Testing parametric assumptions on band- or
time-limited signals under noise

Nicolai Bissantz, Hajo Holzmann, and Axel Munk

Abstract

We consider the problem of testing parametric assumptions on signals f from which only noisy observations $y_k = f(\tau k) + \epsilon_k$ are available, and where the signal is assumed to be either band-limited or time-limited. To this end the signal is reconstructed by an estimator based on the Whittaker-Shannon sampling theorem with oversampling. As test statistic the minimal L_2 distance between the estimated signal and the parametric model is used. To construct appropriate tests, the asymptotic distribution of the test statistic is derived both under the hypothesis of the validity of the parametric model and under fixed local alternatives. As a byproduct we derive the asymptotic distribution of the integrated square error of the estimator, which is of interest by itself, e.g. for the analysis of a cross validated bandwidth selector.

Index Terms

asymptotic normality, band-limited signals, non-band-limited signals, goodness of fit, oversampling, rate of convergence, signal recovery, Whittaker-Shannon (WS) sampling theorem.

I. INTRODUCTION

THE problem of reconstructing a nonparametric signal f from data which is corrupted by random noise, has been investigated intensively in recent years both in statistics [10], [11] and [12] as well as in engineering [20], [29]. In a number of applications in communication theory, the signal f is a function of time t and assumed to be in the class of band-limited signals, i.e. signals for which the Fourier transform has compact support. Throughout the following we define the Fourier transform of a signal $f \in L_2(\mathbb{R})$ as $F = \mathcal{F}(f)(\omega) = \int_{\mathbb{R}} f(t) e^{-i\omega t} dt$, and write $f \in BL(\Omega)$ if the support of the Fourier transform of f is contained in $[-\Omega, \Omega]$. From the Paley-Wiener theorem, band-limited signals extend to entire functions on the complex plain, and thus can never have compact support. It is well-known that they can be recovered from a countable number of samples, i.e. if $f \in BL(\Omega)$ and $\tau \leq \pi/\Omega$, then

$$f(t) = \sum_{k \in \mathbb{Z}} f(\tau k) \text{sinc} \left(\pi/\tau \left(t - \tau k \right) \right).$$

(1)

Here sinc$(x) = \sin(x)/x$, and sinc$(0) = 1$. The expansion (1) is called the Whittaker-Shannon (WS) sampling theorem or simply the cardinal expansion of f; convergence in (1) is uniform on bounded intervals. We refer to [4], [16], [23], [24], [37] for further information on the WS sampling theorem.

The aim of this paper is twofold. First, we derive the distributional limit of the integrated square error of an estimator of f, which was introduced by Pawlak & Stadtmüller [29] and second this will be used to check parametric assumptions on f. Examples include exponentially damped sinusoid models as they occur in acoustics [17] or sinusoidal models as they occur in signal recovery, Whittaker-Shannon (WS) sampling theorem.

$$y_k = f(\tau k) + \epsilon_k, \quad k \in \mathbb{Z}, \quad \tau > 0,$$

(2)

where we observe a finite number of y_k; $|k| \leq n$. Here $(\epsilon_k)_{k \in \mathbb{Z}}$ is an independent identically distributed noise process with $E \epsilon_k = 0$, $E \epsilon_k^2 < \infty$. We set $\sigma^2 = E \epsilon_k^2$. If the signal f is band-limited with $f \in BL(\Omega)$ and if $\tau \leq \pi/\Omega$, a first natural possibility for estimating f, based on the cardinal expansion, is given as

$$\hat{f}_n(t) = \sum_{|k| \leq n} y_k \text{sinc} \left(\pi/\tau \left(t - \tau k \right) \right).$$

Although this estimator is evidently asymptotically unbiased, its asymptotic variance is equal to that of the original observation since it interpolates noise, see [23] or [31]. In order to obtain a consistent estimator, the method of oversampling can be used. Recall that the cardinal series expansion with oversampling is given by

$$f(t) = \sum_{k \in \mathbb{Z}} f(\tau k) \frac{\sin \left(\Omega (t - \tau k) \right)}{\pi(t - \tau k)}, \quad \Omega \geq \tilde{\Omega}, \quad \tau \leq \pi/\Omega,$$

(3)

N. Bissantz, H. Holzmann, and A. Munk are with the Institut für Mathematische Stochastik, University of Göttingen, Maschmühlenweg 8-10, 37073 Göttingen, Germany (e-mail for correspondence: munk@math.uni-goettingen.de).
where $\Omega \tau / \pi$ corresponds to the sampling rate. Convergence in (3) is again uniform on bounded intervals. Based on the expansion (3), the estimator of $f(t)$ is given by

$$\hat{f}_n(t) = \tau \sum_{|k| \leq n} y_k \frac{\sin \left(\Omega(t - \tau k) \right)}{\pi(t - \tau k)}, \quad \tau \leq \pi / \Omega, \tag{4}$$

cf. [23], [29], [30] and [31]. It can be shown for band-limited signals $f(t)$ that $\hat{f}_n(t)$ is pointwise consistent if $\tau \to 0$ and $n \tau \to \infty$, i.e. $\hat{f}_n(t) \to f(t)$. Moreover, under certain assumptions on the tail behavior of f, estimates on the mean integrated square error (MISE)

$$\text{MISE}(\hat{f}_n) = E \int_R (\hat{f}_n(t) - f(t))^2 \, dt.$$

are derived in [28], [30]. It has been further shown there that for band-limited signals in model (2), the rate of decay of the MISE of the estimator \hat{f}_n is reasonably fast.

In this paper the distributional limit of the integrated square error (ISE) of the estimator \hat{f}_n,

$$\text{ISE}(\hat{f}_n) = \int_R (\hat{f}_n(t) - f(t))^2 \, dt$$

is investigated. This is a classical theme in the statistical literature, because the asymptotics of the ISE yields information on the variability of cross-validation when used as an automatic selector of the smoothing parameter τ. In fact, asymptotic normality of the ISE was first obtained for kernel density estimators (see [2], [13]) and for kernel regression estimators in a random design ([14], [22]). For a regression model on a compact interval with fixed design, asymptotic normality of the ISE was first obtained for kernel density estimators (see [2], [13]) and for kernel regression estimators in a fixed alternatives. This will be used to construct a test whether the parametric sub-model. These tests are based on the L_2-distance between the estimator and the parametric sub-model. The asymptotic distribution of the test statistic is derived under both the null hypothesis of the validity of the parametric sub-model and under fixed alternatives. This will be used to construct a test whether f follows a specific parametric form, similarly as in [7], [8] and [15]. In Section 4 we give a corresponding result in the context of regression on a compact interval. To this end asymptotics of the ISE for the kernel regression estimator with the well-known sinc kernel for time-limited signals $f(t)$ is exploited. It is shown that the proposed method outperforms common estimators with compactly supported kernels with respect to the asymptotic relative efficiency ARE. A simulation study which investigates the finite sample behavior of the proposed tests is presented in Section 5.

