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VOTER MODELS WITH HETEROZYGOSITY SELECTION

BY ANJA STURM1 AND JAN SWART2

University of Delaware and ÚTIA Prague

This paper studies variations of the usual voter model that favor types
that are locally less common. Such models are dual to certain systems of
branching annihilating random walks that are parity preserving. For both the
voter models and their dual branching annihilating systems we determine all
homogeneous invariant laws, and we study convergence to these laws started
from other initial laws.

1. Introduction and main results.

1.1. Voter models with heterozygosity selection. This paper studies variations
of the usual voter model that favor types that are locally less common. These sys-
tems can be used to model the distribution of two types of organisms (two similar
species or merely different genetic variants of the same species) that occupy over-
lapping ecological niches, and therefore compete with each other for resources. If
both types are equally fit, but their ecological niches are not completely identical,
then individuals belonging to the type that is locally less common have an advan-
tage, since they can use resources that are not used by most of their neighbors. This
effect is called negative frequency dependent selection or (positive) heterozygos-
ity selection. (Here, following a common practice in population biology, the word
heterozygosity refers to the degree of genetic variation within a population as a
whole, rather than the variation between homologous chromosomes in a diploid
organism.)

Our processes of interest are Markov processes X = (Xt)t≥0 with state space
{0,1}Zd

. We denote a typical element of {0,1}Zd
by x = (x(i))i∈Zd , where x(i) ∈

{0,1} is interpreted as the type of the organism at the site i. Borrowing terminology
from physics, we sometimes also call x(i) the spin at i. We say that a {0,1}Zd

-
valued Markov process X is spin-flip symmetric if its dynamics are symmetric
under a simultaneous flip of all spins, that is, the transition x #→ x′ happens at the
same rate as the transition (1− x) #→ (1− x′).

More specifically, we are interested in the following models.
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DEFINITION 1 (Neutral Neuhauser–Pacala model). The neutral Neuhauser–
Pacala model is the spin-flip symmetric Markov process in {0,1}Zd

such that if the
state of the process is x, then x(i) flips from 0 to 1 with rate f1(f0 + αf1) (and
likewise for jumps from 1 to 0, by spin-flip symmetry), where

fτ := 1
|Ni |

∑

j∈Ni

1{x(j)=τ } (τ = 0,1)(1.1)

denotes the local frequency of type τ in the block of (2R + 1)d − 1 sites centered
around i, not containing i itself, given by

Ni := {j = (j1, . . . , jd) ∈ Zd : 0 < |jk − ik|≤R ∀k},(1.2)

and 0≤ α ≤ 1, d,R ≥ 1 are parameters such that min{d,R}≥ 2.

The neutral Neuhauser–Pacala model is a special case of the model introduced
in [21], when their parameters satisfy λ= 1 and α01 = α10 =: α (called the “sym-
metric case” there). For α = 1, this is a usual (range R) voter model, while for
α < 1, locally rare types have an advantage. Neuhauser and Pacala interpret the
rate f1(f0 + αf1) as follows: at each site i, an organism of type 0 dies with rate
f0 +αf1 due to competition with its neighbors, and is immediately replaced by an
organism of a random type chosen from Ni . If α < 1, then the interspecific com-
petition is smaller than the intraspecific competition, hence, locally rare types die
less frequently.

Our next model of interest is another nonlinear voter model.

DEFINITION 2 (Affine voter model). The affine voter model is the spin-flip
symmetric Markov process in {0,1}Zd

such that if the state of the process is x,
then x(i) flips from 0 to 1 with rate αf1 + (1−α)1{f1>0}, where f0, f1 are defined
as for the previous model. Here 0≤ α ≤ 1 and d,R ≥ 1, min{d,R}≥ 2.

Again, for α = 1, this is a usual (range R) voter model, while for α < 1, locally
rare types have an advantage. For α = 0, the affine voter model is a threshold voter
model [7, 14, 18]. In this and the previous definition, we have excluded the case
d = 1 = R since this model has special behavior (see Section 2.1).

The third and final model we will consider is a one-dimensional model.

DEFINITION 3 (Rebellious voter model). The rebellious voter model is the
spin-flip symmetric Markov process in {0,1}Z such that if the state of the process
is x, then x(i) flips with rate

α
(
1{x(i−1) )=x(i)} + 1{x(i) )=x(i+1)}

)

(1.3)
+ (1− α)

(
1{x(i−2) )=x(i−1)} + 1{x(i+1) )=x(i+2)}

)
.
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For α = 1, this is a nearest-neighbor one-dimensional voter model, but for
α < 1, locally rare types have an advantage. To see this, note that if x(i + 1) )=
x(i + 2) and the spin at i flips, then x(i) was previously of the most common type
in the set {i, i + 1, i + 2}.

In all of the models above, we call α the (interspecific) competition parameter.
As usual with voter models, the main interest in these models lies in the phase tran-
sition between coexistence and noncoexistence. It is believed, and has been proved
in special cases, that coexistence occurs for sufficiently small competition parame-
ters α or in high dimensions, while noncoexistence occurs in low dimensions and
for large competition parameters.

