1, . . . ,K. For example,

these roots can be extreme/saddle points if op(p) = D or points of inflection if op(p) = D2.

In order to formulate the result, we need that Bn is sufficiently rich. Therefore, we assume

that for all n, there exists a sequence (Nn), Nn & n1/(2m+2r+1) log4 n, such that{( k

Nn
,
l

Nn

) ∣∣ k = 0, 1, . . . , l = 1, 2, . . . , k + l ≤ Nn

}
⊂ Bn.

Assume further that in a neighborhood of the roots x0,j , op(p)f behaves like

op(p)f(x) = γ sign(x− x0,j)|x− x0,j |β + o(|x− x0,j |β),

for some positive β ∈ (0, 1]. Let ρn = (log n/n)1/(2β+2m+2r+1)2/γ1/β and Cα,M
±
n as defined

in Corollary 1. There exist integer sequences (k−j,n)j,n, (k+j,n)j,n, (ln)n such that for all

sufficiently large n,

ρn ≤
k−j,n
Nn
−x0,j ≤ 2ρn, −2ρn ≤

k+j,n
Nn
−x0,j ≤ −ρn, and Cαγ

1/βρn ≤
ln
Nn
≤ 2Cαγ

1/βρn.

Some calculations show that (k−j,n/Nn, ln/Nn) ∈M−n and ((k+j,n − ln)/Nn, ln/Nn) ∈M+
n for

j = 1, . . . ,K. We can conclude from Corollary 1 and the construction, that for j = 1, . . . ,K,

the confidence intervals have to be a subinterval of[
k+j,n − ln
Nn

,
k−j,n + ln

Nn

]
.
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Hence, the length for each confidence interval is bounded from above by

4(Cαγ
1/β + 1)ρn ∼

(
log n

n

)1/(2β+2m+2r+1)

.

As n → ∞ the confidence intervals shrink to zero, and will therefore become disjoint

eventually. This shows that our estimator for the number of roots picks asymptotically the

correct number with high probability. Observe, that for localization of modes in density

estimation (m, r, β) = (1, 0, 1) the rate (log n/n)1/5 is indeed optimal up to the log-factor

(cf. Hasminskii [23]). The rate (log n/n)1/7 for localization of inflection points in density

estimation (m, r, β) = (2, 0, 1) coincides with the one found in Davis et al. [9].

For the special case of mode estimation in density deconvolution let us shortly comment on

related work by Rachdi and Sabre [37] and Wieczorek [38]. In [38] optimal estimation of

the mode under relatively restrictive conditions on the smoothness of f is considered. In

contrast, Rachdi and Sabre find the same rates of convergence n−1/(2r+5) (but with respect

to the mean-square error). Under the stronger assumption that D3f exists they also provide

confidence bands which converge at a different rate, of course.

5.3 On calibration of multiscale statistics

Let us shortly comment on the type of multiscale statistic, derived in Theorems 1-3. Fol-

lowing [12], p.139, we can view the calibration of the multiscale statistics (2.5), (3.8), and

(3.12) as a generalization of Lévy’s modulus of continuity. In fact, the supremum is at-

tained uniformly over different scales, making this calibration in particular attractive for

construction of adaptive methods.

One of the restrictions of our method, compared to other works on multiscale statistics,

is that we exclude the coarsest scales, i.e. h > un = o(1) (cf. Theorem 1). Otherwise the

approximating statistic would not be distribution-free. However, excluding the coarsest

scales is a very weak restriction since the important features of op(p)f can be already

detected at scales tending to zero with a certain rate. For instance in view of Corollary 1,

the multiscale method detects a deviation from zero, i.e. op(p)f
∣∣
I
≥ C > 0, provided the

length of the interval I is larger than const.×(log n/n)1/(2m+2r+1). This can be also seen by

numerical simulations, as outlined in the next section.

6 Numerical simulations

We will illustrate our method by investigating monotonicity of f (op(p) = D, cf. Example

1) under Laplace-deconvolution, i.e. fε(x) = θ−1e−|x|/θ with θ = 0.075. In this case, we
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Figure 2: Boxplots for three different values (n = 200, n = 1000, n = 10.000) of the

approximating statistic (6.1).

find

F(fε)(t) = 〈θt〉−2 and op(p)?f = −Df

and the statistic (3.5) takes the explicit form

Tt,h =
1

h
√
n

n∑
k=1

(
θ2

h2
φ(3)

(
Yk − t
h

)
− φ′

(
Yk − t
h

))
.

As kernel φ, we select the density of a Beta(4, 4) random variable (cf. Section 5). Moreover,

we choose un = 1/ log log n for the multiscale statistic and define

Bn =
{( k

Nn
,
l

Nn

) ∣∣ k = 0, 1, . . . , l = 1, 2, . . . , [Nnun], k + l ≤ 1
}
, for Nn =

[
n0.6

]
.

Note that Assumptions 3 and 4 hold for (A, ρ, r, β0) = (θ2, 0, 2, 2) and (µ,m) = (1, 1),

respectively. Then, the multiscale statistics

TPn = sup
(t,h)∈Bn

wh

(
|Tt,h − ETt,h|√
ĝn(t) θ2 ‖φ(3)‖2

−
√

2 log
(
ν
h

))

and

TP,∞n (W ) = sup
(t,h)∈Bn

wh

(∣∣ ∫ φ(3)( s−th )dWs

∣∣
√
h ‖φ(3)‖2

−
√

2 log
(
ν
h

))
(6.1)

have a particular simple form.

Boxplots for the distributions TP,∞200 (W ), TP,∞1000 (W ), and TP,∞10.000(W ) are displayed in Figure

2 for 10.000 simulations each. These plots show that the distribution is well-localized with

only a few outliers. As proved, the approximating statistic is almost surely bounded as
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Figure 3: Simulation for sample size n = 1000 and 90%-quantile. Upper display: True

density f (dashed) and convoluted density g (solid). Lower display: Line plot of the

endpoints of intervals solving Problems (ii) and (ii′) as well as minimal solutions to (ii)

and (ii′) (horizontal lines above/below)

n → ∞. For increasing sample size, however, Figure 2 indicates, that the quantiles of the

distributions TP,∞n (W ) increase slowly.

In Figures 3 and 4, we give an example of a reconstruction based on a sample size of

n = 1000 and confidence level equal to 90%. Based on 10.000 repetitions, the estimated

quantile is q0.1(T
P,∞
1000 (W )) = −0.41. For the simulation, we use ν = exp(e2) because then,

h 7→
√

log ν/h/(log log ν/h) is monotone as long as 0 < h ≤ 1 (cf. Lemma C.3 (i)).

The upper display of Figure 3 shows the true density of f as well as the convoluted den-

sity g. Note that g is very smooth and as the other densities non-observable (we only

have observations, which are distributed with density g). In fact, by visual inspection of

g, it becomes apparent how difficult it is to find the intervals on which f is monotone

increasing/decreasing.

The lower plot of Figure 3, displays minimal intervals which are solutions to Problems

(ii) and (ii′) (horizontal lines above and below the line plot, respectively). Here, minimal

intervals for (ii) and (ii′) denote the intervals for which no proper subinterval exists with the
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Figure 4: True (unobserved) derivative f ′ and minimal rectangles (left) as well as sparse

minimal rectangles/ midpoints (right) for the same data set as in Figure 3.

same property. The line plot itself depicts the endpoints of all intervals belonging to (ii) and

(ii′). Note that the possible values for the endpoints are given by k/Nn, k = 0, 1, . . . , Nn.

If for given k there is more than one interval solving (ii) or (ii′) with endpoint k/Nn the

line width is increased accordingly. For more on this type of plotting, see Dümbgen and

Walther [13].

The density f has been designed in order to investigate Corollary 1 numerically. Indeed,

on [0, 0.35], the signal (in this case |f ′|) is in average large but the intervals on which f

increases/decreases are comparably small. In contrast, on [0.35, 1], |f ′| is small and there

is only one increase/decrease.

The test is able to find two regions of increase and two regions, where the density decreases.

The increase and decrease on the leftmost position are not detected by our test. Repetition

of the simulation shows that the decrease on the intervals [0.25, 0.35] and [0.55, 1] is most of

the time found while the increases (on [0.17, 0.25] and [0.35, 0.55]) are less often detected.
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Furthermore, compared to the true function f , it can be seen that the difficulty lies in

precise localization of the regions of increase/decrease.

In Figure 4, the derivative of f as well as the minimal rectangles, additionally satisfying

either b−(t, h, α) > 0 or b+(t, h, α) < 0, are displayed. For better visualization, we have

depicted the midpoints of these rectangles and a sparse subset (right display in Figure 4)

using the following reduction step:

(C): Let R be the rectangle with the smallest area and denote by S the set of rectangles

having non-empty intersection with R. Find the rectangle in S minimizing the area of

intersection with R. Display R and R′ and discard R and all the rectangles in S. If there

are rectangles left, start from the beginning.

By construction, we find as before two regions of increase and decrease. Compared to the

multiscale solutions of Problems (ii) and (ii′) (cf. Figure 3), we also obtain surprisingly

precise information on the derivative of f . Observe that the graph of f ′ tends to cut the

rectangles through the middle. Therefore, the midpoints of the rectangles (depicted as

crosses in Figure 4) can be used for instance for estimation of maxima.

Figure 4 also shows nicely why a multiscale approach can provide additional insight com-

pared to a one-scale method. Consider the rectangles R1 and R2 in the right display of

Figure 4 and denote by (t1, h1) and (t2, h2) the corresponding indices in Bn (as in (4.4)).

Note, R1 and R2 belong to more or less the same value in the time domain, i.e. t1 ≈ t2

but different bandwidths h1, h2. Therefore, we may view R1 and R2 as a superposition

of confidence statements on different scales. Since R1 yields the better resolution in the

t-coordinate and R2 the better resolution in the y-coordinate, different qualitative state-

ments can be inferred at the same time point. More practical, we would use R2 in order to

construct a confidence statement as in the lower display of Figure 3 and from R1 we obtain

the better bound for inf f ′. This would be impossible for any one-scale method.

7 Outlook and Discussion

We have investigated multiscale methods in order to analyze shape constraints expressed

as pseudo-differential operator inequalities in deconvolution models. Compared to previous

work, a more refined multiscale calibration has been considered using an idea of proof based

on KMT results together with tools from the theory of pseudo-differential operators. We

believe that the same strategy can be applied to a variety of other problems. In particular, it

is to be expected that similar results will hold for regression and spectral density estimation.

Our multiscale approach allows us to identify intervals such that for given significance level
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we know that op(p)f > 0 at least on a subinterval. As outlined in Section 5, these results

allow for qualitative inference as for example construction of confidence bands for the roots

of op(p)f . Since we only required that op(p)f is continuous, op(p)f can be highly oscillating.

In this framework, it is therefore impossible to obtain strong confidence statements in the

sense that we find intervals on which op(p)f is always positive. By adding bias controlling

smoothness assumptions such as for instance Hölder conditions stronger results can be

obtained resulting for instance in uniform confidence bands.