To conclude the introduction, let us point out that the estimator (4) can also be regarded as a spectral cut-off estimator in the direct regression model (2) (see [34]). Hence this example serves as a prototype of the asymptotics of the ISE for spectral cut-off estimators, which naturally occur in inverse regression problems.

All proofs are deferred to an Appendix.

II. ASYMPTOTIC NORMALITY OF THE ISE

Throughout this section we assume that observations from the model (2) are available. Straightforward computation yields

$$\text{ISE}(\hat{f}_n) - \text{MISE}(\hat{f}_n) = \int_R (\hat{f}_n(t) - E\hat{f}_n(t))^2 \, dt - E \int_R (\hat{f}_n(t) - E\hat{f}_n(t))^2 \, dt + 2 \int_R (\hat{f}_n(t) - E\hat{f}_n(t)) (E\hat{f}_n(t) - f(t)) \, dt. \tag{5}$$

First let us consider the quadratic term in (5). It turns out that it is in fact independent of the signal f.
Proposition 1: For any \(f \in L_2(\mathbb{R}) \) of finite energy in model (2) we have that
\[
\int_{\mathbb{R}} (\hat{f}_{n}(t) - \hat{F}_{n}(t))^2 dt = \frac{\tau^2 \Omega}{\pi} \sum_{|j|,|k| \leq n} \varepsilon_j \varepsilon_k \text{sinc}(\Omega \tau (j - k)).
\] (6)
If \(\Omega \tau \to 0, \tau^3 \Omega^3 n \to 0 \) and \(\log (n)/n = o(\Omega \tau) \) in (4), then
\[
\text{Var} \left[\int_{\mathbb{R}} (\hat{f}_{n}(t) - \hat{F}_{n}(t))^2 dt \right] = \frac{4\sigma^4}{\pi} \tau^3 \Omega n (1 + o(1)).
\]
As for the linear term in (5), since it contains the bias \(\hat{f}_{n}(t) - f(t) \) as a factor, it should be asymptotically negligible as compared with the quadratic term. In order to estimate the bias we need the following tail behavior of the signal \(f \).

Remark 1: In [30] it is shown that for \(r > 1/2 \), \(\Omega \geq \hat{\Omega} \) and if \(\tau^2 n \to 0 \) and \(n^2 r \tau^{2r+1} \to \infty \), then
\[
\frac{1}{\sqrt{n}} \left(\text{ISE}(\hat{f}_{n}) - \text{MISE}(\hat{f}_{n}) \right) \overset{D}{\to} N(0, 4\sigma^4 \Omega / \pi),
\]
where \(N(\mu, \sigma^2) \) denotes the normal law with mean \(\mu \) and variance \(\sigma^2 \).

Theorem 1: Suppose that \(f \in BL(\hat{\Omega}) \) satisfies (7) with some \(r > 1/2 \). If \(\Omega \geq \hat{\Omega} \) and if \(\tau^2 n \to 0 \) and \(n^2 r \tau^{2r+1} \to \infty \), then
\[
\frac{1}{\tau n} \left(\text{ISE}(\hat{f}_{n}) - \text{MISE}(\hat{f}_{n}) \right) \overset{D}{\to} N(0, 4\sigma^4 \Omega / \pi),
\]
(7)
where \(N(\mu, \sigma^2) \) denotes the normal law with mean \(\mu \) and variance \(\sigma^2 \).

For large \(r \) this is close to (8).

Now let us consider non-band-limited signals. Following the method proposed in [28], [30], we let \(\Omega \to \infty \) for the estimator in (4), and impose additional assumptions on the tail behavior of the Fourier transform of \(f \):
\[
|F(\omega)| \leq d |\omega|^{-(\alpha + 1/2)}, \quad |\omega| \geq 1, \quad \alpha > 1.
\] (9)
Then we can state the following theorem.

Theorem 2: Suppose that \(f \in L_2(\mathbb{R}) \) satisfies (7) and (9) with \(r > 1/2, \alpha > 1 \) and \((2r - 1)(2\alpha - 1) > 2\). If \(\tau \to 0, \Omega^{2\alpha \tau} \to \infty, \tau^2 n \Omega \to 0, \tau^3 \Omega^3 n \to 0 \) and \(n^2 r \tau^{2r+1} / \Omega \to \infty \), then
\[
\frac{1}{\sqrt{n} \tau \Omega} \left(\text{ISE}(\hat{f}_{n}) - \text{MISE}(\hat{f}_{n}) \right) \overset{D}{\to} N(0, 4\sigma^4 / \pi).
\]
Notice that Theorem 1 could be interpreted as limit version of Theorem 2 for which \(\alpha = \infty \) and \(\Omega \) is constant.

III. TESTING FOR A PARAMETRIC FORM OF A BAND-LIMITED SIGNAL

In this section we develop a consistent test for a parametric hypothesis in form of a model \(U \) in the signal recovery model (2). Applications of estimators to reconstruct bandlimited signals include, among many other applications in signal and image processing, channel estimation and equalization in wireless communications [33],[36]. To keep the presentation concise, in the following we will assume that \(U \) is a linear model, i.e. \(U = \text{span}\{g_1, \ldots, g_m\} \) for some basis functions \(g_l, l = 1, \ldots, m \). Nonlinear models can be treated similarly, see [26]. As a test statistic we will use the (squared) \(L_2 \)-distance of the estimator \(\hat{f}_{n} \) from the parametric sub-model.

\(L_2 \)-based methods for model tests in regression have been frequently employed in the statistics literature. In a random design regression model, the (weighted) \(L_2 \)-distance of a nonparametric kernel estimator of the signal and a smoothed version of a parametric estimate was used in [15] to test the validity of a parametric model. Also in a random design, the (weighted) \(L_2 \)-norm of the signal and its derivatives was estimated in [18] by integrating the corresponding coefficients of a local polynomial estimator. In case of a regression model with fixed design on a compact interval, a test statistic can be based on the difference of a nonparametric kernel-based estimator and a parametric estimator for the variance (cf. [7], where the asymptotic distribution
of the test statistic under both the hypothesis of a linear model and under fixed alternatives is derived). Typically in this context it is assumed that the signal is sufficiently smooth, i.e. it has \(r \) continuous derivatives for some \(r \geq 1 \).