We note that Blath, Etheridge and Meredith [1] have studied systems of inter-
acting Wright–Fisher diffusions with heterozygosity selection, that is, the stepping
stone analogue of the voter models discussed in the present paper.

1.2. Duality with parity preserving processes. The neutral Neuhauser–Pacala
model and the affine and rebellious voter models are cancellative spin systems.
Here, a Markov process X = (Xt)t≥0 with state space {0,1}Zd

is a cancellative
spin system if its dynamics are of the following special form. For each finite set
A⊂ Zd × Zd , there is a rate a(A)≥ 0, such that with this rate, the process jumps
from the state x to x + Ax mod(2), where

Ax(i) :=
∑

j : (i,j)∈A

x(j) mod(2) (i ∈ Zd).(1.4)

(In [13], a somewhat more general class of cancellative spin systems is considered,
where also spontaneous flips are allowed.)

The neutral Neuhauser–Pacala model can be cast into the general form of a
cancellative spin system, with rates a(A) given by

a({i}× {i, j}) = α

|Ni |
(j ∈Ni ),

(1.5)
a({i}× {j, k}) = 1− α

|Ni |2
(j, k ∈Ni , j )= k)

and a(A) = 0 in all other cases. Likewise, the affine voter model can be formulated
as a cancellative spin system, with rates a(A) given by

a({i}× {i, j}) = α|Ni |−1 (j ∈Ni ),
(1.6)

a({i}×$) = (1− α)2−|Ni |+1 ($⊂Ni ∪ {i}, |$| even),

while in case of the rebellious voter model, the rates are given by

a({i}× {i − 1, i}) = a({i}× {i, i + 1}) = α,

a({i}× {i − 2, i − 1}) = a({i}× {i + 1, i + 2}) = 1− α,
(i ∈ Z)(1.7)
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and a(A) = 0 in all other cases.
Under a suitable summability assumption on the rates, for each cancellative spin

system X there exists a unique cancellative spin system Y such that X and Y are
dual to each other in the sense that

P[|XtY0| is odd] = P[|X0Yt | is odd] (t ≥ 0),(1.8)

whenever X and Y are independent (with arbitrary initial laws), and either |X0|
or |Y0| is finite (see [13]). Here, for any x, y ∈ {0,1}Z, we write |x| := ∑

i x(i)

and (xy)(i) := x(i)y(i). If X is defined by rates aX(A), then Y is defined by rates
aY (A) given by aY (A) = aX(AT), where AT := {(j, i) : (i, j) ∈ A}. We note that
since the functions y #→ 1{|xy| is odd} with |x| < ∞ are distribution determining,
(1.8) determines the transition laws of Y uniquely.

For example, if X is the rebellious voter model, then the dynamics of Y have
the following description. We interpret the sites i for which Yt (i) = 1 as being
occupied by a particle at time t . Then each particle jumps with rate α one step to
the left, and with the same rate to the right, with the rule that if the site the parti-
cle lands on is already occupied, the two particles annihilate. Moreover, with rate
1−α, each particle gives birth to two new particles located on its nearest and next-
nearest site to the left, and with the same rate on the right, again annihilating with
any particles that may already be present on these sites. We call Y the asymmet-
ric double branching annihilation random walk (ADBARW). Also in case of the
neutral Neuhauser–Pacala and affine voter models, one may check that the dual
model is a system of branching annihilation random walks, with branching rate
proportional to 1− α. Since the number of particles that are born is always even,
these systems preserve parity.

More generally, if X is a cancellative spin system and Y is its dual, let us say
that Y is parity preserving if the process started in any finite initial state satis-
fies (−1)|Yt | = (−1)|Y0| a.s. It is not hard to see that the following statements are
equivalent: (i) X is spin-flip symmetric, (ii) Y is parity preserving, (iii) aX(A) = 0
unless |{j : (i, j) ∈A}| is even for all i ∈ Zd .

We next define the concepts of coexistence, persistence, survival and stability.
Below, 0 and 1 denote the configurations in {0,1}Zd

which are identically zero and
one, respectively.

DEFINITION 4 (Coexistence). We say that a probability law µ on {0,1}Zd
is

coexisting if µ({0,1}) = 0. We say that a spin-flip symmetric cancellative spin
system X exhibits coexistence if there exists a coexisting invariant law for X.

DEFINITION 5 (Persistence). We say that a probability law µ on {0,1}Zd
is

nonzero if µ({0}) = 0. We say that a parity preserving cancellative spin system Y

exhibits persistence if there exists a nonzero invariant law for Y .
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Below, Xx and Yy denote the processes X and Y started in Xx
0 = x and Y

y
0 = y,

respectively.

DEFINITION 6 (Survival). We say that a spin-flip symmetric cancellative spin
system X survives if

P[Xx
t )= 0 ∀t ≥ 0] > 0 for some |x| <∞.(1.9)

We say that a parity preserving cancellative spin system Y survives if

P[Yy
t )= 0 ∀t ≥ 0] > 0 for some |y| <∞, |y| even.(1.10)

Note that because of parity preservation, the left-hand side of (1.10) is always
one if |y| is odd. In view of this, it will usually be clear what we mean when we
say that a process survives. Our definitions are not entirely unambiguous, however,
since it is possible for a cancellative spin system to be both spin-flip symmetric
and parity preserving. When there is danger of confusion, we will say that the even
process survives if we mean survival in the sense of (1.10).