Obtaining multiscale results for error distributions as in Assumption 2 is already a very

difficult topic on its own and extension to the severely ill-posed case, including Gaussian

deconvolution, becomes technically challenging since the theory of pseudo-differential oper-

ators has to the best of our knowledge not been formulated on the induced function spaces

so far. Therefore we intend to treat this in a subsequent paper.

Restricting to shape constraint which are associated with pseudo-differential operators ap-

pears to be a limitation of our method, since important shape constraints as for instance

curvature cannot be handled within this framework and we may only work with lineariza-

tions (which is quite common in physics and engineering). Allowing for non-linearity is a

very challenging task for further investigations. We are further aware of the fact that many

other important qualitative features are related to integral transforms (that are in general

not of convolution type) and they do not have a representation as pseudo-differential op-

erator. For instance complete monotonicity and positive definiteness are by Bernstein’s

and Bochner’s Theorem connected to the Laplace transform and Fourier transform, respec-

tively. They cannot be handled with the methods proposed here and are subject to further

research.
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Appendix A

Throughout the appendix, let

wh =

√
1
2 log ν

h

log log ν
h

, w̃h =
log ν

h

log log ν
h

.

Furthermore, we often use the normalized differential –dξ := (2π)−1dξ

Proof of Theorem 1. Let us study in a first step the statistic

T (1)
n = sup

(t,h)∈Bn
wh

∣∣Tt,h − ETt,h
∣∣

Vt,h
√
g(t)

− w̃h.

Note that T
(1)
n is the same as Tn, but ĝn is replaced by g. We will show that there exists a

(two-sided) Brownian motion W , such that with

T (2)
n (W ) := sup

(t,h)∈Bn
wh

∣∣ ∫ ψt,h(s)
√
g(s)dWs

∣∣
Vt,h

√
g(t)

− w̃h,

we have

sup
G∈Gc,C,q

∣∣T (1)
n − T (2)

n (W )
∣∣ = oP (rn). (A.1)

The main argument is based on the standard version of KMT (cf. [31]). In order to state

the result, let us define a Brownian bridge on the index set [0, 1] as a centered Gaussian

process (B(f)){f∈F}, F ⊂ L2([0, 1]) with covariance structure

Cov
(
B(f), B(g)

)
= 〈f, g〉 − 〈f, 1〉〈g, 1〉.

Let F0 := {x 7→ I[0,s](x) : s ∈ [0, 1]}. Note that (B(f)){f∈F0} coincides with the classical

definition of a Brownian bridge. For Ui ∼ U [0, 1], i.i.d., the uniform empirical process on

the function class F is defined as

Un(f) =
√
n
( 1

n

n∑
i=1

f(Ui)−
∫
f(x)dx

)
, f ∈ F .

In particular note that

Tt,h − ETt,h = Un
(
ψt,h ◦G−1

)
,

where G−1 denotes the quantile function of Y. For convenience, we restate the celebrated

KMT inequality for the uniform empirical process.
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Theorem 5 (KMT on [0, 1], cf. [31]). There exist versions of Un and a Brownian bridge

B such that for all x

P
(

sup
f∈F0

∣∣Un(f)−B(f)
∣∣ > n−1/2(x+ C log n)

)
< Ke−λx,

where C,K, λ > 0 are universal constants.

However, we need a functional version of KMT. We shall prove this by using the theorem

above in combination with a result due to Koltchinskii [30], (Theorem 11.4, p. 112) stating

that the supremum over a function class F behaves as the supremum over the symmetric

convex hull sc(F), defined by

sc(F) :=
{ ∞∑
i=1

λifi : fi ∈ F , λi ∈ [−1, 1],

∞∑
i=1

|λi| ≤ 1
}
.

Theorem 6. Assume there exists a version B of a Brownian bridge, such that for a sequence

(δ̃n)n tending to 0,

P∗
(

sup
f∈F
|Un(f)−B(f)| ≥ δ̃n(x+ C log n)

)
≤ Ke−λx,

where C,K, λ > 0 are constants depending only on F . Then, there exists a version B̃ of a

Brownian bridge, such that

P∗
(

sup
f∈sc(F)

|Un(f)− B̃(f)| ≥ δ̃n(x+ C ′ log n)
)
≤ K ′e−λ′x

for constants C ′,K ′, λ′ > 0.

In Theorem 6, P? refers to the outer measure, however, for the function class considered in

this paper, we have measurability of the corresponding event and hence may replace P? by

P. It is well-known (cf. Giné et al. [18], p. 172) that{
ρ
∣∣ ρ : R→ R, supp ρ ⊂ [0, 1], ρ(1) = 0, TV(ρ) ≤ 1

}
⊂ sc(F0). (A.2)

Now, assume that ρ : R→ R is such that TV(ρ)+3|ρ(1)| ≤ 1. Define ρ̃ = (ρ−ρ(1)I[0,1])/(1−
|ρ(1)|) and observe that TV(ρ̃) ≤ 1 and ρ̃(1) = 0. By (A.2) there exists λ1, λ2, . . . ∈ R and

t1, t2, . . . ∈ [0, 1] such that ρ̃ =
∑
λiI[0,ti] and

∑
|λi| ≤ 1. Therefore, ρ = (1 − |ρ(1)|)ρ̃ +

ρ(1)I[0,1] can be written as linear combination of indicator functions, such that the sum of

the absolute values of weights is bounded by 1. This shows{
ρ
∣∣ ρ : R→ R, supp ρ ⊂ [0, 1], TV(ρ) + 3|ρ(1)| ≤ 1

}
⊂ sc(F0).
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Since TV(ψt,h ◦G−1) ≤ TV(ψt,h) it follows by Assumption 1 (ii) that the function class

Fn :=
{
C?V

−1
t,h

√
h ψt,h ◦G−1 : (t, h) ∈ Bn, G ∈ Gc,C,q

}
is a subset of sc(F0) for sufficiently small constant C?. Combining Theorems 5 and 6 shows

for δ̃n = n−1/2 that there are constants C ′,K ′, λ′ and a Brownian bridge (B(f))f∈sc(F0)

such that for x > 0,

P
(

sup
(t,h)∈Bn, G∈G

C?

√
h
∣∣Un(ψt,h ◦G−1)−B(ψt,h ◦G−1)∣∣

Vt,h
≥ n−1/2(x+ C ′ log n)

)
≤ K ′e−λ′x.

Due to Lemma C.3 (i) and ln ≥ ν/n for sufficiently large n, we have that wln ≤ wν/n. This

readily implies with x = log n,

sup
(t,h)∈Bn, G∈G

wh

∣∣∣∣∣Tt,h − ETt,h
∣∣− ∣∣B(ψt,h ◦G−1)∣∣∣∣∣

Vt,h
√
g(t)

= OP

(
l−1/2n n−1/2wν/n log n

)
.

Now, let us introduce the (general) Brownian motion W (f) as a centered Gaussian process

with covariance E[W (f)W (g)] = 〈f, g〉. In particular, W (f) = B(f) + (
∫
f)ξ, ξ ∼ N (0, 1)

and independent of B, defines a Brownian motion and hence there exists a version of

(W (f))f∈sc(F0) such that B(f) = W (f)− (
∫
f)W (1). We have

sup
(t,h)∈Bn, G∈G

wh

∣∣ ∫ ψt,h(u) dG(u)
∣∣

Vt,h
√
g(t)

≤ c−1 sup
(t,h)∈Bn, G∈G

wh
‖ψt,h‖1

Vt,h
√
g(t)

. sup
h∈[ln,un]

whh
1/2 ≤ wunu1/2n ,

where the second inequality follows from Assumption 1 (ii) and the last inequality from

Lemma C.3 (ii). This implies further

E
[∥∥∥ wh

Vt,h
√
g(t)

[∣∣B(ψt,h ◦G−1)∣∣− ∣∣W (ψt,h ◦G−1)∣∣]∥∥∥
Fn

]
= O(wunu

1/2
n ),

and therefore

sup
G∈G

∣∣∣T (1)
n − sup

(t,h)∈Bn
wh

∣∣W (ψt,h ◦G−1)∣∣
Vt,h

√
g(t)

− w̃h
∣∣∣ = OP (l−1/2n n−1/2w1/n log n+ wunu

1/2
n ),

and

sup
G∈G

∣∣∣T (1)
n − T (2)

n (W )
∣∣∣ = OP (l−1/2n n−1/2w1/n log n+ wunu

1/2
n ).

In the last equality we have used that (W
(1)
t )t∈[0,1] = (W (I[0,t](·)))t∈[0,1] and

(Wt)t∈R =
(∫ t

0

I{g>0}(s)√
g(s)

dW
(1)
G(s)

)
t∈R
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are (two-sided) standard Brownian motions, proving W (ψt,h ◦ G−1) =
∫
ψt,h(s)

√
g(s)dWs

and hence (A.1). Further note that Assumption 1 (iii) together with Lemma B.6 shows

that

sup
G∈G

∣∣∣T (2)
n (W )− sup

(t,h)∈Bn
wh

∣∣ ∫ ψt,h(s)dWs

∣∣
Vt,h

− w̃h
∣∣∣ = OP (κn).

In a final step let us show that (2.7) is almost surely bounded. In order to establish

the result, we use Theorem 6.1 and Remark 1 of Dümbgen and Spokoiny [12]. We set

ρ
(
(t, h), (t′, h′)

)
= (|t − t′| + |h − h′|)1/2. Further, let X(t, h) =

√
hV −1t,h

∫
ψt,h(s)dWs and

σ(t, h) = h1/2.

By assumption, X has continuous sample paths on T and obviously, for all (t, h), (t′, h′) ∈ T ,

σ2(t, h) ≤ σ2(t′, h′) + ρ2((t, h), (t′, h′)).

Let Z ∼ N (0, 1). Since X(t, h) is a Gaussian process and Vt,h ≥ ‖φt,h‖2, P(X(t, h) >

σ(t, h)η) ≤ P(Z > η) ≤ exp(−η2/2), for any η > 0. Further, denote by

At,t′,h,h′ :=

∥∥∥∥∥ψt,h
√
h

Vt,h
−
ψt′,h′

√
h
′

Vt′,h′

∥∥∥∥∥
2

. (A.3)

Because of P(|X(t, h) − X(t′, h′)
∣∣ ≥ At,t′,h,h′η

)
≤ 2 exp

(
− η2/2

)
we have by Lemma B.5

for a universal constant K > 0,

P
(∣∣X(t, h)−X(t′, h′)

∣∣ ≥ ρ((t, h), (t′, h′))η
)
≤ 2 exp

(
− η2/(2K2)

)
.

Finally, we can bound the entropy N ((δu)1/2, {(t, h) ∈ T : h ≤ δ}) similarly as in [12], p.