In this section we obtain an analogous result in the signal recovery model (2) on the whole real line under stronger smoothness assumptions. In fact, we restrict ourselves to band-limited signals, and our arguments are based extensively on the cardinal series expansion with oversampling (3). In the general case, the error in the expansion (3) has to be estimated. For simplicity we start by considering a simple hypothesis \(H : f = f_0 \). By centering the data \(y_j = y_j - f_0(\tau_j) \) we may assume that \(f_0 = 0 \). In this case our test statistic is

\[
\hat{M}_n^2 = \int \left(\hat{f}_n(t) \right)^2 dt = \frac{\tau^2 \Omega}{\pi} \sum_{|j|, |k| \leq n} y_j y_k \text{sinc}(\Omega \tau (j - k)).
\]

(10)

Observe that \(\hat{M}_n^2 \) can be evaluated directly using (6) without performing a numerical integration. The next theorem gives the asymptotic behavior of \(\hat{M}_n^2 \).

Theorem 3: Under the hypothesis \(f = 0 \), if \(\tau^3 n \to 0 \) and \(\log^2(n)/n = o(\tau) \), then

\[
\frac{1}{\sqrt{\tau^3 n}} \left(\hat{M}_n^2 - \Omega^2 \tau^2 \pi^{-1} (2n + 1) \right) \xrightarrow{\mathcal{L}} N(0, 4 \sigma^4 \Omega/\pi).
\]

(11)

Under the alternative \(f \neq 0 \), suppose that \(f \in \text{BL}(\tilde{\Omega}) \) satisfies (7) with \(r > 1 \). If \(\Omega \geq \tilde{\Omega} \), \(n \tau^{3/2} \to 0 \) and \(n^2 \tau \tau^{r+1} \to \infty \), then

\[
\tau^{-1/2} \left(\hat{M}_n^2 - \|f\|^2 \right) \xrightarrow{\mathcal{L}} N(0, 4 \sigma^2 \|f\|^2),
\]

where \(\| \cdot \| \) denotes the \(L_2(\mathbb{R}) \)-norm.

Remark 2: Note that different rates appear under the hypothesis and under alternatives in Theorem 3, respectively. A similar phenomenon was observed in [7] in the context of nonparametric regression on a compact interval. In that model, the nonparametric rate \(nh \) occurs under the hypothesis, where \(h \) is a bandwidth that satisfies \(h^2 n \to \infty \), and the parametric rate \(n^{1/2} \) under a fixed alternative. Further, in Theorem 3 under an alternative, we get the same rate as was obtained in [31] in a CLT for the pointwise error. Thus in our model the \(\tau^{1/2} \) rate corresponds to the parametric rate \(n^{-1/2} \) in [7].

Remark 3: In general, the variance \(\sigma^2 \) will be unknown and thus has to be estimated (cf. Theorem 3). To this end the following simple difference-based estimator can be used (for a detailed discussion of such estimators on a compact interval and their MSE-properties cf. [9])

\[
\hat{\sigma}^2 = \frac{1}{4n - 2} \sum_{j=-n+1}^{n} (y_j - y_{j-1})^2.
\]

(12)

It can be shown that in model (2),

\[
E \hat{\sigma}^2 = \sigma^2 + O(\tau/n), \quad \text{Var}(\hat{\sigma}^2) = O(1/n).
\]

(13)

Observe that (13) implies that \(\hat{\sigma}^2 = \sigma^2 + O_P(n^{-1/2}) \). Therefore Theorems 3 and 4 remains true if we replace \(\sigma^2 \) by \(\hat{\sigma}^2 \) in (11).

If we wish to test whether the signal \(f \) in model (2) lies in some finite dimensional subspace \(U \) of \(\text{BL}(\tilde{\Omega}) \), following the method proposed in [8] we can use the test statistic

\[
\tilde{M}_n^2 = \inf_{g \in U} \| \hat{f}_n - g \|^2.
\]

Choosing any orthonormal basis \(\{g_1, \ldots, g_m\} \) of \(U \), this can be expressed as

\[
\tilde{M}_n^2 = \| \hat{f}_n \|^2 - \sum_{l=1}^{m} \left| \langle \hat{f}_n, g_l \rangle \right|^2
\]

\[
= \frac{\tau^2 \Omega}{\pi} \sum_{|j|, |k| \leq n} y_j y_k \text{sinc}(\Omega \tau (j - k))
\]

\[
- \sum_{l=1}^{m} \left(\tau \sum_{|k| \leq n} y_k g_l(\tau k) \right)^2.
\]

Notice that \(\tilde{M}_n \) can still be evaluated directly without numerical integration. Let \(M^2 = \inf_{g \in U} \| f - g \|^2 \).

Theorem 4: Let \(U \) be a finite dimensional subspace of \(\text{BL}(\tilde{\Omega}) \) such that every \(g \in U \) satisfies (7) with \(r > 1 \). If in model (2), \(f \in \text{BL}(\tilde{\Omega}) \) also satisfies (7) with \(r > 1 \) and \(n \tau^{3/2} \to 0 \) and \(n^2 \tau \tau^{r+1} \to \infty \), then \(\tilde{M}_n^2 \) is asymptotically unbiased for \(M^2 \) and

\[
\frac{1}{\sqrt{\tau^3 n}} \left(\tilde{M}_n^2 - \Omega^2 \tau^2 \pi^{-1} (2n + 1) \right) \xrightarrow{\mathcal{L}} N(0, 4 \sigma^4 \Omega/\pi).
\]

(14)
if $M^2 = 0$, and

$$
\frac{1}{\sqrt{T}} \left(\hat{M}_n^2 - M^2 \right) \overset{d}{\rightarrow} N(0, 4\sigma^2 M^2),
$$

(15)

if $M^2 > 0$.

The proof is a rather straightforward extension of the proof of Theorem 3 and will be omitted.

Remark 4: The limit distribution (14) under the hypothesis allows now to check the model U by means of testing the hypothesis

$$
H_0 : f \in U \quad \text{versus} \quad K_0 : f \notin U
$$

(16)
ad a controlled error rate α before analyzing the data via the model U. To this end $\hat{\sigma}^2$ in (12) has to be used as an estimator for σ^2 in (14) and H is rejected if

$$
\frac{1}{\sqrt{T}} \left(\hat{M}_n^2 - \Omega^2 \hat{\sigma}^2 \pi^{-1}(2n + 1) \right) > U_{1-\alpha},
$$

where $U_{1-\alpha}$ denotes the upper $1 - \alpha$ quantile of the standard normal distribution. Note, that this yields a consistent test by (13).