For a parity preserving cancellative spin system Y started in an odd initial state,
we define

Ŷt (i) := Yt
(
l(t) + i

)
(i ∈Nd)

(1.11)
where l(t) := inf{i ∈ Zd :Yt(i) = 1}.

Here, the infimum is defined componentwise. Note that (Ŷt )t≥0 is a Markov
process with state space {y ∈ {0,1}Nd

: |y| is finite and odd, inf{i :y(i) = 1} = 0}.
We call Ŷ the process Y viewed from its lower left corner.

DEFINITION 7 (Stability). We say that a parity preserving cancellative spin
system Y is stable if the state with one particle at the origin is positively recurrent
for the Markov process Ŷ .

Using duality, one can prove that each cancellative spin system has a special
invariant law, which is the limit law of the process started in product law with
intensity 1/2 [13]. Thus,

P[X1/2
t ∈ ·] .⇒

t→∞ P[X1/2
∞ ∈ ·] =: ν1/2

X ,

(1.12)
P[Y 1/2

t ∈ ·] .⇒
t→∞ P[Y 1/2

∞ ∈ ·] =: ν1/2
Y ,

where ν1/2
X and ν1/2

Y are invariant laws for the processes X and Y , respectively.
Because of certain analogies with additive spin systems, we call ν1/2

X and ν1/2
Y the

odd upper invariant laws of X and Y , respectively.
The next lemma is a simple consequence of duality.
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LEMMA 1 (Invariant laws and survival). Let X be a spin-flip symmetric can-
cellative spin system and let Y be its dual parity preserving cancellative spin sys-
tem. Then:

(a) The following statements are equivalent: (i) X exhibits coexistence, (ii) ν1/2
X

is not concentrated on {0,1}, (iii) Y survives.
(b) The following statements are equivalent: (i) Y persists, (ii) ν1/2

Y is not con-
centrated on 0, (iii) X survives.

Apart from the relations in Lemma 1, for our models of interest, one readily
conjectures a number of other relations between the concepts we have just intro-
duced. While being supported by numerical simulations, these conjectures appear
to be hard to prove in general. Thus, we formulate as open questions:

Q1. Is coexistence of X equivalent to survival of X?
Q2. Does stability of Y imply extinction of Y ?
Q3. Does coexistence for α imply coexistence for all α′ < α?

The rebellious voter model has a special property, explained in Section 2.1, that
allows us to answer Question Q1 positively for this model.

LEMMA 2 (Survival and coexistence). The rebellious voter model survives if
and only if it exhibits coexistence.

1.3. Results. We say that a probability law µ on {0,1}Zd
is homogeneous if µ

is translation invariant. The odd upper invariant laws ν1/2
X and ν1/2

Y are examples of
homogeneous invariant laws, and so are the delta-measures δ0 and (in case of X)
δ1. We will see that, under weak additional assumptions, there are no others.

For additive spin systems, duality may be employed to show that, under certain
conditions, the upper invariant law is the only nonzero homogeneous invariant law,
and the long-time limit law for any system started from a nonzero homogeneous
initial law; see [15] and [17], Theorem III.5.18. With certain complications, these
techniques can be adapted to cancellative spin systems and their odd upper in-
variant laws. This idea has been successfully applied in [4] to certain annihilating
branching processes. As our next theorem demonstrates, it can be made to work
for our models as well.

THEOREM 3 (Homogeneous invariant laws). Let X be either the neutral
Neuhauser–Pacala model, the affine voter model or the rebellious voter model and
let Y be its dual. Then:

(a) If α < 1 and Y survives, then ν1/2
X is the unique homogeneous coexisting

invariant law of X. If, moreover, α > 0 and Y is not stable, then the process X
started in any homogeneous coexisting initial law satisfies

P[Xt ∈ ·] .⇒
t→∞ν

1/2
X .(1.13)
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(b) If α < 1 and X survives, then ν1/2
Y is the unique homogeneous nonzero

invariant law of Y . If, moreover, α > 0 and d ≥ 2, then the process Y started in
any homogeneous nonzero initial law satisfies

P[Yt ∈ ·] .⇒
t→∞ν

1/2
Y .(1.14)

Theorem 3 does not tell us anything about the values of α for which coexistence
occurs. For the affine voter model, coexistence for α = 0 has been proved in [7,
18]. It seems likely that, using comparison with oriented percolation, this result can
be extended to small positive α. Comparison with oriented percolation was used in
[21], where coexistence for the neutral Neuhauser–Pacala model for α sufficiently
close to zero is proved, and in [9] where (among other things) coexistence is proved
for the neutral Neuhauser–Pacala model in dimensions d ≥ 3 for α sufficiently
close to one.

Again using comparison with oriented percolation, we will prove that, for
small α, the rebellious voter model coexists. In fact, we prove considerably more.

THEOREM 4 (Complete convergence). Let X be the rebellious voter model
and let Y be its dual. Then there exists an α′ > 0, such that for all α ∈ [0,α′):

(a) The process X exhibits coexistence and survival. The process Y exhibits
persistence, survival and is not stable.