145. Therefore, application of Remark 1 in [12] shows that

S := sup
(t,h)∈T

√
1
2 log e

h

∣∣ ∫ ψt,h(s)dWs

∣∣
log
(
e log e

h

)
Vt,h

−

√
log( 1

h) log( eh)

log
(
e log e

h

)
is almost surely bounded from above. Define

S′ := sup
(t,h)∈T

√
1
2 log ν

h

∣∣ ∫ ψt,h(s)dWs

∣∣
log log ν

h Vt,h
−

√
log( 1

h) log( νh)

log log ν
h

.

If e < ν ≤ ee, then

log log ν
h = log

(
log ν
e log ee

he/ log ν

)
≥ log log ν − 1 + log

(
e log e

h

)
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implies

log
(
e log e

h

)
log log ν

h

≤ 1

log log ν
+ 1.

Furthermore, log ν/h ≤ (log ν)(log e/h). Suppose now that S′ > 0 (otherwise S′ is bounded

from below by 0). Then, S′ . S and hence S′ is almost surely bounded. Finally,√
log ν

h

∣∣√log 1
h −

√
log ν

h

∣∣ ≤ log ν.

Therefore, (2.7) holds, i.e.

sup
(t,h)∈T

wh

∣∣ ∫ ψt,h(s)dWs

∣∣
Vt,h

− w̃h

is almost surely bounded.

In the last step, let us prove that supG∈Gc,C,q |Tn−T
(1)
n | = OP (supG∈G ‖ĝn−g‖∞ log n/ log log n).

For sufficiently large n and because G ∈ G, ĝn ≥ c/2 for all t ∈ [0, 1]. Therefore using Lemma

C.3 (i),

sup
G∈G

∣∣Tn − T (1)
n | ≤ sup

(t,h)∈Bn, G∈G
wh

∣∣Tt,h − E[Tt,h]
∣∣

Vt,h
√
g(t)

supG∈G
∥∥ĝn − g∥∥∞
ĝn(t)

≤
2 supG∈G

∥∥ĝn − g∥∥∞
c

sup
(t,h)∈Bn, G∈G

wh

∣∣Tt,h − E[Tt,h]
∣∣

Vt,h
√
g(t)

≤
2 supG∈G

∥∥ĝn − g∥∥∞
c

(T (1)
n + sup

h∈[ln,un]
w̃h)

≤
2 supG∈G

∥∥ĝn − g∥∥∞
c

(
T (1)
n +O(

log n

log logn
)
)
. (A.4)

Since T
(1)
n is a.s. bounded by Theorem 1, the result follows.

Remark 2. Next, we give a proof of Theorem 2. In fact we proof a slightly stronger version,

which does not necessarily require the symbol a to be elliptic and Vt,h = ‖vt,h‖2. It is only

assumed that

(i) Vt,h ≥ ‖vt,h‖2,

(ii) there exists constants cV , CV with 0 < cV ≤ hm+r−1/2Vt,h ≤ CV <∞

(iii) for all (t, h), (t′, h′) ∈ T and whenever h ≤ h′ it holds that hm+r|Vt,h − Vt′,h′ | ≤
CV (|t− t′|+ |h− h′|)1/2.
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Note, that as a special case these conditions are satisfied for Vt,h = ‖vt,h‖2 if op(a) is

elliptic. This follows directly from Lemmas B.2 and B.4.

Proof of Theorem 2. In order to prove the statements it is sufficient to check the conditions

of Theorem 1. For h > 0, define the symbol

a?t,h(x, ξ) := hma?(xh+ t, h−1ξ). (A.5)

Under the imposed conditions and by Remark B.1 we may apply Lemma B.3 for a(t,h) = a?t,h
and therefore, uniformly over (t, h) ∈ T and u, u′ ∈ R,

(I) |vt,h(u)| . h−m−r min
(
1, h2

(u−t)2
)
.

(II) |vt,h(u)− vt,h(u′)| . h−m−r−1|u− u′| and if u, u′ 6= t,

|vt,h(u)− vt,h(u′)| . h1−m−r
|u− u′|

|u′ − t| |u− t|
= h1−m−r

∣∣ ∫ u

u′

1

(x− t)2
dx
∣∣.

Using (I), we obtain ‖vt,h‖∞ . h−m−r and ‖vt,h‖1 . h1−m−r. In order to show that the

total variation is of the right order, let us decompose vt,h further into v
(1)
t,h = vt,hI[t−h,t+h]

and v
(2)
t,h = vt,h − v

(1)
t,h . By (II), TV(v

(1)
t,h ) . h−m−r and

TV(v
(2)
t,h ) . h−m−r + h1−m−r

∫ ∞
t+h

1

(x− t)2
dx . h−m−r.

Since TV(vt,h) ≤ TV(v
(1)
t,h ) + TV(v

(2)
t,h ) . h−m−r, this shows together with Remark 2 that

part (ii) of Assumption 1 is satisfied.

In the next step we verify Assumption 1, (iii) with κn = sup(t,h)∈Bn whh
1/2 log(1/h) .

u
1/2
n log3/2 n (cf. Lemma C.3, (ii)), i.e. we show

sup
(t,h)∈Bn, G∈G

wh
TV

(
vt,h(·)[

√
g(·)−

√
g(t)]〈·〉α

)
Vt,h

. u1/2n log3/2 n.

By Lemma C.2, we see that this holds for vt,h replaced by v
(1)
t,h . Therefore, it remains to prove

the statement for v
(2)
t,h . Let us decompose v

(2)
t,h further into v

(2,1)
t,h = vt,hI[t−1,t+1]∩[t−h,t+h]c and

v
(2,2)
t,h = v

(2)
t,h − v

(2,1)
t,h = vt,hI[t−1,t+1]c . For the remaining part, let u, u′, such that |u − t| ≥

|u′ − t| ≥ h. We have

TV
(
v
(2,1)
t,h (·)

[√
g(·)−

√
g(t)

]
〈·〉α

)
.
∥∥v(2,1)t,h (·)

[√
g(·)−

√
g(t)

]∥∥
∞

+ TV
(
v
(2,1)
t,h (·)

[√
g(·)−

√
g(t)

])
. (A.6)
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Using (I) and (II) together with the properties of the class G we can bound the variation∣∣v(2,1)t,h (u)
[√

g(u)−
√
g(t)

]
− v(2,1)t,h (u′)

[√
g(u′)−

√
g(t)

]∣∣ by∣∣v(2,1)t,h (u)− v(2,1)t,h (u′)
∣∣ · ∣∣√g(u′)−

√
g(t)

∣∣+
∣∣v(2,1)t,h (u)

∣∣ · ∣∣√g(u)−
√
g(u′)

∣∣
. h1−m−r |u−u

′|
|u−t| + h2−m−r |u−u

′|
|u−t|2 . h1−m−r |u−u

′|
|u−t| ≤ h

1−m−r∣∣ ∫ u

u′

1
|x−t|dx

∣∣.
This yields due to h ≥ ln & 1/n,

TV
(
v
(2,1)
t,h (·)[

√
g(·)−

√
g(t)]

)
. h1−m−r + h1−m−r

∫ t+1

t+h

du

|u− t|
. h1−m−r log 1

h . h1−m−r log n

and with (A.6) also

TV
(
v
(2,1)
t,h (·)

[√
g(·)−

√
g(t)

]
〈·〉α

)
. h1−m−r log n. (A.7)

Finally, let us address the total variation term involving v
(2,2)
t,h . Given Gc,C,q we can choose

α such that α > 1/2 and α+ q < 1 (recall that 0 ≤ q < 1/2). By Lemma B.7, we find that

∣∣v(2,2)t,h (u)〈u〉α − v(2,2)t,h (u′)〈u′〉α
∣∣ . h1−m−r

∣∣∣ ∫ u

u′

1

(x− t)2−α
+

1

(x− t)2
dx
∣∣∣.

Moreover

〈u〉α(1 + |u′|+ |u|)q ≤ (1 + |u′|+ |u|)q+α ≤ (3 + 2|u− t|)q+α ≤ 3 + 2|u− t|q+α.

and thus ∣∣v(2,2)t,h (u)〈u〉α
∣∣ ∣∣√g(u)−

√
g(u′)

∣∣ . h2−m−r
|u− t|q+α + 1

|u− t|2
|u− u′|.

This allows us to bound the variation by∣∣v(2,2)t,h (u)
[√

g(u)−
√
g(t)

]
〈u〉α − v(2,2)t,h (u′)

[√
g(u′)−

√
g(t)

]
〈u′〉α

∣∣
≤
∣∣v(2,2)t,h (u)〈u〉α

∣∣ ∣∣√g(u)−
√
g(u′)

∣∣+
2√
c

∣∣v(2,2)t,h (u)〈u〉α − v(2,2)t,h (u′)〈u′〉α
∣∣

. h1−m−r
∣∣∣ ∫ u

u′

1

(x− t)2−q−α
+

1

(x− t)2−α
+

1

(x− t)2
dx
∣∣∣

and therefore we conclude that

TV
(
v
(2,2)
t,h (·)

[√
g(·)−

√
g(t)

]
〈·〉α

)
. h1−m−r + h1−m−r

∫ ∞
t+1

1

(x− t)2−q−α
+

1

(x− t)2−α
+

1

(x− t)2
dx ≤ h1−m−r.
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Together with the bound for v
(1)
t,h and (A.7) this shows that Assumption 1, (iii) holds.

Finally, Assumption 1 (iv) follows from Lemma B.4 and Remark 2 due to φ ∈ Hdr+me ∩
Hr+m+1/2, suppφ ⊂ [0, 1] and φ ∈ TV(Ddr+meφ) < ∞. This shows that Assumption 1

holds for (vt,h, Vt,h).

In the next step, we verify that (t, h) 7→ X(t, h) =
√
hV −1t,h

∫
vt,h(s)dWs has continuous

sample paths. Note that in view of Lemma B.6, it is sufficient to show that there is an α

with 1/2 < α < 1, such that

TV
((√

hV −1t,h vt,h −
√
h′V −1t′,h′vt′,h′

)
〈·〉α

)
→ 0,

whenever (t′, h′)→ (t, h) on the space T . Since Assumption 1 (iv) holds, we have

∣∣√hV −1t,h −
√
h′V −1t′,h′

∣∣ ≤ √|h− h′|
Vt,h

+ V −1t,h

√
h′|Vt′,h′ − Vt,h|

Vt′,h′
→ 0, for (t′, h′)→ (t, h).

By Lemma B.7, TV(vt,h(·)〈·〉α) <∞. Therefore, it is sufficient to show that

TV
(
(vt,h − vt′,h′)〈·〉α

)
→ 0, whenever (t′, h′)→ (t, h). (A.8)

Using (B.3), we obtain

(Kγ,m
t,h a?t,h)(u) = vt,h − vt′,h′

= h−m
∫
λµγ
(
s
h

)
F
(

Op(a?t,h)(φ− φ ◦ St′,h′ ◦ S−1t,h )
)
(s)eis(u−t)/h –ds.