Finally, the asymptotic normality in (15) can be used for two different purposes, testing hypotheses of the type

$$
H_\Delta : M > \Delta \quad \text{versus} \quad K_\Delta : M \leq \Delta,
$$

and the construction of confidence intervals for M. We will not pursue this issue further and refer to [8].

IV. Tests for time-limited signals

In this section we extend our method to testing assumptions on time-limited signals, as they appear e.g. in the detection of acoustically evoked potentials by EEG measurements [2]. This is the classical context of non-parametric regression on a compact interval. Suppose that the signal $f(t)$ has support $\supp(f) \subset [-1, 1]$. Assume now that noisy data of the following form are available

$$
y_k = f(k/n) + \epsilon_k, \quad |k| \leq n.
$$

(17)

In this situation we can use the estimator (4) with $\tau = 1/n$. Notice that except for the normalization, this estimator corresponds to a kernel regression estimator with kernel $K(x) = \sin(x)/(\pi x)$ and inverse bandwidth Ω. This kernel K is sometimes referred to as the sinc-kernel. Note that, in contrast to the setting in Section 3, the signal cannot be band-limited, except if $f = 0$ (see [23],[37]). In the following we obtain similar results for time-limited signals as in Sections 2 and 3 for the band-limited case. However, additional significant technical difficulties occur, which are due to the fact that the integrals involved are no longer taken over the whole real line. Thus the Fourier isometry cannot be applied to integrals over sinc and indicator functions, as in Sections II and III. This complicates proofs significantly and we will only sketch the main steps in the Appendix. A comprehensive proof can be found in [3]. The next theorem gives uniform pointwise convergence of the mean square error (MSE) of the estimator.

Theorem 5: Suppose that in model (17), the signal f satisfies (9) with $\alpha > \frac{3}{2}$. If $\Omega = o(n^{2/3})$ for n, $\Omega \to \infty$, then uniformly on $[-1, 1],

$$
E \left[\left(\hat{f}_{n, \Omega}(t) - f(t) \right)^2 \right] = O(\Omega^{-2\alpha + 1}) + O(\Omega^3/n^2) + O(\Omega/n),
$$

where

$$
\hat{f}_{n, \Omega}(t) = \frac{1}{n} \sum_{|k| \leq n} y_k \frac{\sin(\Omega(t-k/n))}{\pi(t-k/n)}.
$$

Remark 5: Assumption (9) on the tails of the Fourier transform of F implies continuity of f on the whole real line, in particular we have $f(1) = f(-1) = 0$. This allows to show uniform convergence of our estimator on $[-1, 1]$. Without such a condition kernel regression estimators without boundary correction converge to $f(x)/2$ at the boundary points, and not to the signal [10].

Remark 6: The sinc-kernel estimator achieves asymptotic (rate) optimality. This can be seen as follows. Let f be an L_1-function which satisfies (9) for $\alpha = m + 1/2$, $m \geq 2$ an integer. Then, according to Theorem 5, the pointwise MSE of the sinc-kernel estimator is $O\left(n^{-2m/(2m+1)}\right)$. The class of signals for which (9) holds with $\alpha = m + 1/2$ (see [5]) is closely related to the class C_m, defined in [12] if some additional regularity assumptions on the m^{th} derivative of f are made. For the class C_m the rate of convergence of the linear minimax risk is known to be $n^{-2m/(2m+1)}$ [12], pp. 84–88.

The next result describes the asymptotic distribution of the ISE for kernel regression with the sinc-kernel for time-limited signals, in an analogous way to Theorem 3. Consider the statistic

$$
\hat{M}_n^2 = \int_{-1}^{1} (\hat{f}_n(t))^2 \, dt = Y^T \hat{A} Y,
$$

(18)
where \(Y = (y_{-n}, \ldots, y_n)^T \) and
\[
\tilde{A} = (a_{j,k})_{|j|,|k| \leq n},
\]
\[
\tilde{a}_{j,k} = \left(\frac{\Omega}{n \pi} \right)^2 \int_{-1}^{1} \sin \left(\frac{\Omega(t - \frac{j}{n})}{\pi} \right) \sin \left(\frac{\Omega(t - \frac{k}{n})}{\pi} \right) dt.
\]

Theorem 6: Under the hypothesis \(f = 0 \), if \(\log(n)/\sqrt{\Omega} \to 0 \), and \(\Omega^{3/2}/n \to 0 \) as \(n \to \infty \), then
\[
n\Omega^{-1/2} \left(\hat{M}_n^2 - 2\sigma^2/\pi \right) \xrightarrow{p} N(0, 4\sigma^4/\pi).
\]

Under the alternative, suppose that \(f \neq 0 \) satisfies (9) with \(\alpha > \frac{3}{2} \). If \(\ln(n)/\sqrt{\Omega} \to 0 \), \(\Omega^2/n \to 0 \) and \(\Omega^{-2\alpha}\sqrt{n} \to 0 \) as
\(n \to \infty \), then
\[
\sqrt{n} \left(\hat{M}_n^2 - \|f\|^2_{L^2([-1,1])} \right) \xrightarrow{p} N(0, 4\sigma^2/\pi).
\]

Remark 7: The potential power of our test based on the statistic \(\hat{M}_n^2 \) with the Fourier estimate kernel, is indicated by the consideration of local alternatives. To this end consider the case \(H : f \equiv 0 \). Similar as in [7] we obtain for the limiting variance under local alternatives of the type \(f_n = (\sqrt{\Omega}/n)g \) the value \(4\sigma^4/\pi \) as in (18). The result in [7] closely resembles (18), if the smoothing parameter of the nonparametric estimator in [7] is replaced by the multiplicative inverse of our smoothing parameter \(\Omega \). However, the regression model in [7] is \(y_{j,n} = y(t_{j,n}) = m(t_{j,n}) + \varepsilon_{j,n} \), \(j = 1, \ldots, n \) for design points \(t_{1,n}, \ldots, t_{n,n} \in [0,1] \). This differs slightly from our setting, both in the number of design points \(n \) instead of \(2n + 1 \) and the size of the support of the design density \((0,1) \) instead of \([−1,1]\). A close inspection of our proofs shows that if our regression model is changed into \(n \) equally spaced observations on \([0,1] \), the variance of (18) becomes \(\mu_0^2 := 2\sigma^4/\pi \approx 0.64\sigma^4 \).

