english version
Nächster Vortrag im Stochastischen Kolloquium:
13.04.2018, 14:15, Dr. Paul Joubert (IMS-Alumni) (Berlin)

"Title: t.b.a.".
Dr. Yoav Zemel, EPF Lausanne, spends SNF Early Postdoc Mobility fellowship at IMS: The IMS welcomes Dr. Yoav Zemel, who is spending with us an 18-months research visit from February 1st, 2018 to July 31st, 2019. Dr. Zemel is funded by a Swiss National Science Foundation Early Postdoc Mobility fellowship for the project Uncertainty Quantification for Optimal Transport mentored by Prof. Axel Munk (more information is available here).

Arbeitsgruppe "Angewandte und Mathematische Statistik"
Publikationen: PD. Dr. Stephan Huckemann

  • Markert, K., Krehl, K., Gottschlich, C., Huckemann, S. F. (2018).
    Detecting Anisotropy in Fingerprint Growth. arXiv 1801.06437. Submitted.
  • Eltzner, B., Huckemann, S. F. (2018).
    A Smeary Central Limit Theorem for Manifolds with Application to High Dimensional Spheres. arXiv 1801.06581. Submitted.
  • Düring,B., Gottschlich, C., Huckemann, S., Kreusser, L. M., Schönlieb, C.-B. (2017).
    An Anisotropic Interaction Model for Simulating Fingerprints. arXiv:1711.07417. Submitted.
  • Eltzner, B., Huckemann, S.F., Mardia, K.V. (2017).
    Torus principal component analysis with applications to RNA structure. Annals of Applied Statistics. Accepted.
  • Imdahl, C., Gottschlich, C., Huckemann, S.,Ohshika, K. (2017).
    Möbius moduli for fingerprint orientation fields Journal of Mathematical Imaging and Vision arXiv 1708.02158. Accepted.
  • Kim, B., Huckemann, S.F., Jung, S. (2017).
    Small sphere distributions for directional data with application to medical imaging. arXiv 1705.10013. Submitted.
  • Beneš, V., Večeřa, J., Eltzner, B., Wollnik, C., Rehfeldt, F., Králová, V., Huckemann, S.F. (2017).
    Estimation of parameters in a planar segment process with a biological application Image Analysis & Stereology , 36, 25-33.
  • Huckemann, S.F., Eltzner, B. (2017).
    Backward nested descriptors asymptotics with inference on stem cell differentiation. Ann. Statist. arXiv 1609.00814. Accepted.
  • Gottschlich, C., Tams, B., Huckemann, S. (2017).
    Perfect fingerprint orientation fields by locally adaptive global models. IET Biometrics, 6 (3), 183--190.
  • Telschow, F.J.E, Huckemann, S.F. Pierrynowski, M. (2016).
    Functional Inference on Rotational Curves and Identification of Human Gait at the Knee Joint arXiv 1611.03665. Submitted.
  • Thai, D.H., Huckemann, S., Gottschlich, C. (2016).
    Filter Design and Performance Evaluation for Fingerprint Image Segmentation. PLoS ONE, 11(5), e0154160.
  • Huckemann, S.F., Kim. K.-R., Munk, A., Rehfeld, F., Sommerfeld, M., Weickert, J., Wollnik, C. (2016).
    The circular SiZer, inferred persistence of shape parameters and application to stem cell stress fibre structures. Bernoulli, arxiv.org 1404.3300, 22, 2113-2142.
  • Hartmann, A., Huckemann, S., Dannemann, J., Laitenberger, O., Geisler, C., Egner, A., Munk, A. (2016).
    Drift estimation in sparse sequential dynamic imaging: with application to nanoscale fluorescence microscopy. J. Royal Statist. Society, Ser. B, arxiv.org 1403.1389, 78, 563–587.
  • Eltzner, B., Wollnik, C., Gottschlich, C., Huckemann, S., Rehfeldt, F. (2015).
    The Filament Sensor for Near Real-Time Detection of Cytoskeletal Fiber Structures PLoS ONE, 10 (5), e0126346.
  • Eltzner, B., Jung, S., Huckemann, S. (2015).