Using Remark B.1, we can apply again Lemma B.3 (here φ should be replaced by φ− φ ◦
St′,h′ ◦ S−1t,h ). In order to verify (A.8), we observe that by Lemma B.7 it is enough to show

‖φ− φ ◦ St′,h′ ◦ S−1t,h ‖Hq
4
→ 0 for some q > r+m+ 3/2 whenever (t′, h′)→ (t, h) in T . Note

that∥∥φ− φ ◦ St′,h′ ◦ S−1t,h∥∥2Hq
4

= 1
h

4∑
j=0

∫
〈s〉2q

∣∣∣F((xjφ) ◦ St,h
)
(s)−F

(
(St,h(·))j(φ ◦ St′,h′)

)
(s)
∣∣∣2ds

≤ 2

h

4∑
j=0

∥∥(xjφ) ◦ St,h − (xjφ) ◦ St′,h′
∥∥2
Hq

+

∫
〈s〉2q

∣∣∣F([(St′,h′(·))j − (St,h(·))j
]
(φ ◦ St′,h′)

)
(s)
∣∣∣2ds (A.9)

with (St,h(·))j :=
( ·−t
h

)j
. Note that for real numbers a, b we have the identity aj − bj =∑k

`=1

(
k
`

)
bk−`(a − b)`. Moreover, we can apply Lemma B.4 for q with m + r + 3/2 < q <

br + m + 5/2c (and such a q clearly exists). Thus, with a = St,h(·), b = St′,h′(·) and

St,h−St′,h′ = (h/h′−1)St′,h′−(t′−t)/h the r.h.s. of (A.9) converges to zero if (t′, h′)→ (t, h).
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Proof of Theorem 3. By assumption, we can write pR(x, ξ) = aR(x, ξ)|ξ|γ1ιµ1ξ with aR ∈
Sm1 and m1 +γ1 = m′. Recall that pP (x, ξ) = aP (x)|ξ|mιµξ . Since aP is real-valued, Op(aP )

is self-adjoint. Taking the adjoint is a linear operator and therefore arguing as in (3.4)

yields

F
(

op(p)?(φ ◦ St,h)
)
(s) = |s|mι−µs F

(
aP (φ ◦ St,h)

)
(s) + |s|γ1ι−µ1s F

(
Op(a?R)(φ ◦ St,h)

)
(s).

Decompose vt,h = v
(1)
t,h + v

(2)
t,h with

v
(1)
t,h (u) :=

∫
λµm(s)F

(
aP (φ ◦ St,h)

)
(s)eisu –ds

=

∫
λµm
(
s
h

)
F
(
aP (·h+ t)φ

)
(s)eis(u−t)/h –ds

v
(2)
t,h (u) :=

∫
λµ1γ1 (s)F

(
Op(a?R)(φ ◦ St,h)

)
(s)eisu –ds

= h−m1

∫
λµ1γ1
(
s
h

)
F
(

Op(a
(1)
t,h)φ

)
(s)eis(u−t)/h –ds

using similar arguments as in (B.3) and a
(1)
t,h(x, ξ) := hm1a?R(xh+ t, h−1ξ). For j = 1, 2, we

denote by T
(j)
t,h and T

P,(j)
n the statistics Tt,h and TPn with vt,h replaced by v

(j)
t,h , j = 1, 2,

respectively. Recall the definitions of σ and τ and set

vPt,h(u) := AaP (t)

∫
|s|r+mι−ρ−µs F(φ ◦ St,h)(s)eisu –ds

= Ah−r−maP (t)

∫
|s|r+mι−ρ−µs F(φ)(s)eis(u−t)/h –ds

= AaP (t)Dσ
+D

τ
−φ
(
u−t
h

)
. (A.10)

Further let V P
t,h := ‖vPt,h‖2 = |AaP (t)|

∥∥Dr+m
+ φ((· − t)/h)

∥∥
2

= h1/2−r−m|AaP (t)|
∥∥Dr+m

+ φ
∥∥
2
,

and

TP,(1),∞n (W ) := sup
(t,h)∈Bn

wh

∣∣ ∫ Re v
(1)
t,h (s)dWs

∣∣
V P
t,h

−
√

2 log ν
h

 .

Note that for the approximation of TPn , we can write

TP,∞n (W ) = sup
(t,h)∈Bn

wh

(∣∣ ∫ Re vPt,h(s)dWs

∣∣
V P
t,h

−
√

2 log ν
h

)
.

Since |TPn −T
P,∞
n (W )| ≤ |TPn −T

P,(1)
n |+ |TP,(1)n −TP,(1),∞n (W )|+ |TP,(1),∞n (W )−TP,∞n (W )|

it is sufficient to show that there exists a Brownian motion W such that the terms on the

right hand side converge to zero in probability. This will be done separately, and proofs for
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the single terms are denoted by (I), (II) and (III). From (II) and (III), we will be able

to conclude the boundedness of the approximating statistic.

(I): It is easy to see that for a constant K, ‖v(2)t,h‖2 ≤ Kh
1/2−m′−r =: V R

t,h. By Remark 2 and∣∣TPn − TP,(1)n

∣∣
≤ sup

h∈[ln,un]

V R
t,h

V P
t,h

 sup
(t,h)∈Bn

wh

( |T (2)
t,h − ET (2)

t,h |√
ĝn(t) V R

t,h

−
√

2 log
(
ν
h

))
+ sup
h∈[ln,un]

wh

√
2 log

(
ν
h

) ,

we can apply Theorem 2 (where m should be replaced by m′, of course). Because of

um−m
′

n log n→ 0, (I) is proved.

(II): We show that there is a Brownian motion W such that |TP,(1)n − T
P,(1),∞
n (W )| ≤

|TP,(1)n − T̃ (1)
n |+ |T̃ (1)

n − T̃ (1),∞
n (W )|+ |T̃ (1),∞

n (W )− TP,(1),∞n (W )| = oP (1) with

T̃ (1)
n := sup

(t,h)∈Bn
wh

( ∣∣T (1)
t,h − ET (1)

t,h

∣∣√
ĝn(t) ‖v(1)t,h‖2

−
√

2 log
(
ν
h

))
and

T̃ (1),∞
n (W ) := sup

(t,h)∈Bn
wh

(∣∣ ∫ Re v
(1)
t,h (s)dWs

∣∣√
ĝn(t) ‖v(1)t,h‖2

−
√

2 log
(
ν
h

))
.

Since by Assumption 4, ap ∈ S0 is elliptic and pP ∈ Sm, we find that |T̃ (1)
n − T̃ (1),∞

n (W )| =
oP (1) and

T̃ (1),∞
n (W ) ≤ sup

(t,h)∈T
wh

(∣∣ ∫ Re v
(1)
t,h (s)dWs

∣∣√
ĝn(t) ‖v(1)t,h‖2

−
√

2 log
(
ν
h

))
<∞ a.s. (A.11)

by applying Theorem 2. Moreover, similar as in (A.4) and using wh

√
2 log

(
ν
h

)
≥ 1,

sup
G∈G

∣∣TP,(1)n − T̃ (1)
n

∣∣ ≤ sup
(t,h)∈Bn

wh

√
2 log

(
ν
h

)∣∣V P
t,h − ‖v

(1)
t,h‖2

∣∣
V P
t,h

(
1 + sup

G∈G
T̃ (1)
n

)
and

∣∣T̃ (1),∞
n (W )− TP,(1),∞n (W )

∣∣ ≤ sup
(t,h)∈Bn

wh

√
2 log

(
ν
h

)∣∣V P
t,h − ‖v

(1)
t,h‖2

∣∣
V P
t,h

(
1 + T̃ (1),∞

n (W )
)

To finish the proof for (II), it remains to verify

sup
(t,h)∈Bn

wh

√
2 log

(
ν
h

)‖vPt,h − v(1)t,h‖2
V P
t,h

= o(1), (A.12)
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which will be done below.

(III): By Lemma B.6, we obtain |TP,(1),∞n − TP,∞n | = oP (1) if for some α > 1/2,

sup
(t,h)∈Bn

wh
TV

(
(vPt,h − v

(1)
t,h )〈·〉α

)
V P
t,h

= o(1). (A.13)

Let χ be a cut function, i.e. χ ∈ S (the Schwartz space), χ(x) = 1 for x ∈ [−1, 1] and

χ(x) = 0 for x ∈ (−∞,−2]∪ [2,∞) and define p
(1)
t,h(x, ξ) = h−1χ(x)(aP (xh+ t)−aP (t)) and

p
(2)
t,h(x, ξ) = (xh)−1(1 − χ(x))(aP (xh + t) − aP (t)). Then, p

(1)
t,h , p

(2)
t,h ∈ S

0 and
(
aP (·h + t) −

aP (t)
)
φ = hOp(p

(1)
t,h)φ+ hOp(p

(2)
t,h)(xφ). Define the function

dt,h(u) :=

∫
eis(u−t)/h

( 1

F(fε)(− s
h)
−Aι−ρs

∣∣ s
h

∣∣r)ι−µs |s|mF(φ)(s) –ds (A.14)

and note that

‖dt,h‖22 . h1+2m

∫ 〈
s
h

〉2r+2m−2β0∣∣F(φ)(s)
∣∣2ds . h1+2β?0−2r‖φ‖2Hr+m

with β?0 := β0 ∧ (m+ r). Using (B.2), we have now the decomposition

v
(1)
t,h − v

P
t,h = hKm,0

t,h p
(1)
t,h + hKm,0

t,h p
(2)
t,h + aP (t)h−mdt,h, (A.15)

where we have to replace φ by xφ in the second term of the right hand side. By assumption

there exists q > m + r + 3/2 such that φ ∈ Hq
5 . Since the assumptions on p

(1)
t,h and p

(2)
t,h of

Lemma B.3 can be easily verified, we may apply Lemma B.3 to the first two terms on the

right hand side of (A.15). This yields together with Lemmas B.7, B.8, and B.9, uniformly

over (t, h) ∈ T ,

TV
(
(vPt,h − v

(1)
t,h )〈·〉α

)
≤TV

((
hKm,0

t,h p
(1)
t,h + hKm,0

t,h p
(2)
t,h + aP (t)h−mdt,h

)
〈·〉αI[t−1,t+1]

)
+ TV

(
vPt,h〈·〉αIR\[t−1,t+1]

)
+ TV

(
v
(1)
t,h 〈·〉

αIR\[t−1,t+1]

)
.h1−m−r + hβ

?
0−m−r + h1−r−m.

Since m + r > 1/2, this shows (A.13). From the decomposition (A.15) we obtain further

‖vPt,h − v
(1)
t,h‖2 . h3/2−m−r + h1/2+β

?
0−m−r and this shows (A.12). Thus the first part of the

theorem is proved.

Finally with Lemma B.6 it is easy to check that (A.11) implies that (3.13) is bounded since

(A.12) and (A.13) also hold with Bn and o(1) replaced by T and O(1), respectively.
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[31] Komlós, J., Major, P., and Tusnády, G. An approximation of partial sums of

independent rv’s and the sample df. I. Z. Wahrsch. verw. Gebiete 32 (1975), 111–131.