(b) The process X started in an arbitrary initial law satisfies

P[Xt ∈ ·] .⇒
t→∞ρ0δ0 + ρ1δ1 + (1− ρ0 − ρ1)ν

1/2
X ,(1.15)

where ρq := P[Xt = q for some t ≥ 0] (q = 0,1).

In analogy with similar terminology for the contact process, we call the result
in part (b) complete convergence. Complete convergence for the threshold voter
model (i.e., the affine voter model with α = 0) was proved in [14].

2. Methods and discussion.

2.1. Interfaces. For one-dimensional models, there is, apart from duality,
a useful additional tool available. If X is a spin-flip symmetric cancellative spin
system on Z, then setting

Yt (i) := 1{Xt (i) )=Xt(i+1)} (t ≥ 0, i ∈ Z)(2.1)

defines a Markov process Y = (Yt )t≥0 in {0,1}Z that we call the interface model
associated with X. Under a suitable summability assumption on the rates, Y is a
parity preserving cancellative spin system.

By looking at interfaces, we can explain our interest in the rebellious voter
model. Moreover, we can explain why we have excluded the case d = 1 = R from
Definitions 1 and 2. Consider the following spin-flip symmetric models.
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DEFINITION 8 (One-dimensional models). For any 0 ≤ α ≤ 1, the disagree-
ment voter model is the cancellative spin system on Z with rates a(A) given by

a({i}× {i − 1, i}) = a({i}× {i, i + 1}) = α,

a({i}× {i − 1, i + 1}) = 1− α, (i ∈ Z),(2.2)

and the swapping voter model is given by the rates

a({i}× {i − 1, i}) = a({i}× {i, i + 1}) = α,

a({i, i + 1}× {i, i + 1}) = 1− α, (i ∈ Z).(2.3)

In each case, it is understood a(A) = 0 for all A other than those mentioned.

If in the definition of the neutral Neuhauser–Pacala model with competition
parameter αNP one would set d = 1 = R, then up to a trivial redefinition of the
speed of time, one would obtain a disagreement voter model with parameter α =
2αNP/(1 + αNP). Likewise, setting d = 1 = R in the definition of the affine voter
model with competition parameter αAV yields, up to a change of the speed of time,
a disagreement voter model with parameter α = 1/(2− αAV).

To explain the special properties of the disagreement and rebellious voter mod-
els, we look at the way these models are related to other models through duality
and interface relations. These relations are summarized in Figure 1. Recall that
the dual of the rebellious voter model is the ADBARW. The dual of the disagree-
ment voter model has been called the double branching annihilating random walk
(DBARW) in [24]. The swapping voter model has a mixture of voter model and
exclusion process dynamics. We call its dual the swapping annihilating random
walk (SARW).

The swapping annihilating random walk (SARW) has the special property that
the number of particles cannot increase. As a result, the behavior of the disagree-
ment and swapping voter models and their duals is largely known. For each α > 0,
the disagreement and swapping voter models exhibit extinction and noncoexis-
tence. The DBARW and the SARW get extinct and are not persistent. These facts
follow from [24], Theorem 8 and [21], Theorem 2(b). The disagreement voter

FIG. 1. Relations between models.
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FIG. 2. Equilibrium density of the ADBARW as a function of α. The data were obtained starting
with one particle on an interval of 700 sites with periodic boundary conditions, gradually lowering α
from one to zero during a time interval of length 300,000.

model with α = 1/2 is a threshold voter model and has been studied earlier in [7].
It is trivial that the SARW is stable. We will prove stability for the DBARW else-
where [23].

The rebellious voter model has the special property that its interface model and
dual coincide, which is one of our main reasons for introducing it. This property is
very helpful in the proof of Theorem 4. Moreover, it allows us to prove Lemma 2:

PROOF OF LEMMA 2. It is easy to see that X survives if and only if its (even)
interface model Y survives. Since Y is also the dual of X, by Lemma 1, X exhibits
coexistence if and only if Y survives. !

For the rebellious voter model, numerical simulations suggest the existence of
a critical value αc ≈ 0.5 such that, for α < αc, one has survival, coexistence and
instability of the interface model, while, for α > αc, one has extinction, noncoex-
istence and stability of the interface model (see Figure 2). We conjecture qualita-
tively similar behavior (but with a different critical point) for the one-dimensional
neutral Neuhauser–Pacala and affine voter models. Note that in this respect, these
models are quite different from the disagreement voter model, which gets extinct
for all α > 0.