    Dimension Reduction on Polyspheres with Application to Skeletal Representations Geometric Science of Information 2015 proceedings, 22 - 29.
  • Eltzner, B., Huckemann, S.F., Mardia, K.V. (2015).
    Torus Principal Component Analysis with an Application to RNA Structures (old Version). arXiv:1511.04993 Submitted.
  • Imdahl, C., Huckemann, S., Gottschlich, C. (2015).
    Towards generating realistic synthetic fingerprint images Proc. Image and Signal Processing and Analysis (ISPA), 78-82.
  • Oehlmann, L., Huckemann, S., Gottschlich, C. (2015).
    Performance Evaluation of Fingerprint Orientation Field Reconstruction Methods. Proc. International Workshop on Biometrics and Forensics , 1-6.
  • Huckemann, S., Mattingly, J.C., Miller, E., Nolen, J. (2015).
    Sticky central limit theorems at isolated hyperbolic planar singularities Electronic Journal of Probability, 20, paper no. 78, 34 pp., arXiv.org 1410.6879 .
  • Schulz, J.,Jung, S., Huckemann, S., Pierrynowski, M., Marron, S., Pizer, S. (2015).
    Analysis of rotational deformations from directional data. Journal of Computational and Graphical Statistics, 24(2), 539 - 560 preprint.
  • Hotz, T., Huckemann, S. (2015).
    Intrinsic Means on the Circle: Uniqueness, Locus and Asymptotics. The Annals of the Institute of Statistical Mathematics, 67(1), 177-193 arXiv.org 1108.2141 [stat.ME] [math.PR].
  • Huckemann, S.F. (2014).
    (Semi-)Intrinsic Statistical Analysis on Non-Euclidean Spaces. Chapter in Advances in Complex Data Modeling and Computational Methods in Statistics, Editors A. M. Paganoni and P. Secchi, 103-118.
  • Henke, M., Huckemann, S.F., Kurth, W., Sloboda, B. (2014).
    Reconstructing Leaf Growth Based on Non-destructive Digitizing and Low-Parametric Shape Evolution for Plant Modelling Over a Growth Cycle Silva Fennica, 48 (2), 1019..
  • Telschow, F.J.E., Huckemann, S.F., Pierrynowski, M. (2014).
    Asymptotics for Object Descriptors. Biometrical Journal, 56 (5), 781--785.
  • Skwerer, S., Bullitt, E., Huckemann, S., Miller, E., Oguz, I., Owen, M., Patrangenaru, V., Provan, S., Marron, J.S. (2014).
    Tree-oriented analysis of brain artery structure. Journal of Mathematical Imaging and Vision, 50, 126--143, DOI 10.1007/s10851-013-0473-0.
  • Huckemann, S. (2014).
    A Comment to Statistics on Manifolds and Landmark Based Image Analysis: A Nonparametric Theory with Applications Journal of Statistical Planning and Inference, 145, 33--36.
  • Huckeman, S., Hotz, T. (2014).
    On Means and Their Asymptotics: Circles and Shape Spaces Journal of Mathematical Imaging and Vision, 50(1), 98-106, DOI 10.1007/s10851-013-0462-3 (Preprint).
  • Gottschlich, C., Huckemann, S. (2014).
    Separating the Real From the Synthetic: Extended Minutiae Histograms as Fingerprints of Fingerprints. IET Biometrics, 3(4), 291-301.
  • Hotz, T., Huckemann, S., Le, H., Marron, J. S., Mattingly, J. C., Miller, E., Nolen, J., Owen, M., Patrangenaru, V., Skwerer, S. (2013).
    Sticky central limit theorems on open books. Annals of Applied Probability, 23(6) 2238-2258 , 1202.4267 [math.PR] [math.MG] [math.ST].
  • Pizer, S., Jung, S., Goswami, D., Zhao, X., Chaudhuri, R., Damon, J., Huckemann, S., Marron, S.J. (2013).
    Nested sphere statistics of skeletal models. Proc. Dagstuhl Workshop on Innovations for Shape Analysis: Models and Algorithms, Chapter 5, Preprint ..
  • Huckemann, S. (2012).
    A Comment to "A Microbiology Primer for Pyrosequencing" Quantitative Bio-Science, 31(2), 83-84.