The asymptotic variance \(\mu_0^2 \) in [7] (eq. (2.13)) depends on the kernel used for the nonparametric variance estimator. In the numerical simulations in [7] the Epanechnikov kernel is used. For this kernel \(\mu_0^2 \approx 1.70\sigma^4 \). Furthermore, for the Gauß kernel \(\mu_0^2 \approx 0.81\sigma^4 \), and for the sinc kernel as discussed in this paper \(\mu_0^2 = 2\sigma^4/\pi \), thus the variance for our test based on the sinc kernel is formally recovered by eq. (2.13) in [7]. However note that for the Gauß kernel and the sinc kernel the assumption of a compactly supported kernel does not hold, so the results in [7] cannot be applied to these kernels. Hence our result extends the theory by sampling-based methods to the sinc kernel which outperforms tests based on the kernels mentioned above. In particular, the asymptotic relative efficiency of the test based on the sinc kernel is \(\approx 2.67 \) as compared to the test based on the Epanechnikov kernel, and \(\approx 1.27 \) if the Gauß kernel is used. Note, that asymptotically this corresponds to the ratio of sample sizes required to achieve the same power, i.e. use of the sinc kernel reduces the required sample size compared to the Epanechnikov kernel by a relative amount of \(\approx 2.67 \) and to the Gauß kernel by \(\approx 1.27 \), respectively.

V. SIMULATION RESULTS

In this section we investigate the finite-sample behavior of the tests presented in Section III, which are based on asymptotic theory. In Section V-A we comment on the selection of the parameters \(\Omega, \tau \) which occur in the estimator \(\hat{f}_n \). Furthermore, in Section V-B we present simulations of the distribution of \(\hat{M}_n^2 \) for finite sample size, both under the hypothesis \(f = 0 \) and under the alternative of a particular non-zero band-limited signal.

A. Choosing the parameters

In order to compute the estimator \(\hat{f}_n \), the parameters \(\tau \) and \(\Omega \) have to be chosen. These need to be fixed prior to application of the estimator to a given set of observations. In this section we consider noisy data of the form (2), where the signal \(f \) is the band-limited function
\[
f_1(t) = (\text{sinc} \Omega f t)^4 \in BL(\Omega f), \text{ where } \Omega f = 0.1,
\]
and determine suitable values for \(\tau \) and \(\Omega \). As sample size we consider \(N_{\text{sample}} = 2n + 1 = 201 \) and \(2001 \), and the errors \(\varepsilon_k \) are taken as i.i.d. normally distributed with zero mean and variance \(\sigma^2 = 0.01 \).

Firstly, we chose \(\Omega = 0.4 \), which is the smallest value such that \(f_1 \in BL(\Omega) \). Now let us consider how to choose \(\tau \), which depends on \(n \). The left plot in Fig. 1 presents the simulated MISE for estimation of \(f_1(t) \) from 20 sets of artificial data with \(n = 100 \) for a range of different values of \(\tau \). We choose \(\tau_0 = 0.2 \), subsequently writing \(\tau_0 \) for the value of \(\tau \) for samples with \(n = 100 \). The very good quality of recovery of the signal \(f_1 \) in these simulations is shown in the right plot of Fig. 1, where typical estimates \(\hat{f} \) based on \(\tau_0 = 0.1 \) for \(n = 100 \) and \(n = 1000 \) are shown. Since \(\tau \) depends on \(n \) we scale \(\tau_0 \) for simulations with \(n \neq 100 \) as \(\tau(n) = \tau_0 \cdot (100/n)^{4/5} \), in accordance with the conditions in Theorems 2 and 3.
Fig. 1. Left: Logarithm of the simulated MISE between true signal and estimated signal versus τ_0. Right: Test signal (solid curve) versus estimator based on $n = 100$ (dotted curve) and $n = 1000$ (dashed curve). The dots show the set of artificial data with $n = 1000$. Note that all three curves are visually indistinguishable.

Fig. 2. (Theoretical) asymptotic normal density of \hat{M}^2_n (solid curve) versus simulated density for sample size $n = 100$ (dashed curve) and $n = 1000$ (dotted curve). The left plot shows the distribution under the hypothesis $f = 0$, the right plot under the alternative if the test signal f_1 is present in the data.
B. Finite sample behavior of \hat{M}_n^2

In this subsection simulations of the distribution of \hat{M}_n^2 for finite sample size are reported. Firstly we consider pure noise, i.e. generated from the signal $f = 0$. In the left plot in Fig. 2 the theoretical asymptotic normal distribution together with simulated finite sample distributions of \hat{M}_n^2 for $n = 100$ (dashed curve) $n = 1000$ (dotted curve) is displayed. The approximation of the asymptotic normal distribution is not too satisfactory even for the already rather large sample size ($n=1000$). This parallels findings for related test statistics (see [8], [26]). Here bootstrap approximations or second order corrections can be used to improve (see eg. [26]). Under the alternative f_1, as shown in the right plot in Fig. 2, the approximation by the theoretical asymptotic distribution is rather accurate already at a moderate sample size ($n = 100$).

VI. CONCLUDING REMARKS

In this paper, tests for parametric assumptions on band-limited and time-limited signals which are observed under noise have been constructed. As a test statistic the L_2-distance of an estimator based on the WS sampling theorem with oversampling to the parametric model is used. The asymptotic distribution of the test statistic is derived both under the hypothesis of the validity of the parametric model and under fixed alternatives. This allows in particular to test whether the signal f is close in the L_2 distance to the parametric model, at a controlled error rate. The asymptotics are valid under certain rates $\tau \to 0$ and $\Omega \to \infty$, however, it is not immediately clear how to choose the parameters for some fixed sample size. In Section V some suggestions are given, but it would be interesting to investigate fully data-driven methods like cross-validation. Simulations of the findings for related test statistics (see [8], [26]). Here bootstrap approximations or second order corrections can be used to improve (see e.g. [26]). Here.$\$

There are several possible extensions of the methodology proposed in this paper. An important one is the comparison of signals under various input conditions. In this case independently generated from the signal f are of finite energy (i.e. in $L_2(\mathbb{R})$), but it would be of interest to weaken the assumptions on the tail behavior of the signal. Based on this, tests for signals which are neither band-limited nor time-limited could be constructed in a similar fashion. As an example consider the problem to decide whether an exponentially damped sinusoidal model holds ([1], [21], or [35]), where (19). Here α_l and s_l are unknown (complex) numbers, such that $\Re\{s_l\} < 0$. Note that this implies integrability of the signals $f(\cdot)$. Further m is assumed to be fixed. In our terminology this would be a parametric model with parameters α_l, s_l; the α_l are linear parameters, the s_l nonlinear. It would also be of interest to consider a more general dependent noise process. Finally, let us stress that all signals considered in this paper are of finite energy (i.e. in $L_2(\mathbb{R})$). However, several frequently encountered signals like cosine functions do not satisfy this requirement, and a theory that covers such signals would be of much practical interest.

Acknowledgment. We would like to thank M. Pawlak and U. Studtmüller for pointing out some helpful references.