2.2. Homogeneous laws. In this section we discuss the methods used to prove
Theorem 3. Using duality, it is not hard to see (see Section 3.1) that the odd upper
invariant law of X, defined in (1.12), is uniquely determined by

P[|X1/2
∞ y| is odd] = 1

2P[Yy
s )= 0 ∀s ≥ 0] (|y| <∞).(2.4)
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In order to prove the convergence in (1.13), it therefore suffices to show that

lim
t→∞P[|Xty| is odd] = 1

2P[Yy
s )= 0 ∀s ≥ 0] (|y| <∞).(2.5)

Using duality (1.8), we can rewrite the left-hand side as

lim
t→∞P[|Xt0Y

y
t−t0

| is odd],(2.6)

where t0 > 0 is fixed. Conditioning on the event of survival, we need to show that

lim
t→∞P[|Xt0Y

y
t−t0

| is odd | Yy
s )= 0 ∀s ≥ 0] = 1

2 .(2.7)

It turns out that we can show this, provided that we can show that

lim
t→∞P[0 < |Yy

t | < N ] = 0 (N ≥ 1),(2.8)

that is, Y exhibits a form of extinction versus unbounded growth. To prove this,
we need to assume that Y is not stable. The proof uses induction on N and is quite
subtle. Originally, we only knew how to prove convergence in Césaro mean, until
we saw the paper of Handjani [14] where usual convergence as t →∞ is proved
in the context of threshold voter models.

The proof of the convergence in (1.14) follows similar lines. This time, instead
of (2.7), we need to prove

lim
t→∞P[|Xx

t−t0
Yt0 | is odd | Xx

s )= 0 ∀s ≥ 0] = 1
2 .(2.9)

At first, it might seem that this is true provided that, in analogy with (2.8), one
has that P[0 < |Xx

t | < N]→ 0 for all N ≥ 1. Indeed, the reference [22] contains
a claim of this sort, but as we explain in Section 3.6 below, this is not correct.
Indeed, in order for the probability on the left-hand side of (2.9) to be close to 1

2 ,
we need many events that could affect the parity of |Xx

t−t0
Yt0 |. This means that

there must be many sites i, j, k, close to each other, such that Y0(i) = 1, while
Xx

t−t0
(j) )= Xx

t−t0
(k). Indeed, it suffices to verify that, conditional on survival, the

quantity

|∇Xx
t | := ∣∣{(i, j) ∈ Zd ×Zd : |i − j | = 1,Xx

t (i) )= Xx
t (j)}∣∣(2.10)

tends to infinity as t →∞. In dimensions d ≥ 2, we can verify this, but in dimen-
sion d = 1, we run into the difficulty that it is hard to rule out the scenario that,
at certain large times, Xx

t consists of just one large interval of ones, in which case
|∇Xx

t | = 2. (Indeed, to prove a result in d = 1, one would probably need to assume
that the interface model associated with X is not stable. We have not carried out
this approach.)
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2.3. Comparison with oriented percolation. Theorem 4 is similar to the main
result of [14]. In that paper a key technical tool is comparison of threshold voter
models with threshold contact processes, which in [18] were shown to survive.
Using complete convergence for these threshold contact processes, one can then
prove the analogue statement for the threshold contact processes.

Our approach will be similar, except that we will use comparison with oriented
percolation. Also, instead of proving a comparison result for the rebellious voter
model X, we prefer to work with the ADBARW Y , which is both the dual and
the interface model associated with X. We will prove that if α is small, then for
each p < 1, the process Y viewed on suitable length and time scales dominates
an oriented percolation with parameter p. This kind of rescaling argument was
first used in Bramson and Durrett [3]. In [4, 11], it was shown how the technique
may be amended to cover also interacting particle systems that lack monotonicity.
Unfortunately, these references are somewhat imprecise when it comes to showing
m-dependence for the objects one compares with; this is done more carefully in
[12]. We will use a somewhat different argument to ensure m-dependence than the
one used in that reference.

Since the comparison result is of some interest on its own, we formulate it here.
We first introduce oriented (site) percolation with percolation parameter p. Let
Z2

even := {(x, n) ∈ Z2 :x + n is even}. Let {ωz : z ∈ Z2
even} be i.i.d. Bernoulli ran-

dom variables with P[ωz = 1] = p. For z, z′ ∈ Z2
even, we say that there is an open

path from z to z′, denoted as z → z′, if there exist (xn, n), . . . , (xm,m) ∈ Z2
even

with |xk − xk−1| = 1 and ω(xk,k) = 1 for all n < k ≤ m, such that (xn, n) = z
and (xm,m) = z′. By definition, z→ z for all z ∈ Z2

even. For given A ⊂ Zeven :=
{2n :n ∈ Z}, we put for n≥ 0

Wn := {x ∈ Z : (x, n) ∈ Z2
even,∃x′ ∈A s.t. (x′,0)→ (x, n)}.(2.11)

Then W = (Wn)n≥0 is a Markov chain, taking values, in turn, in the subsets of
Zeven and Zodd, started in W0 = A. We call W the oriented percolation process.

The comparison entails defining certain “good” events concerning the behavior
of the ADBARW in large space-time boxes. Let L≥ 1 and T > 0. For any x ∈ Z,
put

Ix := {2Lx −L, . . . ,2Lx + L} and
(2.12)

I ′x := {2Lx − 4L, . . . ,2Lx + 4L}.
Let Y be an ADBARW started in an arbitrary initial state Y0. We define a set of
“good” points for n≥ 0 by

χn := {x ∈ Z : (x, n) ∈ Z2
even,∃i ∈ Ix s.t. YnT (i) = 1 and,

(2.13)
in case n≥ 1, ∀(n− 1)T < t ≤ nT ∃i ∈ I ′x s.t. Yt (i) = 1}.