  • Huckemann, S. (2012).
    On the Meaning of Mean Shape: Manifold Stability, Locus and the Two Sample Test Annals of the Institute of Statistical Mathematics, 64(6), 1227--1259.
  • Huckemann, S.F. (2011).
    Manifold stability and the central limit theorem for mean shape. Proceedings of the 30th Leeds Annual Statistical Research Workshop 5th-7th July, 2011, pdf.
  • Huckemann, S. (2011).
    Inference on 3D Procrustes Means: Tree Bole Growth, Rank Deficient Diffusion Tensors and Perturbation Models Scand. J. Statist., 38(3), 424--446 1001.0738 [stat.ME].
  • Huckemann, S. (2011).
    Intrinsic Inference on the Mean Geodesic of Planar Shapes and Tree Discrimination by Leaf Growth Ann. Statist., 39 (2), 1098–1124, arXiv 1009.3203 [stat.ME] (Preprint).
  • Huckemann, S., Hotz, T. (2010).
    Geodesic and parallel models for leaf shape Proceedings of the 29th Leeds Annual Statistical Research Workshop 6th-8th July 2010, pdf.
  • Huckemann, S., Hotz, T., Munk, A. (2010).
    Intrinsic shape analysis: Geodesic principal component analysis for Riemannian manifolds modulo Lie group actions. Discussion paper with rejoinder. Statistica Sinica, 20, 1-100 (Preprint).
  • Huckemann, S. (2010).
    Dynamic shape analysis and comparison of leaf growth. arXiv , 1002.0616v1 [stat.ME].
  • Huckemann, S., Kim, P., Koo, J.-Y., Munk, A. (2010).
    Moebius deconvolution on the hyperbolic plane with application to impedance density estimation. Ann. Statist., 38, 2465-2498 (Preprint).
  • Hotz, T., Huckemann, S., Gaffrey, D., Munk, A., Sloboda, B. (2010).
    Shape spaces for pre-alingend star-shaped objects in studying the growth of plants. Journal of the Royal Statistical Society, Series C (Applied Statistics), 59, 127-143 (Preprint).
  • Huckemann, S., Hotz, T., Munk, A. (2010).
    Intrinsic MANOVA for Riemannian Manifolds with an Application to Kendalls Spaces of Planar Shapes. IEEE Trans. Patt. Anal. Mach. Intell., 32, 593-603, "Spotlight Paper" for this issue with its "Special Section on Shape Analysis and its Applications in Image Understanding", freely available until 18 March 2010 (Preprint).
  • Huckemann, S., Hotz, T., Munk, A. (2010).
    Rejoinder on "Intrinsic shape analysis: Geodesic principal component analysis for Riemannian manifolds modulo Lie group actions." Statistica Sinica, 20, 1-100 (Preprint).
  • Huckemann, S., Hotz, T., Munk, A. (2009).
    Intrinsic two-way MANOVA for shape spaces. Proc. of the ISI2009, article.
  • Huckemann, S., Hotz, T. (2009).
    Principal Components Geodesics for Planar Shape. Journal of Multivariate Analysis, 100, 699-714 (Preprint).
  • Huckemann, S., Hotz, T., Munk, A. (2008).
    Global Models for the Orientation Field of Fingerprints: An Approach Based on Quadratic Differentials. IEEE Trans. Patt. Anal. Mach. Intell., 30(9), 1507-1519 (Preprint).
  • Huckemann, S. und Ziezold, H. (2006).
    Principal component analysis for Riemannian manifolds with an application to triangular shape spaces. Adv. Appl. Prob. (SGSA), 38, no. 2, 299 - 319.
  • Huckemann, S. (1988).
    Ein Extremalproblem für das harmonische Maß einer Familie von Extremalkontinua im Einheitskreis. Mitt. d. Math. Seminars Gießen, 184, 1 - 64 .
  • Huckemann, S. (1987).
    On the crossingpoint of Green's function of an annulus. Complex Variables Theory & Application, 8, no. 4, 281 - 291.
  • Huckemann, S. (1985).
    Spezielle Radialschlitzgebiete von festem Modul. Mitt. d. Math. Seminars Gießen, 169, 11 - 23.