APPENDIX

Recall that the Fourier transform of a signal $f \in L_2(\mathbb{R})$ is given by $F = \mathcal{F}(f)(\omega) = \int_{\mathbb{R}} f(t) e^{-i t \omega} dt$, so that the inverse transform is given by $\mathcal{F}^{-1}(F)(t) = \frac{1}{2\pi} \int_{\mathbb{R}} F(\omega) e^{i t \omega} d\omega$. Hence the Fourier transform of the estimator $\tilde{f}_n(t)$ in (4) is given by $\mathcal{F}_n(\omega) = \tau \sum_{|k| \leq n} y_k 1_{[-\Omega, \Omega]}(\omega) e^{-i k \tau}$. (20)

Proof of Proposition 1. From Parseval’s equation and (20),

$$\int_{\mathbb{R}} (\tilde{f}_n(t) - E\tilde{f}_n(t))^2 dt = \frac{1}{2\pi} \int_{\mathbb{R}} |\mathcal{F}_n(\omega) - E\mathcal{F}_n(\omega)|^2 d\omega = \frac{1}{2\pi} Z_n^T A Z_n,$$

where $Z_n = (\epsilon_{-n}, \ldots, \epsilon_n)^T$ and $A = (a_{j,k})_{|j|,|k| \leq n}$, $a_{j,k} = 2 \tau^2 \Omega \text{sinc}(\Omega \tau (j - k))$, $|j|, |k| \leq n$, which proves (6). The expectation of the quadratic form in (21) is given by

$$EZ_n^T A Z_n = \tau^2 \sigma^2 2 \Omega (2n + 1),$$

(22)
and thus we can write
\[Z_n^T A Z_n - E Z_n^T A Z_n = \sum_{|j|,|k| \leq n, j \neq k} a_{j,k} e_j e_k + 2 \Omega \tau^2 \sum_{|j| \leq n} (\epsilon_j^2 - \sigma^2) = T_1 + T_2. \]

Evidently
\[ET_1 = ET_2 = 0, \quad Cov(T_1, T_2) = ET_1 T_2 = 0 \]
and
\[ET_2^2 = 4 \Omega^2 \tau^4 (2n + 1)(\epsilon_1^2 - \sigma^2)^2. \] (23)

Moreover,
\[ET_1^2 = 2 \sigma^4 \sum_{|j|,|k| \leq n, j \neq k} a_{j,k}^2 = 16 \sigma^4 \tau^4 \Omega^2 \left((2n + 1) \sum_{j=1}^{2n} \text{sinc}^2(\Omega \tau j) \right) - \sum_{j=1}^{2n} j \text{sinc}^2(\Omega \tau j). \] (24)

In order to compute the asymptotic variance of \(T_1 \), in a first step we replace the sums in (24) by integrals and in a second step we estimate the approximation error. For the first sum this gives
\[\int_{1/2}^{2n+1/2} \frac{\text{sinc}^2(\Omega \tau t)}{2} \frac{dt}{\Omega \tau} = \frac{1}{\Omega \tau} \int_{\Omega \tau / 2}^{(2n+1/2)\Omega \tau} \text{sinc}^2(u) \frac{du}{\Omega \tau}. \] (25)
Since \(\Omega \tau \to 0 \) and \(n \Omega \tau \to \infty \),
\[\int_{\Omega \tau / 2}^{(2n+1/2)\Omega \tau} \text{sinc}^2(u) \frac{du}{\Omega \tau} \to \int_0^{\infty} \text{sinc}^2(u) \frac{du}{\Omega \tau} = \frac{\pi}{2}. \] (26)

For the second sum we obtain
\[\int_{1/2}^{2n+1/2} t \frac{\text{sinc}^2(\Omega \tau t)}{2} \frac{dt}{\Omega \tau} = \frac{1}{\Omega^2 \tau^2} \int_{\Omega \tau / 2}^{(2n+1/2)\Omega \tau} u \text{sinc}^2(u) \frac{du}{\Omega \tau} = O\left(\frac{\log(\Omega \tau n)}{(\Omega^2 \tau^2)} \right). \] (27)

The approximation errors are estimated in Lemma 1. Collecting terms from (23) - (29) gives
\[\text{Var} \left(Z_n^T A Z_n \right) = 16 \sigma^4 \tau^4 \Omega (2n + 1) \left(\frac{\pi}{2} + O(1) \right) + O\left(\frac{\log(\Omega \tau n)}{(\Omega^2 \tau n)} \right) \]
\[+ O\left((n \tau^3 \Omega^3)^{1/2} + \log n / (\Omega \tau n) \right). \]

Taking into account the factor in (21) yields the proposition. \(\square \)

The following lemma provides the missing estimates of the approximation errors used in the above proof.

Lemma 1: We have
\[\left| \sum_{k=1}^{2n} \text{sinc}^2(\Omega \tau k) - \int_{1/2}^{2n+1/2} \text{sinc}^2(\Omega \tau t) \frac{dt}{\Omega \tau} \right| = O\left((n \tau \Omega)^{1/2} \right) \] (28)
and
\[\left| \sum_{k=1}^{2n} k \text{sinc}^2(\Omega \tau k) - \int_{1/2}^{2n+1/2} t \text{sinc}^2(\Omega \tau t) \frac{dt}{\Omega \tau} \right| = O\left(\log(n) / (\Omega^2 \tau^2) \right). \] (29)
Proof. For $\eta > 0$, we apply Lemma 4 in [31] to the function $f(t) = \text{sinc}(\eta(t + n)) \in BL(\eta)$ with $\tau = 1$ and obtain

$$\sum_{k=1}^{2n} \int_{k-1/2}^{k+1/2} \left(\text{sinc}(\eta t) - \text{sinc}(\eta k) \right)^2 dt \leq \eta^2 \int_{\mathbb{R}} \text{sinc}^2(\eta t) dt / \pi^2 = \eta / \pi. \quad (30)$$