With these definitions, our result reads:
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THEOREM 5 (Comparison with oriented percolation). For each p < 1, there
exists an α′ > 0 such that for all α ∈ [0,α′) there exist L≥ 1 and T > 0, such that
if Y is an ADBARW with parameter α, started in an arbitrary initial state Y0, then
the process (χn)n≥0 defined in (2.13) can be coupled to an oriented percolation
process (Wn)n≥0 with parameter p and initial state W0 = χ0, in such a way that
Wn ⊂ χn for all n≥ 0.

2.4. Discussion and open problems. Three open problems have already been
formulated in Section 1.2. As a fourth problem, we mention the following:

Q4. For which values of the parameters do voter models with heterozygosity se-
lection exhibit noncoexistence?

As mentioned before, there are several results proving coexistence for the sort of
models we are considering. Very little is known about noncoexistence, except for
the pure voter model in dimensions d = 1,2 and the disagreement voter model,
which is somehow special. There is some hope that the methods used in [9] (see
also [8]), who prove coexistence for the neutral Neuhauser–Pacala model with
α close to one in dimensions d ≥ 3, can be extended to cover dimension 2 as
well. Therefore, noncoexistence can be expected in dimension one only. In fact, it
seems that physicists believe that for these and similar models, there is a critical
dimension dc ≈ 4/3 such that only below dc there is a nontrivial phase transition
between coexistence and noncoexistence [5, 6, 25]. Here, the fractional dimension
probably refers to self-similar lattices.

Note that, by duality, proving noncoexistence for large interspecific competi-
tion boils down to proving extincton for a parity preserving branching process
with a small branching rate. Usually, for interacting particle systems, it is easier to
find sufficient conditions for extinction than for survival; this is true for the con-
tact process, and also for the annihilating branching process studied in [4]. The
difficulties in our case come from parity preservation, which makes extinction dif-
ficult, slow (slower than exponential) and “nonlocal,” since it may require particles
to come from far away to annihilate each other.

2.5. Outline. The rest of the paper is devoted to proofs. Lemma 2 has already
been proved in Section 2.1 above. In Section 3 below, we prove Lemma 1 and
Theorem 3. Theorems 4 and 5 are proved in Section 4.

3. Homogeneous invariant laws.

3.1. Generalities. In order to prepare for the proof of Theorem 3, we will de-
rive some results for a general class of cancellative spin systems on Zd . Through-
out this section, X is a cancellative spin system on Zd defined by rates a(A) =
aX(A) (see Section 1.2), and Y is its dual cancellative spin system defined by rates
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aY (A) = aX(AT). In order for X and Y to be well-defined, we make the summa-
bility assumptions:

(i) sup
i

∑

A3i

a(A)|{j : (i, j) ∈A}| <∞,

(3.1)
(ii) sup

i

∑

A3i

a(A)|{j : (j, i) ∈A}| <∞.

We also assume that our rates are (spatially) homogeneous, in the sense that
a(TiA) = a(A) for all i ∈ Zd , and finite A⊂ Zd ×Zd , where

TiA := {(j + i, k + i) : (j, k) ∈A} (i, j, k ∈ Zd).(3.2)

We will sometimes need the graphical representation of X. Independently for each
finite A ∈ Zd × Zd , let πA be a random, locally finite subset of R, generated by
a Poisson processes with intensities a(A). We visualize this by drawing an arrow
from (i, t) to (j, t) for each t ∈ πA and (j, i) ∈ A (note the order). By definition,
a path from a subset C ⊂ Zd ×R to another such subset D is a sequence of points
i0, . . . , in ∈ Zd and times t0 ≤ t1 < · · · < tn ≤ tn+1 (n≥ 0) with

∀1≤m≤ n ∃A s.t. tm ∈ πA and (im, im−1) ∈A,(3.3)

such that (i0, t0) ∈ C and (in, tn+1) ∈ D. Thus, a path must walk upward in time
and may jump from one site to another along arrows. With these conventions, for
any subset U ⊂ Zd , setting for t ≥ 0, i ∈ Zd ,

Xt(i) := 1{the number of paths from U×{0} to (i,t) is odd}(3.4)

defines a version of the cancellative spin system X defined by the rates a(X), with
initial state X0 = 1U .

PROOF OF LEMMA 1. We only prove part (a), the proof of part (b) being
similar. By duality (1.8), for each y ∈ {0,1}Zd

with |y| <∞,

P[|X1/2
t y| is odd] = P[|X1/2

0 Y
y
t | is odd] = 1

2P[Yy
t )= 0],(3.5)

hence,

P[|X1/2
t y| is odd]−→

t→∞
1
2P[Yy

t )= 0 ∀t ≥ 0].(3.6)

Recall that the functions x #→ 1{|xy| is odd} with |y| <∞ are distribution determin-
ing. Therefore, the odd upper invariant law of X is uniquely determined by (2.4). If
Y survives, then (2.4) shows that P[|X1/2