[32] Laurent, B., Loubes, J., and Marteau, C. Non asymptotic minimax rates of

testing in signal detection with heterogeneous variances. arXiv:0912.2423v2, Math

arXiv Preprint.

[33] Laurent, B., Loubes, J., and Marteau, C. Testing inverse problems: a direct or

indirect problem? J. Statist. Plann. Inference 141 (2011), 1849–1861.

[34] Leadbetter, M., Lindgren, G., and Rootzen, H. Extremes and related properties

of random sequences and processes. Springer, Berlin, 1983.

[35] Lounici, K., and Nickl, R. Global uniform risk bounds for wavelet deconvolution

estimators. Ann. Statist. 39 (2011), 201–231.

[36] Meister, A. On testing for local monotinicity in deconvolution problems. Statist.

Probab. Lett. 79 (2009), 312–319.

[37] Rachdi, M., and Sabre, R. Consistent estimates of the mode of the probability

density function in nonparametric deconvolution problems. Statist. Probab. Lett. 47

(2000), 297–307.

[38] Wieczorek, B. On optimal estimation of the mode in nonparametric deconvolution

problems. J. Nonparametr. Stat. 22 (2010), 65–80.

[39] Wloka, J., Rowley, B., and Lawruk, B. Boundary Value Problems for Elliptic

Systems. Cambridge University Press, 1995.

43



Appendix B Lemmas for the proof of the main theorems

We have the following uniform and continuous embedding of Sobolev spaces.

Lemma B.1. Let (pi)i∈I ⊂ Sm be a symbol class of pseudo-differential operators. Suppose

further that for α ∈ {0, 1}, k ∈ N, and finite constants Ck, only depending on k,

sup
i∈I
|∂kx∂αξ pi(x, ξ)| ≤ Ck(1 + |ξ|)m, ∀x, ξ ∈ R.

Then, for any s ∈ R, there exists a finite constant C = C(s,m,maxk≤1+2|s|+2|m|Ck), such

that for all φ ∈ Hs,

‖Op(pi)φ‖Hs−m ≤ C‖φ‖Hs .

Proof. This proof requires some subtle technicalities, appearing in the theory of pseudo-

differential operators. First note that for any symbol a ∈ S0 there exists a universal constant

C1 (which is in particular independent of a), such that

‖Op(a)u‖2 ≤ C1 max
α,β∈{0,1}

∥∥∂βx∂αξ a(x, ξ)
∥∥
L∞(R2)

‖u‖2, for all u ∈ L2 (B.1)

(cf. Theorem 2 in Hwang [26]). For r ∈ R denote by Op(〈ξ〉r) the pseudo-differential

operator with symbol (x, ξ) 7→ 〈ξ〉r. It is well-known that this operator is indeed in Sr.

Throughout the remaining proof let C = C(s,m,maxk≤1+2|s|+2|m|Ck), denote a finite but

unspecified constant, which may even change from line to line. Note that it is sufficient to

show that uniformly in ψ ∈ L2,∥∥Op(〈ξ〉s−m) ◦Op(pi) ◦Op(〈ξ〉−s)ψ
∥∥
2
≤ C‖ψ‖2

(set φ = 〈D〉−sψ). The composition of two operators with symbols in Sm1 and Sm2 ,

respectively is again a pseudo-differential operator and its symbol is in Sm1+m2 . Therefore,

Op(〈ξ〉s−m) ◦ Op(pi) ◦ Op(〈ξ〉−s) ∈ S0. Set p0,i for its symbol. With (B.1) the lemma is

proved, once we have established that

sup
i∈I

max
α,β∈{0,1}

∥∥∂βx∂αξ p0,i(x, ξ)∥∥L∞(R2)
≤ C <∞.

It is not difficult to see that Op(pi) ◦ Op(〈ξ〉−s) = Op(pi〈ξ〉−s). By Theorem 4.1 in [2],

p0,i = 〈ξ〉s−m#(pi〈ξ〉−s), where # denotes the Leibniz product, i.e. for p(1) ∈ Sm1 and

p(2) ∈ Sm2 , p(1)#p(2) can be written as an oscillatory integral (cf. [2, 39])

(
p(1)#p(2)

)
(x, ξ) := Os−

∫ ∫
e−iyηp(1)(x, ξ + η)p(2)(x+ y, ξ)dy –dη

:= lim
ε→0

∫ ∫
χ(εy, εη)e−iyηp(1)(x, ξ + η)p(2)(x+ y, ξ)dy –dη,
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for any χ in the Schwartz space of rapidly decreasing functions on R2 with χ(0, 0) = 1.

Further for a ∈ Sm and arbitrary l ∈ N, 2l > 1 +m,

Os−
∫ ∫

e−iyηa(y, η)dy –dη =

∫ ∫
e−iyη〈y〉−2(1− ∂2η)

[
〈η〉−2l(1− ∂2y)la(y, η)

]
dy –dη

and the integrand on the r.h.s. is in L1 (cf. [39], p.235). This can be also used to show

that differentiation and integration commute for oscillatory integrals,

∂αx ∂
β
ξ Os−

∫ ∫
e−iyηa(x, y, ξ, η)dy –dη = Os−

∫ ∫
e−iyη∂αx ∂

β
ξ a(x, y, ξ, η)dy –dη.

Using Peetre’s inequality, i.e. 〈ξ + η〉s ≤ 2|s|〈ξ〉|s|〈η〉s, we see that for α, β ∈ {0, 1} and

(x, ξ) fixed, the function (y, η) 7→ ∂βx∂αξ 〈ξ + η〉s−mpi(x + y, ξ)〈ξ〉−s defines a symbol in

Ss−m. Hence, for ` ∈ N, 1 < 2`− |s−m| ≤ 2, α, β ∈ {0, 1},

∂βx∂
α
ξ p0,i(x, ξ)

=

∫ ∫
e−iyη〈y〉−2(1− ∂2η)

[
〈η〉−2`(1− ∂2y)`∂βx∂

α
ξ 〈ξ + η〉s−mpi(x+ y, ξ)〈ξ〉−s

]
dy –dη.

Using the imposed uniform bound on ∂kx∂
α
ξ p(x, ξ), we obtain by treating the cases α = 0

and α = 1 separately,

sup
i

∣∣∂βx∂αξ p0,i(x, ξ)∣∣
≤ C〈ξ〉m−s

[ ∫ ∣∣(1− ∂2η)〈η〉−2`〈ξ + η〉s−m
∣∣dη +

∫ ∣∣(1− ∂2η)〈η〉−2`∂ξ〈ξ + η〉s−m
∣∣η]

≤ C + C〈ξ〉m−s
[ ∫ ∣∣∂2η〈η〉−2`〈ξ + η〉s−m

∣∣dη +

∫ ∣∣∂2η〈η〉−2`∂ξ〈ξ + η〉s−m
∣∣η]

using Peetre’s inequality again and 2` > 1 + |s − m| for the second estimate. Since for

q ∈ R, 〈ξ〉q ∈ Sq, it follows that |∂αξ 〈ξ〉q| . 〈ξ〉q−α and since 〈.〉 ≥ 1,

∂2η〈η〉−2`〈ξ + η〉s−m .
2∑

k=0

〈η〉−2`−k〈ξ + η〉s−m−2+k . 〈η〉−2`〈ξ + η〉s−m.

Similar for the second term. Application of Peetre’s inequality as above completes the

proof.

Lemma B.2. Work under the assumptions of Theorem 2. If vt,h is given as in (3.6), then,

‖vt,h‖2 & h1/2−m−r.

Proof. We only discuss the case γ > 0. If γ = 0 the proof can be done similarly. It follows

from the definition that

‖vt,h‖22 =

∫
1 + |s|2γ

|F(fε)(−s)|2
∣∣F(Op(a?)(φ ◦ St,h)

)
(s)
∣∣2ds− ∥∥∥F(Op(a?)(φ ◦ St,h)

)
F(fε)(−·)

∥∥∥2
2
.
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Since the adjoint is given by a?(x, ξ) = e∂x∂ξa(x, ξ) in the sense of asymptotic summation, it

follows immediately that a?(x, ξ) = a(x, ξ) + r(x, ξ) with r ∈ Sm−1. From this we conclude

that Op(a?) is an elliptic pseudo-differential operator. Because of a? ∈ Sm and ellipticity

there exists a so called left parametrix (a?)−1 ∈ S−m such that Op((a?)−1) Op(a?) =

1+Op(a′) and a′ ∈ S−∞, where S−∞ =
⋂
m S

m (cf. Theorem 18.1.9 in Hörmander [25]). In

particular, a′ ∈ S−1. Moreover, Op((a?)−1) : Hr+γ → Hr+m is a continuous and linear and

therefore bounded operator (cf. Lemma B.1). Furthermore, by convexity, 1+ |s|2γ ≥ 2〈s〉2γ

and there exists a finite constant c > 0 such that∫
1 + |s|2γ

|F(fε)(−s)|2
∣∣F(Op(a?)(φ ◦ St,h)

)
(s)
∣∣2ds

≥ 2C2
l

∥∥Op(a?)(φ ◦ St,h)‖2Hr+γ & ‖Op((a?)−1) Op(a?)(φ ◦ St,h)‖2Hr+m

= ‖(1 + Op(a′))(φ ◦ St,h)‖2Hr+m ≥
(
‖φ ◦ St,h‖Hr+m − ‖Op(a′)(φ ◦ St,h)‖Hr+m

)2
≥
(
‖φ ◦ St,h‖Hr+m − c‖φ ◦ St,h‖Hr+m−1

)2
≥ h

∫ (
1 +

∣∣ s
h

∣∣2)m+r∣∣F(φ)(s)
∣∣2ds+O(h2(1−r−m))

≥ h1−2(r+m)

∫
|s|2m+2r

∣∣F(φ)(s)
∣∣2ds+O(h2(1−r−m)).

On the other hand, we see immediately that∥∥∥F(Op(a?)(φ ◦ St,h)
)

F(fε)(−·)

∥∥∥2
2
.
∥∥Op(a?)(φ ◦ St,h)

∥∥2
Hr . ‖φ ◦ St,h‖2Hr+m . h1−2(r+m).

Since φ ∈ L2 and h tends to zero the claim follows.

Note that for bounded intervals [a, b], partial integration holds
∫ b
a f
′g = fg|ba −

∫ b
a fg

′

whenever f and g are absolute continuous on [a, b]. As a direct consequence, we have∫
R f
′g = −

∫
R fg

′ if f ′ and g′ exist and fg, f ′g, fg′ ∈ L1.

In order to formulate the key estimate for proving Theorems 2 and 3, let us introduce for

fixed φ, a generic symbol a(t,h) ∈ Sm, and λ = λµγ as in (3.7)

(Kγ,m
t,h a(t,h))(u) = h−m

∫
λ
(
s
h

)
F
(

Op(a(t,h))φ
)
(s)eis(u−t)/h –ds. (B.2)

From the context it will be always clear to which φ the operator Kγ,m
t,h a(t,h) refers to. To

simplify the expressions we do not indicate the dependence on φ and fε explicitly.