Thus

$$\left| \sum_{k=1}^{2n} \sin^2(\Omega \tau k) - \int_{1/2}^{2n+1/2} \sin^2(\Omega \tau t) dt \right| \leq 2 \sup_{x \in \mathbb{R}} \left| \sin(x) \right| \sqrt{2n} \left(\sum_{k=1}^{2n} \int_{k-1/2}^{k+1/2} r(\Omega, \tau, t, k) \sin(\Omega \tau k) \sin(\Omega \tau t) dt \right)^{1/2}$$

$$\leq 2 \sup_{x \in \mathbb{R}} \left| \sin(x) \right| \sqrt{2n} \left(\sum_{k=1}^{2n} \int_{k-1/2}^{k+1/2} r(\Omega, \tau, t, k)^2 dt \right)^{1/2} = O\left((n \tau \Omega)^{1/2} \right),$$

where $r(\Omega, \tau, t, k) = |\sin(\Omega \tau t) - \sin(\Omega \tau k)|$ and we used (30) in the last step with $\eta = \Omega \tau$. Moreover,

$$\left| \sum_{k=1}^{2n} k \sin^2(\Omega \tau k) - \int_{1/2}^{2n+1/2} t \sin^2(\Omega \tau t) dt \right| \leq \left(\sum_{k=1}^{2n} \int_{k-1/2}^{k+1/2} \left| t \sin^2(\Omega \tau t) - k \sin^2(\Omega \tau k) \right| dt \right) \leq \frac{1}{\Omega^2 \tau^2} \sum_{k=1}^{2n} \int_{k-1/2}^{k+1/2} \left(\left| \frac{\sin^2(\Omega \tau t)}{t} - \frac{\sin^2(\Omega \tau k)}{k} \right| \right) dt$$

$$= \frac{1}{\Omega^2 \tau^2} \left(O(1) + O(\log(n)) \right).$$

In the next lemma we estimate the linear part in (5).

Lemma 2: In the band-limited case, suppose that $f \in BL(\tilde{\Omega})$ satisfies (7) for some $r > 1/2$. If $\Omega \geq \tilde{\Omega}$ in the estimator (4) and if $\tau^2 n \rightarrow 0$ and $n^2 \tau^{2+\alpha} \rightarrow \infty$, then

$$\int_{\mathbb{R}} (\tilde{f}_n(t) - E\tilde{f}_n(t)) \left(E\tilde{f}_n(t) - f(t) \right) dt = o_P((\tau^3 n)^{1/2}).$$

In the non band-limited case, suppose that $f \in L_2(\mathbb{R})$ satisfies (7) and (9) with $r > 1/2$ and $\alpha > 1$. If $\tau \rightarrow 0$, $\Omega^{2+\tau} \rightarrow \infty$, $\tau^2 n \Omega \rightarrow 0$, $\tau^4 \Omega^2 n \rightarrow 0$ and $n^2 \tau^{2+\alpha} / \Omega \rightarrow \infty$, then

$$\int_{\mathbb{R}} (\tilde{f}_n(t) - E\tilde{f}_n(t)) \left(E\tilde{f}_n(t) - f(t) \right) dt = o_P((\tau^3 \Omega n)^{1/2}).$$

Proof. From the Cauchy-Schwarz inequality,

$$\left| \int_{\mathbb{R}} (\tilde{f}_n(t) - E\tilde{f}_n(t)) \left(E\tilde{f}_n(t) - f(t) \right) dt \right| \leq \left(V(\tilde{f}_n) \right)^{1/2} \left(\text{BIAS}(\tilde{f}_n) \right),$$

where $V(\tilde{f}_n) = \int_{\mathbb{R}} (\tilde{f}_n(t) - E\tilde{f}_n(t))^2 dt$, and $\left[\text{BIAS}(\tilde{f}_n) \right]^2 = \int_{\mathbb{R}} (E\tilde{f}_n(t) - f(t))^2 dt$. From (22),

$$V(\tilde{f}_n) = O_P(\tau^2 n \Omega).$$

Furthermore, from the estimates of the integrated bias in [30] (Theorem 2 for the band-limited and Theorem 3 for the non band-limited case) we get

$$\left[\text{BIAS}(\tilde{f}_n) \right]^2 = o(\tau).$$
Proofs of Theorems 1 and 2. From Lemma 2, it follows that the linear part in (5) is \(O_P(\tau^3 \Omega n)^{1/2} \). Furthermore, from (23) the diagonal part \(T_2 \) of the quadratic form in (23) is \(O_P((\tau^4 \Omega n)^{1/2}) = O_P((\tau^3 \Omega n)^{1/2}) \) as well. Moreover, in both cases from the assumptions, it follows that \(\log^2(n) / n = o(\tau) \), and Proposition 1 applies. Thus it remains to prove asymptotic normality of \(T_1 \). To this end we apply Theorem 5.2 in [6]. By a straightforward calculation,

\[
\frac{1}{\tau^3 n \Omega} \max_{|j| \leq n} \sum_{|k| \leq n, k \neq j} a_{j,k}^2 = O(1/n), \tag{31}
\]

therefore Assumptions 1) and 2) of Theorem 5.2 in [6] are satisfied with \(K(n) = \tau^{-1/4} \). Next we use the fact that the spectral radius \(\rho(A) \) of a symmetric matrix \(A \) is bounded from above by any matrix operator norm. Therefore

\[
\frac{1}{\sqrt{\tau^3 n \Omega}} \rho(A) \leq \frac{1}{\sqrt{\tau^3 n \Omega}} \max_{|j| \leq n} \sum_{|k| \leq n, k \neq j} |a_{j,k}|
= O\left(\log(n)/(n \tau)^{1/2} \right) = o(1), \tag{32}
\]

which yields Assumption 3) in [6]. This concludes the proof of Theorems 1 and 2. □

Proof of Theorem 3. Notice that for \(f = 0 \), the estimator \(f_n \) is unbiased. The assumptions of Proposition 1 are satisfied, moreover both terms in (31) and (32) tend to zero, and Theorem 5.2 in [6] applies again. Now let us consider the case of \(f \neq 0 \). Similarly as in the proof of Proposition 1,

\[
\int \left(\hat{f}_n(t) \right)^2 dt = \frac{1}{2\pi} Y_n^T A Y_n, \tag{33}
\]

where \(A \) is as before and \(Y_n = (y_{-n}, \ldots, y_n)^T \). We have

\[
EY_n^T A Y_n = 2\Omega \tau^2 \sigma^2 (2n + 1) + 2\Omega \tau \sum_{|j|, |k| \leq n} f(\tau j) f(\tau k) \sin(\Omega \tau (j - k)). \tag{34}
\]

From the sampling theorem (3) and the tail behavior of \(f \), we get uniformly in \(|j| \leq n \),

\[
\left| \tau \sum_{|k| \leq n} f(\tau k) \frac{\sin(\Omega \tau (j - k))}{\tau (j - k)} - \pi f(\tau j) \right|
= \left| \tau \sum_{|k| > n} f(\tau k) \frac{\sin(\Omega \tau (j - k))}{\tau (j - k)} \right|
\leq \Omega \tau \sum_{|k| > n} |f(\tau k)| = O((n \tau)^{-r}). \tag{35}
\]