∞ y| is odd] > 0 for some |y| even, hence,
ν

1/2
X is not concentrated on {0,1}. This shows that (iii)⇒(ii). To show that (ii)⇒(i),

it suffices to note that P[X1/2
∞ ∈ · | X

1/2
∞ )= 0,1] is a coexisting invariant law. To

see that (i)⇒(iii), assume that P[X∞ ∈ ·] is a coexisting invariant law for X. Let
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δi ∈ {0,1}Zd
be defined by δi(j) = 1 if i = j and 0 otherwise. Then by the dual-

ity (1.8) applied to the process X started in X∞, we have, for i )= j, t ≥ 0,

P[Y δi+δjt )= 0]≥ P[|X∞Y
δi+δj
t | is odd] = P[X∞(i) )= X∞(j)] > 0,(3.7)

and therefore,

P[Y δi+δjt )= 0 ∀t ≥ 0] = lim
t→∞P[Y δi+δjt )= 0]≥ P[X∞(i) )= X∞(j)] > 0,(3.8)

which shows that Y survives. !

For later use, we introduce some more notation. The set {0,1}, equipped with
multiplication and addition modulo 2, is a finite field. We can view {0,1}Zd

as a
linear space over this field. In this point of view, if we identify a finite set A ⊂
Zd × Zd with the matrix A such that A(i, j) = 1 if (i, j) ∈ A and A(i, j) = 0
otherwise, then Ax as defined in (1.4) is the usual action of a matrix on a vector:

Ax(i) =
∑

j

A(i, j)x(j) mod(2).(3.9)

In line with these observations, for x ∈ {0,1}Zd
, we let xT denote the [mod(2)]

linear form on {0,1}Zd
given by

xTy :=
∑

i

x(i)y(i) mod(2) = 1{|xy| is odd},(3.10)

which is well defined whenever |xy| <∞.

3.2. Uniqueness and convergence. In this section we continue to work in the
general set-up introduced above. We show how a sort of “extinction versus un-
bounded growth” for the dual process Y can be used to prove convergence to equi-
librium for X, started in a homogeneous initial law. Our result is similar in spirit
to claims by Simonelli [22]. Unfortunately, as already mentioned in Section 2.2,
that reference contains an error, which we point out in Section 3.6 below.

To formulate our result, we need to identify “good” configurations where parity
can change. To this aim, we select a finite set B whose elements are finite subsets B

of Zd ×Zd such that a(B) > 0, and we define, for y ∈ {0,1}Zd
,

‖y‖B := |{i ∈ Zd :∃x ∈ {0,1}Zd
,B ∈B s.t. yT(TiB)x = 1}|.(3.11)

Note that yT(TiB)x = 1 is equivalent to |{(j, k) ∈ TiB :y(j) = 1 = x(k)}| being
odd, or, equivalently, to |x′y| having a different parity from |xy|, where x′ = x +
(TiB)x mod(2).

For our models of interest, we may choose ‖ · ‖B as follows. If X is a neu-
tral Neuhauser–Pacala model affine voter model or rebellious voter model (with
arbitrary α), then we can find i, j such that

a({0}× {i, j}) > 0.(3.12)



VOTER MODELS WITH HETEROZYGOSITY SELECTION 73

Taking for B, the one-point set {{0}× {i, j}} now leads to ‖y‖B = |y|. If, on the
other hand, X is the dual of any of these models, then for each k = 1, . . . , d , we
can find ik such that

a({0, ek}× {ik}) > 0,(3.13)

where e1 := (1,0, . . . ,0), . . . , ed := (0, . . . ,0,1) are unit vectors in each of the d

dimensions of Zd . Taking for B, the set {{0, e1} × {i1}, . . . , {0, ed} × {id}} now
yields ‖y‖B = |∇y| [recall (2.10)].

We say that a probability law µ on {0,1}Zd
is locally nonsingular if, for every

finite $⊂ Zd and every y ∈ {0,1}$,

µ
({x :x(i) = y(i) ∀i ∈$}) > 0,(3.14)

that is, every finite configuration has positive probability. We say that µ is X-
nontrivial if µ is concentrated on states x such that P[Xx

t ∈ ·] is locally nonsingular
for each t > 0.

THEOREM 6 (Homogeneous invariant laws). Assume that X has a homoge-
neous X-nontrivial invariant law. If the dual process Yy started in any finite initial
state Y

y
0 = y satisfies

P[∃t ≥ 0 s.t. ‖Yy
t ‖B /∈ {1, . . . ,N}] = 1 (N ≥ 1, |y| <∞),(3.15)

then ν1/2
X is X-nontrivial, and the unique homogeneous X-nontrivial invariant law

of X. If, moreover, one has

lim
t→∞P[‖Yy

t ‖B /∈ {1, . . . ,N}] = 1 (N ≥ 1, |y| <∞),(3.16)

then the process X started in any homogeneous X-nontrivial initial law satisfies

P[Xt ∈ ·] .⇒
t→∞ν

1/2
X .(3.17)

The proof depends on two lemmas.