Remark B.1. Recall (A.5) and note that if a ∈ Sm then also a?t,h ∈ Sm. Due to(
Op(a?t,h)φ

)
◦ St,h = h−m Op(a?)(φ ◦ St,h)

46



we obtain for vt,h in (3.6) the representation,

vt,h(u) = h−m
∫
λµγ
(
s
h

)
F
(

Op(a?t,h)φ
)
(s)eis(u−t)/h –ds =

(
Kγ,m
t,h a?t,h

)
(u). (B.3)

Lemma B.3. For a(t,h) ∈ Sm and γ +m = m let Kγ,m
t,h a(t,h) be as defined in (B.2). Work

under Assumption 2 and suppose that

(i) φ ∈ Hq
4 with q > m+ r + 3/2,

(ii) γ ∈ {0} ∪ [1,∞), and

(iii) for k ∈ N, α ∈ {0, 1, . . . , 5}, there exist finite constants Ck, such that

sup
(t,h)∈T

∣∣∂kx∂αξ a(t,h)(x, ξ)∣∣ ≤ Ck(1 + |ξ|)m, for all x, ξ ∈ R.

Then, there exists a constant C = C(q, r, γ,m,Cl, Cu,maxk≤4q Ck) (Cl and Cu as in As-

sumption 2) such that for (t, h) ∈ T ,

(i) |(Kγ,m
t,h a(t,h))(u)| ≤ C‖φ‖Hq

4
h−m−r min

(
1, h2

(u−t)2
)
,

(ii) |(Kγ,m
t,h a(t,h))(u)− (Kγ,m

t,h a(t,h))(u′)| ≤ C‖φ‖Hq
4
h−m−r−1|u− u′| and for u, u′ 6= t,

|(Kγ,m
t,h a(t,h))(u)− (Kγ,m

t,h a(t,h))(u′)| ≤ C‖φ‖Hq
4

h1−m−r|u− u′|
|u′ − t| |u− t|

= C‖φ‖Hq
4
h1−m−r

∣∣ ∫ u

u′

1

(x− t)2
dx
∣∣.

Proof. During this proof, C = C(q, r, γ,m,Cl, Cu,maxk≤4q Ck) denotes an unspecified con-

stant which may change in every line. The proof relies essentially on the well-known commu-

tator relation for pseudo-differential operators [x,Op(p)] = iOp(∂ξp), with ∂ξp : (x, ξ) 7→
∂ξp(x, ξ) (cf. Theorem 18.1.6 in [25]). By induction for k ∈ N,

xk Op(a(t,h)) =

k∑
r=0

(
k

r

)
ir Op

(
∂rξa

(t,h)
)
xk−r. (B.4)

As a preliminary result, let us show that for k = 0, 1, 2 the L1-norms of

〈s〉 Dk
s λ
(
s
h

)
F(Op(a(t,h))φ)(s), (B.5)

are bounded by C‖φ‖Hq
2
h−r−γ . Using Assumption 2 and Lemma B.1 this follows immedi-

ately for k = 0 and q > r +m+ 3/2 by∫ ∣∣∣〈s〉 λ( sh)F(Op(a(t,h))φ)(s)
∣∣∣ds ≤ C−1l h−r−γ

∥∥〈·〉1+r+γ F(Op(a(t,h))φ)
∥∥
1

≤ Ch−r−γ
∥∥Op(a(t,h))φ

∥∥
Hq−m ≤ Ch−r−γ

∥∥φ∥∥
Hq . (B.6)

47



Now, a(t,h) ∈ Sm implies that for k ∈ N, ∂kξ a(t,h) ∈ Sm−k ⊂ Sm. Since by (B.4), Assumptions

(i) and (iii), and Lemma B.1,

‖〈x〉2 Op(a(t,h))φ‖1 . ‖(1 + x4) Op(a(t,h))φ‖2 ≤ C‖φ‖Hm
4
<∞, (B.7)

we obtain for j ∈ {1, 2},

Dj
sF(Op(a(t,h))φ) = (−i)jF(xj Op(a(t,h))φ)(s)

by interchanging differentiation and integration. Explicit calculations thus show

Dsλ
(
s
h

)
F
(

Op(a(t,h))φ
)
(s) =

(
Dsλ

(
s
h

))
F
(

Op(a(t,h))φ
)
(s)− iλ

(
s
h

)
F
(
xOp(a(t,h))φ

)
(s)

and

D2
sλ
(
s
h

)
F
(

Op(a(t,h))φ
)
(s) =

(
D2
sλ
(
s
h

))
F
(

Op(a(t,h))φ
)
(s)− 2i

(
Dsλ

(
s
h

))
F
(
xOp(a(t,h))φ

)
(s)

− λ
(
s
h

)
F
(
x2 Op(a(t,h))φ

)
(s).

(B.8)

To finish the proof of (B.5) let us distinguish two cases, namely (I) γ ∈ {0} ∪ [2,∞) and

(II) γ ∈ (1, 2).

(I): For k = 0, 1, 2 and s 6= 0, we see by elementary calculations,
∣∣〈s〉Dk

sλ
(
s
h

)∣∣ ≤ Ch−r−γ〈s〉r+γ+1.

Using (B.4) and arguing similar as for (B.6) we obtain (replacing φ by xφ or x2φ if neces-

sary) bounds of the L1-norms which are of the correct order ‖φ‖Hq
4
h−r−γ .

(II): In principal we use the same arguments as in (I) but a singularity appears by expanding

the first term on the r.h.s. of (B.8). In fact, it is sufficient to show that∫ 1

−1

∣∣∣ D2
s

∣∣ s
h

∣∣γι−µs
F(fε)

(
− s

h

)F(Op(a(t,h))φ
)
(s)
∣∣∣ds ≤ Clh−r−γ∥∥F(Op(a(t,h))φ

)∥∥
∞

∫ 1

1
|s|γ−2ds

. Clh
−r−γ∥∥Op(a(t,h))φ

∥∥
1
≤ Ch−r−γ‖φ‖Hm

4
,

where the last inequality follows from (B.7). Since this has the right order h−r−γ‖φ‖Hq
4
,

(B.5) follows for γ ∈ (1, 2).

Together (I) and (II) prove (B.5). Hence we can apply partial integration twice and obtain

for t 6= u,

(Kγ,m
t,h a(t,h))(u) = − h2−m

(u− t)2

∫
eis(u−t)/h D2

sλ
(
s
h

)
F
(

Op(a(t,h))φ
)
(s) –ds (B.9)

and similarly, first interchanging integration and differentiation,

Du(Kγ,m
t,h a(t,h))(u) = ih−m−1

∫
eis(u−t)/hsλ

(
s
h

)
F
(

Op(a(t,h))φ
)
(s) –ds

= − ih1−m

(u− t)2

∫
eis(u−t)/hD2

ssλ
(
s
h

)
F
(

Op(a(t,h))φ
)
(s) –ds (B.10)
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(i): The estimates |(Kγ,m
t,h a(t,h))(u)| ≤ C‖φ‖Hq

4
h−m−r and |(Kγ,m

t,h a(t,h))(u)| ≤ C‖φ‖Hq
4
h2−m−r/(u−

t)2 follow directly from (B.6) as well as (B.9) together with the L1 bound of (B.5) for k = 2.

(ii): To prove |(Kγ,m
t,h a(t,h))(u) − (Kγ,m

t,h a(t,h))(u′)| ≤ C‖φ‖Hq
4
h−m−r−1|u − u′| it is enough

to note that |eix − eiy| ≤ |x− y|. The result then follows from (B.6) again. For the second

bound, see (B.10). The estimate for the L1-norm of (B.5) with k = 2 completes the

proof.

Let dxe be the smallest integer which is not smaller than x.

Lemma B.4. Let 0 ≤ ` ≤ 1/2 and q ≥ 0. Assume that φ ∈ Hdqe ∩ Hq+`, suppφ ⊂ [0, 1]

and TV(Ddqeφ) <∞. Then, for h ≤ h′,

‖φ ◦ St,h − φ ◦ St′,h′‖Hq . h−q
√
|t− t′|2` + |h′ − h|.

In particular, for φ ∈ Hdr+me ∩Hr+m+1/2, suppφ ⊂ [0, 1] and TV(Ddr+meφ) <∞, h ≤ h′,

‖vt,h − vt′,h′‖2 . h−r−m
√
|t− t′|+ |h′ − h|.

Proof. Since∥∥φ ◦ St,h − φ ◦ St′,h′∥∥2Hq .
∫
〈s〉2q

∣∣1− eis(t−t′)∣∣2∣∣F(φ( ·h))(s)∣∣2ds+
∥∥φ( ·h)− φ( ·h′ )∥∥2Hq

and |1− eis(t−t′)| ≤ 2 min(|s||t− t′|, 1) ≤ 2 min(|s|`|t− t′|`, 1) ≤ 2|s|`|t− t′|`, we obtain (note

that φ ∈ Hq+`)∥∥φ ◦ St,h − φ ◦ St′,h′∥∥2Hq . |t− t′|2`h1−2q−2` +
∥∥φ( ·h)− φ( ·h′ )∥∥2Hq .

Set k = dqe. Then,∥∥φ( ·h)− φ( ·h′ )∥∥2Hr+m . h1−2q
∥∥φ− φ( hh′ · )∥∥2Hq

. h1−2q
∥∥φ− φ( hh′ · )∥∥22 + h1−2q

∥∥Dk
(
φ− φ

(
h
h′ ·
))∥∥2

2
.

For j ∈ {0, k},∥∥Dj
(
φ− φ

(
h
h′ ·
))∥∥2

2
≤ 2
∥∥φ(j) − φ(j)( hh′ · )∥∥22 + 2

(
1−

(
h
h′

)j)2∥∥φ(j)( hh′ · )∥∥22
. h−1

∥∥φ(j)( ·h)− φ(j)( ·h′ )∥∥22 + |h′ − h| h−1‖φ(j)‖22.

Now, application of Lemma C.5 completes the proof for the first part. The second claim

follows from

‖vt,h − vt′,h′‖22 =

∫
|λ(s)|2

∣∣F(Op(a?)(φ ◦ St,h − φ ◦ St′,h′))
)
(s)
∣∣2ds

.
∥∥φ ◦ St,h − φ ◦ St′,h′∥∥2Hr+m .
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Lemma B.5. Let At,t′,h,h′ be defined as in (A.3) and work under Assumption 1. Then, for

a global constant K > 0,

At,t′,h,h′ ≤ K
√
|t− t′|+ |h− h′|.