Therefore

\[
2\tau^2 \sum_{|j|, |k| \leq n} f(\tau j) f(\tau k) \frac{\sin(\Omega \tau (j - k))}{\tau (j - k)}
= 2\tau \sum_{|j| \leq n} f(\tau j) \left(\pi f(\tau j) + O((n \tau)^{-r}) \right)
= 2\tau \pi \sum_{|j| \leq n} f(\tau j)^2 + O((n \tau)^{-r})
= 2\pi \| f \|^2 + O(\sqrt{n \tau}) + O((n \tau)^{-r}), \tag{36}
\]

where we used Lemma 4 in [30] in the last step. Next, we decompose the quadratic form into

\[
Y_n^T A Y_n - EY_n^T A Y_n
= \sum_{|j|, |k| \leq n, j \neq k} a_{j,k} (y_j y_k - f(\tau j) f(\tau k))
+ 2\Omega \tau^2 \sum_{|j| \leq n} (y_j^2 - \sigma^2 - f(\tau j)^2)
= T_1 + T_2.
\]

From (23), \(T_2 = O_P(\tau^2 \sqrt{n}) \). Setting \(f_n = (f(-\tau n), \ldots, f(\tau n))^T \), \(Z_n = Y_n - f_n \) and \(B = (b_{j,k})_{|j|, |k| \leq n} \) with \(b_{j,k} = a_{j,k} (1 - \delta_{j,k}) \), where \(\delta_{j,k} \) denotes the Kronecker symbol, we decompose \(T_1 \) as follows

\[
T_1 = Z_n^T B Z_n + 2Z_n^T B f_n = T_{1,1} + 2T_{1,2}. \tag{37}
\]
Evidently,

\[ET_{1,1} = ET_{1,2} = Cov(T_{1,1}, T_{1,2}) = 0. \]

From Proposition 1, \(T_{1,1} = O_P((\tau^2 n)^{1/2}) \). We have

\[T_{1,2} = \sum_{|j| \leq n} \sum_{|k| \leq n, j \neq k} a_{j,k} f(\tau k). \]

Using (35) once again we get

\[
Var(T_{1,2}) = \sum_{|j| \leq n} \sigma^2 \left(\sum_{|k| \leq n, j \neq k} a_{j,k} f(\tau k) \right)^2 \\
= 4\sigma^2 \tau^{-2} \sum_{|j| \leq n} \left(f(\tau j) \pi + O((n\tau)^{-r}) \right)^2 \\
= 4\sigma^2 \tau^{-2} \|f\|^2 + o(\tau) + O(n^{-r} \tau^{-1-r}) + O(n^{1-2\tau^2-2r}) \\
= 4\sigma^2 \tau^{-2} \|f\|^2 \left(1 + o(1) \right).
\]

From (33), (34), (36) and the above estimates on \(T_2 \) and \(T_{1,1} \),

\[
\hat{M}_n^2 = O(\tau^2 n) + \|f\|^2 + o(\tau) + O((n\tau)^{-r}) + O_P(\tau^2 \sqrt{n}) + O_P(\sqrt{\tau^2 n}) + \pi^{-1} T_{1,2},
\]

therefore it will suffice to show asymptotic normality of \(T_{1,2}/\sqrt{T} \). To this end we apply Lyapounov’s theorem. From (35) together with a straightforward calculation

\[
\frac{1}{Var(T_{1,2})} \sum_{|j| \leq n} E(\varepsilon_j)^4 \left(\sum_{|k| \leq n, j \neq k} a_{j,k} f(\tau k) \right)^4 \\
\leq C \frac{\tau^2}{T} \sum_{|j| \leq n} \tau^4 \left(f(\tau j) \pi + O((n\tau)^{-r}) \right)^4 \to 0.
\]

\[\square \]

Remark 8: Note that under the hypothesis the term \(T_{1,2} \) in (37) vanishes. Thus the quadratic term \(T_{1,1} \) determines the asymptotics and a result like Theorem 5.2 in [6] for random quadratic forms has to be applied. However, under the alternative the linear term \(T_{1,2} \) dominates the asymptotics. Therefore it is no longer possible to use the above mentioned result, instead one simply applies Lyapounov’s CLT.

Proof of Theorem 5. The proof follows mostly along the lines of the proof of Theorem 1 in [31], which deals with the band-limited case. Their estimates are based on a lemma (Lemma 4) which only applies to band-limited signals, and which therefore cannot be used in our setting. Instead we invoke Lemma 3 in [30]. However, the details are rather cumbersome and can be found in [3].

\[\square \]

Proof of Theorem 6.

The expectation of \(\hat{M}_n^2 \) is given by

\[E\hat{M}_n^2 = \sum_{|j|, |k| \leq n} \tilde{a}_{j,k} f(t_j) f(t_k) + \sigma^2 \text{tr}(\hat{A}) \]

Tedious but straightforward computations yield that

\[\text{tr}(\hat{A}) = 2\Omega/(\pi n) + O(\sqrt{1/n}) \]

and that

\[\sum_{|j|, |k| \leq n} \tilde{a}_{j,k} f(t_j) f(t_k) = \|f\|^2_{L^2[-1,1]} + o(n^{-1/2}). \]

The variance of \(\hat{M}_n^2 \) is computed as in the proofs of Proposition 1 and Theorem 3. If \(f = 0 \), the dominating term in the variance is \(2\sigma^4 \sum_{|j|, |k| \leq n, j \neq k} a_{j,k} \), otherwise it is \(4\sigma^2 (\hat{A} f_n)^T (\hat{A} f_n) \), where \(f_n = (f(-1), f((-n + 1)/n), \ldots, f(1))^T \).

Technical difficulties arise since the entries of \(\hat{A} \) can no longer be calculated explicitly by Fourier transformation, because we integrate over a finite interval. Therefore we have to determine the asymptotic behavior of sums \(\sum_{|k|, |l| \leq n} \overline{\Sigma}_{|k|, |l| \leq n} \) over the squares.
Thus the tails are negligible. Finally, asymptotic normality under the hypothesis follows again from Theorem 5.2 in [6], while under the alternative the Lyapounov CLT is applied.

To this end we show that

\[
\sum_{|k|,|l| \leq n} \sin^2 \left(\frac{\Omega}{n} (k + l) \right) = \frac{4n^2}{\Omega} + o \left(\frac{n^2}{\Omega} \right).
\]

and hence

\[
\sum_{|k|,|l| \leq n} c_{ij}^2 = O \left(\frac{n^2}{\Omega} \right).
\]

Thus the tails are negligible. Finally, asymptotic normality under the hypothesis follows again from Theorem 5.2 in [6], while under the alternative the Lyapounov CLT is applied. □

REFERENCES