Proof. Without loss of generality, assume that for fixed (t, h), Vt,h ≥ Vt′,h′ . We can write

At,t′,h,h′ ≤
‖ψt,h

√
h− ψt′,h′

√
h′‖2

Vt,h
+
√
h′‖ψt′,h′‖2

∣∣∣ 1

Vt,h
− 1

Vt′,h′

∣∣∣
≤
‖ψt,h

√
h− ψt′,h′

√
h′‖2

Vt,h
+
√
h′
|Vt,h − Vt′,h′ |

Vt,h
.

By triangle inequality, ‖ψt,h
√
h − ψt′,h′

√
h′‖2 ≤

√
h′‖ψt,h − ψt′,h′‖2 + |

√
h −
√
h′| ‖ψt,h‖2.

Thus,

At,t′,h,h′ ≤
√
h′

Vt,h

(
‖ψt,h − ψt′,h′‖2 + |Vt,h − Vt′,h′ |

)
+
√
|h− h′|.

If h′ ≤ h, then the result follows by Assumption 1 (iv) and some elementary computations.

Otherwise we can estimate
√
h′ ≤

√
|h− h′|+

√
h and so

At,t′,h,h′ ≤
√
h

Vt,h

(
‖ψt,h − ψt′,h′‖2 + |Vt,h − Vt′,h′ |

)
+ 5
√
|h− h′|.

The next lemma extends a well-known bound for functions with compact support to general

càdlàg functions. We found this result useful for estimating the supremum over a Gaussian

process if entropy bounds are difficult.

Lemma B.6. Let (Wt)t∈R denote a two-sided Brownian motion. For α > 1/2, a family of

real-valued càdlàg functions {fi| i ∈ I}, and a constant Cα, we have

sup
i∈I

∣∣ ∫ fi(s)dWs

∣∣ ≤ Cα sup
s∈[0,1]

|W s| sup
i∈I

TV(f̃i),

where W is a standard Brownian motion on the same probability space and f̃i(s) = fi(s)〈s〉α.

Proof. The proof consists of two steps. First suppose that
⋃
i∈I supp fi ⊂ [0, 1] and as-

sume that the fi are of bounded variation. Then, for all i ∈ I, there exists a func-

tion qi with ‖qi‖∞ ≤ TV(fi) and a probability measure Pi with Pi[0, 1[= 1, such that
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fi(u) =
∫
[0,u] qi(u)Pi(du) for all u ∈ R, because fi is càdlàg and thus fi(1) = 0. With

probability one,

sup
i∈I

∣∣ ∫ fi(s)dWs

∣∣ = sup
i∈I

∣∣∣ ∫ Wsqi(s)Pi(ds)
∣∣∣ ≤ sup

s∈[0,1]
|Ws| sup

i∈I
TV(fi).

Now let us consider the general case. If Cα := ‖〈·〉−α‖2 then h(s) = C−2α 〈s〉−2α is a density

of a random variable. Let H be the corresponding distribution function. Note that

(
W t

)
t∈[0,1] =

(∫ t

0

√
h(H−1(s))dWH−1(s)

)
t∈[0,1]

is a standard Brownian motion satisfying dWH(s) =
√
h(s)dWs and thus

sup
i∈I

∣∣ ∫ fi(s)dWs

∣∣ = Cα sup
i∈I

∣∣ ∫ f̃i(s)dWH(s)

∣∣ = Cα sup
i∈I

∣∣ ∫ 1

0
f̃i(H

−1(s))dW s

∣∣.
Since TV(f̃i ◦H−1) = TV(f̃i) the result follows from the first part.

Remark 3. For the proofs of the subsequent lemmas, we make often use of elementary

facts related to the function 〈·〉α ∈ Sα with 0 < α < 1. Note that for t ∈ [0, 1], Du〈u〉α ≤
α〈u〉α−1 ∈ Sα−1, Du〈u〉α ≤ α,

〈u〉α ≤ 1

2
(1 + |u|α) ≤ 1 + |u− t|α, and 〈u〉α−1 ≤ 2|u− t|α−1, (B.11)

where the last inequality follows from |u− t|1−α〈u〉α−1 ≤ |u|1−α〈u〉α−1 + 1 ≤ 2.

Lemma B.7. For (t, h) ∈ T let rt,h be a function satisfying the conclusions of Lemma

B.3 for r,m and φ. Assume 1/2 < α < 1. Then, there exists a constant K independent of

(t, h) ∈ T and φ such that

∣∣rt,h(u)〈u〉α − rt,h(u′)〈u′〉α
∣∣ ≤ K‖φ‖Hq

4
h1−m−r

∣∣∣ ∫ u

u′

1

(x− t)2−α
+

1

(x− t)2
dx
∣∣∣,

for all u, u′ 6= t and

TV
(
rt,h〈·〉αI[t−1,t+1]

)
≤ K‖φ‖Hq

4
h−m−r,

TV
(
rt,h〈·〉αIR\[t−1,t+1]

)
≤ K‖φ‖Hq

4
h1−m−r.

Proof. Let C be as in Lemma B.3. In this proof K = K(α,C) denotes a generic constant

which may change from line to line. Without loss of generality, we may assume that

|u− t| ≥ |u′− t|. Furthermore, the bound is trivial if u′ ≤ t ≤ u or u ≤ t ≤ u′. Therefore, let
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us assume further that u ≥ u′ > t (the case u ≤ u′ < t can be treated similarly). Together

with the conclusions from Lemma B.3 and Remark 3 this shows that∣∣rt,h(u)〈u〉α − rt,h(u′)〈u′〉α
∣∣ ≤ ∣∣rt,h(u)

∣∣ ∣∣〈u〉α − 〈u′〉α∣∣+ 〈u′〉α
∣∣rt,h(u)− rt,h(u′)

∣∣
≤ K‖φ‖Hq

4

[
h2−m−r

1

(u− t)2
+ h1−m−r

|u′ − t|α + 1

|u′ − t| |u− t|

]
|u− u′|.

Clearly, the second term in the bracket dominates uniformly over h ∈ (0, 1]. By Taylor

expansion

|u− u′|
|u′ − t|1−α |u− t|

=
u− u′

(u− t)α(u′ − t)1−α(u− t)1−α

≤ (u− t)1−α − (u′ − t)1−α

(1− α)(u′ − t)1−α(u− t)1−α
=

∫ u

u′

1

(x− t)2−α
dx.

Hence

1

|u′ − t| |u− t|
|u− u′| =

∣∣ ∫ u

u′

1

(x− t)2
dx
∣∣

completes the proof for the first part. For the second part decompose rt,hI[t−1,t+1] in

r
(1)
t,h = rt,hI[t−h,t+h] and r

(2)
t,h = rt,hI[t−1,t+1] − r

(1)
t,h . Observe that the conclusions of Lemma

B.3 imply

TV
(
r
(1)
t,h 〈·〉

α
)
≤ ‖〈·〉αI[t−h,t+h]‖∞TV(r

(1)
t,h ) + TV

(
〈·〉αI[t−h,t+h]

)
‖r(1)t,h‖∞ ≤ K‖φ‖Hq

4
h−m−r.

By using the first part of the lemma, we conclude that uniformly in (t, h) ∈ T ,

TV
(
rt,h〈·〉αI[t−1,t+1]

)
≤ TV

(
r
(1)
t,h 〈·〉

α
)

+ TV
(
r
(2)
t,h 〈·〉

α
)
. K‖φ‖Hq

4
(h−m−r + h−m−r)

and also TV
(
rt,h〈·〉αIR\[t−1,t+1]

)
≤ K‖φ‖Hq

4
h1−m−r.

Lemma B.8. Work under Assumptions 2 and 3 and suppose that m + r > 1/2, 〈x〉φ ∈
L1, and φ ∈ Hm+r+1

1 . Let dt,h be as defined in (A.14). Then, there exists a constant K

independent of (t, h) ∈ T , such that for 1/2 < α < 1,

TV(dt,h〈·〉αI[t−1,t+1]) ≤ Khβ0∧(m+r)−r log
(
1
h

)
.

Proof. For convenience let β?0 := β0 ∧ (m+ r) and substitute s 7→ −s in (A.14), i.e.

dt,h(u) :=

∫
e−is(u−t)/h

( 1

F(fε)(
s
h)
−Aιρs

∣∣ s
h

∣∣r)ιµs |s|mF(φ)(−s) –ds.

Define

Fh(s) :=
1

F(fε)(
s
h)
−Aιρs

∣∣ s
h

∣∣r.
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By Assumptions 2 and 3, we can bound the L1-norm of

s 7→ 〈s〉Fh(s)ιµs |s|mF(φ)(−s) (B.12)

uniformly in (t, h) by
∫
〈s〉〈 sh〉

r−β0 |s|m
∣∣F(φ)(−s)

∣∣ds. Bounding 〈 sh〉
r−β0 by 〈 sh〉

r−β?0 and con-

sidering the cases r ≤ β?0 and r > β?0 separately, we find hβ
?
0−r

∫
〈s〉1+r+m−β?0 |F(φ)(−s)|ds .

hβ
?
0−r‖φ‖Hr+m+1 as an upper bound for (B.12), uniformly in (t, h) ∈ T . Furthermore,

DsFh(s) = −
DsF(fε)(

s
h)(

F(fε)(
s
h)
)2 −Ariιρ−1s h−1

∣∣ s
h

∣∣r−1
and by Assumptions 2 and 3,∣∣∣sDsFh(s)

∣∣∣ ≤ ∣∣sDsF(fε)(
s
h)
∣∣∣∣∣A2ι2ρs

∣∣ s
h

∣∣2r − 1(
F(fε)(

s
h)
)2 ∣∣∣

+ |A|r
∣∣ s
h

∣∣r∣∣∣−A(ri)−1ιρ+1
s h

∣∣ s
h

∣∣r+1
DsF(fε)

(
s
h

)
− 1
∣∣∣

.
(∣∣ s

h

∣∣〈 s
h

〉r−1
+
∣∣ s
h

∣∣r)〈 s
h

〉−β0 ≤ 2
〈
s
h

〉r−β?0 .
Similar as above, we can conclude that the L1-norm of

s 7→ DssFh(s)ιµs |s|mF(φ)(−s)

is bounded by const.×hβ?0−r‖φ‖Hr+m+1
1

, uniformly over all (t, h) ∈ T . Therefore, we have

by interchanging differentiation and integration first and partial integration,

Dudt,h(u) =
−i
h

∫
se−is(u−t)/hFh(s)ιµs |s|mF(φ)(−s) –ds

=
−1

u− t

∫
e−is(u−t)/hDssFh(s)ιµs |s|mF(φ)(−s) –ds

and the second equality holds for u 6= t. Together with (B.12) this shows that |dt,h(u)| .
hβ

?
0−r and |Dudt,h(u)| . hβ

?
0−r−1 min(1, h/|u − t|). Using Remark 3 we find for the sets

A
(1)
t,h := [t− h, t+ h] and A

(2)
t,h := [t− 1, t+ 1] \A(1)

t,h ,

TV(dt,hI[t−1,t+1]) ≤ 2‖dt,h‖∞ +

∫
A

(1)
t,h

|Dudt,h(u)|du+

∫
A

(2)
t,h

|Dudt,h(u)|du . hβ
?
0−r log

(
1
h

)
.

Thus, TV(dt,h〈·〉αI[t−1,t+1]) . ‖dt,h‖∞ + TV(dt,hI[t−1,t+1]) . hβ
?
0−r log

(
1
h

)
.

Lemma B.9. Work under the assumptions of Theorem 3 and let vPt,h be defined as in

(A.10). Then, for 1/2 < α < 1,

TV(vPt,h〈·〉αIR\[t−1,t+1]) ≤ Kh1−r−m,

where the constant K does not depend on (t, h).
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Proof. The proof uses essentially the same arguments as the proof of Lemma B.3. Let

q := br + m + 5/2c and recall that by assumption 〈x〉2φ ∈ L1. Decomposing the L1

norm on R into L1([−1, 1]) and L1(R \ [−1, 1]) and using Cauchy-Schwarz inequality and

‖F(φ)‖∞ ≤ ‖φ‖1, we see that for j ∈ {0, 1}, the L1-norm of s 7→ Dj
s|s|r+mι−ρ−µs F(φ)(s)

is bounded by const.×(‖φ‖Hq
1

+ ‖φ‖1). Similar, for k ∈ {0, 1, 2}, the L1-norms of s 7→
Dk
s |s|r+m+1ι−ρ−µ+1

s F(φ)(s) are bounded by a multiple of ‖φ‖Hq
2

+ ‖φ‖1. Hence, we have

vPt,h(u) =
Ah1−r−miaP (t)

u− t

∫
eis(u−t)/hDs|s|r+mι−ρ−µs F(φ)(s) –ds

and

Duv
P
t,h(u) =

−Ah1−r−maP (t)

(u− t)2

∫
eis(u−t)/hD2

s |s|r+m+1ι−ρ−µ+1
s F(φ)(s) –ds.

Together with Remark 3 this shows that

TV
(
vPt,h〈·〉αI[t+1,∞)

)
≤ ‖vPt,h〈·〉αI[t+1,∞)‖∞ +

∫ ∞
t+1
|Duv

P
t,h(u)〈·〉α|du

. h1−r−m +

∫ ∞
t+1

h1−r−m

|u− t|2−α
+
h1−r−m

|u− t|2
du . h1−r−m.

Similar, we can bound the total variation on (−∞, t− 1].

Appendix C Further technicalities

Lemma C.1. Assume that Kn →∞, ψt,h = ψ
( ·−t
h

)
and Vt,h = ‖ψt,h‖2 =

√
h‖ψ‖2. Suppose

that limj→∞ log(j)|
∫
ψ(s− j)ψ(s)ds| → 0. Then, with wh and B◦Kn as defined in (2.4) and

(2.8), respectively,

sup
(t,h)∈B◦Kn

wh

(∣∣ ∫ ψt,h(s)dWs

∣∣
‖ψt,h‖2

−
√

2 log ν
h

)
→ −1

4
, in probability.

Proof. Write K := Kn and let ξj := ‖ψt,h‖−12

∫
ψj/K,1/K(s)dWs for j = 0, . . . ,K − 1.

Now, (ξj)j is a stationary sequence of centered and standardized normal random variables.

In particular the distribution of (ξj)j does not depend on K and the covariance decays by

assumption at a faster rate than logarithmically. By Theorem 4.3.3 (ii) in [34] the maximum

behaves as the maximum of K independent standard normal r.v., i.e.

P
(

max(ξ1, . . . , ξK) ≤ aK + bKt
)
→ exp

(
− e−t

)
, for t ∈ R and K →∞,

where

bK :=
1√

2 logK
, and aK =

√
2 logK − log logK + log(4π)√

8 logK
.
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Using the tail-equivalence criterion (cf. [14], Proposition 3.3.28), we obtain further

lim
K→∞

P
(

max(|ξ1|, . . . , |ξK |) ≤ aK + bK(t+ log 2)
)

= exp
(
− e−t

)
, for t ∈ R.

Note that T ◦n := sup(t,h)∈B◦n wh(‖ψt,h‖−12 |
∫
ψt,h(s)dWs| −

√
2 log(ν/h)) has the same distri-

bution as wK−1 max(|ξ1|, . . . , |ξK |)− wK−1

√
2 log(νK). It is easy to show that

√
log νK =

√
logK +

log ν

2
√

logK
+O

( 1

log3/2K

)
and ∣∣∣ 1

wK−1

− log logK√
1
2 logK

∣∣∣ = O

(
log logK

log3/2K

)
.

Assume that ηn → 0 and ηn log logK →∞. Then for sufficiently large n,

P
(
T ◦n > −1

4 + ηn
)

= P
(

max(|ξ1|, . . . , |ξK |) >
(
− 1

4 + ηn
)
/wK−1 +

√
2 log νK

)
= P

(
max(|ξ1|, . . . , |ξK |) >(
− 1 + 4ηn

) log logK√
8 logK

+
√

2 logK +
log ν√
2 logK

+O
( log logK

log3/2K

))
≤ P

(
max(|ξ1|, . . . , |ξK |) > aK + bK2ηn log logK

)
→ 0.

Similarly,

P
(
T ◦n ≤ −1

4 − ηn
)
≤ P

(
max(|ξ1|, . . . , |ξK |) ≤ aK − bKηn log logK

)
→ 0.

Lemma C.2. Condition (iii) in Assumption 1 is fulfilled with κn = wunu
1/2
n , whenever

Condition (ii) of Assumption 1 holds and for all (t, h) ∈ Bn, suppψt,h ⊂ [t− h, t+ h].

Proof. Let 1/2 < α < 1. Then 〈·〉α : R → R is Lipschitz. Recall that TV(fg) ≤
‖f‖∞TV(g) + ‖g‖∞TV(f). Since

⋃
(t,h)∈Bn suppψt,h ⊂ [−1, 2] is bounded and contains

the support of all functions s 7→ ψt,h(s)
[√

g(s) −
√
g(t)

]
〈s〉α (indexed in (t, h) ∈ Bn), we

obtain uniformly over (t, h) ∈ Bn and G ∈ G,

TV
(
ψt,h(·)

[√
g(·)−

√
g(t)

]
〈·〉α

)
.
∥∥ψt,h(·)

[√
g(·)−

√
g(t)

]∥∥
∞ + TV

(
ψt,h(·)

[√
g(·)−

√
g(t)

])
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Furthermore,

TV
(
ψt,h(·)

[√
g(·)−

√
g(t)

])
≤ ‖ψt,h‖∞TV

([√
g(·)−

√
g(t)

]
I[t−h,t+h](·)

)
+ TV

(
ψt,h

)∥∥[√g(·)−
√
g(t)

]
I[t−h,t+h](·)

∥∥
∞

. Vt,hh
1/2,

where the last inequality follows from Assumption 1 (ii) as well as the properties of G. With

Lemma C.3 (ii) the result follows.

In the next lemma, we collect two facts about wh.

Lemma C.3. For h ∈ (0, 1] and ν > e let wh :=
√

2−1 log(ν/h)/ log log(ν/h). Then

(i) h 7→ wh is strictly decreasing on
(
0, ν exp(e−2)

]
, and

(ii) h 7→ whh
1/2 is strictly increasing on (0, 1].

Proof. With x = x(h) := log log(ν/h) > 0, we have logwh = − log(2)/2 + x/2 − log x.

Since the derivative of this w.r.t. x equals 1/2 − 1/x and is strictly positive for x > 2, we

conclude that logwh is strictly increasing in x(h) ≥ 2, i.e. in h ≤ ν exp(e−2). Moreover,

log(whh
1/2) = log(ν/2)/2 +x/2− log x−ex/2, and the derivative of this w.r.t. x > 0 equals

1/2− 1/x− ex/2 < 0. Thus whh
1/2 is strictly increasing in h ∈ (0, 1].

Lemma C.4. Suppose that supp f ⊂ [0,∞) and let 0 ≤ a ≤ 1. Then,∫ 1+a

0
|f(x)− f(x− a)|dx ≤ aTV(f)

and ∫ 1

0
|f(ax)− f(x)|dx ≤ (1− a) TV(f)

Proof. Without loss of generality, we can assume that f is of bounded variation, i.e.TV(f) <

∞. Hence, there exist two positive and monotone increasing functions f1, f2, such that

f = f1 − f2, f1(u) = f2(u) = 0 for u < 0, and f1(∞) + f2(∞) = TV(f). Set g = f1 + f2.

Then g is positive and monotone as well, and∫ 1+a

0
|f(x)− f(x− a)|dx ≤

∫ 1+a

0

(
g(x+ a)− g(x)

)
dx ≤

∫ 1+a

1
g(x)dx ≤ aTV(f).
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In order to derive the second inequality, note that∫ 1

0
|f(ax)− f(x)|dx ≤

∫ 1

0

(
g(x)− g(ax)

)
dx =

∫ 1

a
g(x)dx+ (1− 1/a)

∫ a

0
g(x)dx

≤
∫ 1

a
g(x)dx ≤ (1− a) TV(f).

Lemma C.5. Suppose that suppψ ⊂ [0, 1] and TV(ψ) < ∞. Let (t, h) ∈ T . Then, there

exists a constant K only depending on ψ, such that∥∥∥ψ( ·−th )− ψ( ·−t′h′ )∥∥∥2 ≤ K√|h− h′|+ |t− t′|.
Proof. Note that∥∥∥ψ( ·−th )− ψ( ·−t′h′ )∥∥∥2L2

≤ 2‖ψ‖∞
∫ 2

0

∣∣∣ψ( s−th )− ψ( s−t′h′

)∣∣∣ds
≤ 2‖ψ‖∞

∫ 2

0

∣∣∣ψ( s−th )− ψ( s−th′ )∣∣∣ds+ 2‖ψ‖∞
∫ 2

0

∣∣∣ψ( s−th′ )− ψ( s−t′h′

)∣∣∣ds.
Without loss of generality assume h′ ≤ h. Using Lemma C.4 yields∫ t+h

t

∣∣∣ψ( s−th )− ψ( s−th′ )∣∣∣ds ≤ ‖ψ‖∞(h− h′) +

∫ t+h′

t

∣∣ψ( s−th )− ψ( s−th′ )∣∣∣ds
= ‖ψ‖∞(h− h′) + h′

∫ 1

0

∣∣ψ(h′h u)− ψ(u)
∣∣du

≤ ‖ψ‖∞(h− h′) + h′
(
1− h′

h

)
TV

(
ψ
)
≤
[
‖ψ‖∞ + TV

(
ψ
)]
|h− h′|.

Similarly, assuming t ≤ t′,∫ 2

0

∣∣∣ψ( s−th′ )− ψ( s−t′h′

)∣∣∣ds = h′
∫ (t′−t)/h′+1

0

∣∣ψ(u)− ψ
(
u− t′−t

h′

)∣∣du ≤ |t′ − t|TV
(
ψ
)
.
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