LEMMA 7 (Parity uncertainty). For each ε > 0 and t > 0, there exists an
N ≥ 1 such that if X and Y are started in deterministic initial states X0 and Y0
satisfying

|{i ∈ Zd :∃B ∈B s.t. Y T
0 (TiB)X0 = 1}|≥N,(3.18)

then
∣∣P[|XtY0| is odd]− 1

2

∣∣≤ ε.(3.19)
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PROOF. Let A denote the set of all finite subsets of Zd ×Zd . For any A ∈A,
let us put

R−(A) := {j :A(i, j) = 1 for some i ∈ Zd},
(3.20)

R+(A) := {i :A(i, j) = 1 for some j ∈ Zd},

and let us call R(A) := R−(A)∪R+(A) the range of A. Let us say that A, Ã ∈A
are disjoint if R(A) ∩ R(Ã) = ∅. If X0, Y0 satisfy (3.18), then it is not hard to
see that we can successively choose i1, . . . , in ∈ Zd and B1, . . . ,Bn ∈B such that
Ti1B1, . . . , TinBn are disjoint, Y T

0 (TimBm)X0 = 1 for all 1≤m≤ n, and

n≥N/(|B|K2),(3.21)

where K := max{|R(B)| :B ∈B}. Indeed, for each B,B ′ ∈B and i ∈ Zd , there
are at most K2 points j ∈ Zd such that R(TjB

′) ∩ R(TiB) )= ∅, so once we pick
a point from the set in (3.18), there are at most |B|K2 points we cannot pick
anymore. We now use the graphical representation (see Section 3.1). Let

M := {m : 1≤m≤ n, |πTimBm ∩ (0, t)| ∈ {0,1} and

|πA ∩ (0, t)| = 0 ∀A ∈A,A )= TimBm(3.22)

s.t. R(A)∩R(TimBm) )= ∅}.

Thus, for each m ∈M , the Poisson process associated with TimBm becomes active
zero or one time during the time interval (0, t), and no other Poisson process cre-
ates arrows in the range R(TimBm) during this time interval. We claim that if N is
sufficiently large, then the set M is large with high probability.

Indeed, since a(TimBm) = a(Bm) is bounded from above, the probability that
|πTimBm ∩ (0, t)| ∈ {0,1} is uniformly bounded from below. By summability [con-
dition (3.1)], the probability that no other Poisson process creates arrows in the
range R(TimBm) during (0, t) is also uniformly bounded from below. These events
are not independent for different m, but they are positively correlated, so we get a
lower bound assuming independence, which proves our claim.

Let F be the σ -field generated by the random set M and by all Poisson
processes πA ∩ (0, t) with A ∈ A\{TimBm :m ∈ M}. Thus, F corresponds to
knowing the random set M and all Poisson processes on (0, t), except those as-
sociated with the TimBm with m ∈ M . Set θm := a(Bm)t . Note that the θm are
uniformly bounded from above and below by the fact that B is finite. We claim
that if we condition on F , then under the conditioned law, the random variables
|πTimBm ∩ (0, t)| are independent {0,1}-valued random variables with

P[|πTimBm ∩ (0, t)| = 1 | F ] = θme−θm

e−θm + θme−θm
=: φm (m ∈M).(3.23)



VOTER MODELS WITH HETEROZYGOSITY SELECTION 75

Indeed, first condition on all πA ∩ (0, t) with A )= Ti1B1, . . . , TinBn. Under this
conditional law, the πTi1B1 ∩ (0, t), . . . ,πTinBn ∩ (0, t) are independent Poisson
processes with intensities a(B1), . . . , a(Bn). Let

M ′ := {
m : 1≤m≤ n, |πA ∩ (0, t)| = 0 ∀A ∈A\{Ti1B1, . . . , TinBn}

(3.24)
s.t. R(A)∩R(TimBm) )= ∅

}
.

Under the conditional law we are considering, M ′ is a deterministic set, and the
πTimBm ∩ (0, t) with m ∈M ′ are independent Poisson processes. Hence, since

M = {
m ∈M ′ : |πTimBm ∩ (0, t)| ∈ {0,1}},(3.25)

if we condition also on the πTimBm ∩ (0, t) with m ∈M ′\M , then under this new
conditional law, the πTimBm ∩ (0, t) with m ∈M are independent Poisson processes
conditioned to produce zero or one point. This explains (3.23).

Using the graphical representation, we now write X0 = 1U , Y0 = 1V , and

P[|XtY0| is even]− P[|XtY0| is odd] = E[(−1)P+P ′],(3.26)

where P and P ′ are the number of paths from U × {0} to V × {t} that do and do
not use, respectively, arrows created by the Poisson processes πTimBm ∩ (0, t) with
m ∈M . Note that due to the definition of M the paths counted by P use exactly
one arrow on (0, t) created by a Poisson processes πTimBm ∩ (0, t) with m ∈M .
Since Y T

0 (TimBm)X0 = 1 for m ∈M , this implies that P = ∑
m∈M |πTimBm ∩ (0, t)|

mod(2). It therefore follows that

E[(−1)P+P ′ | F ] = (−1)P
′E[(−1)P | F ]

= (−1)P
′ ∏

m∈M

E
[
(−1)

|πTimBm∩(0,t)| | F ]
(3.27)

= (−1)P
′ ∏

m∈M

(
(1− φm)− φm

)
,

where the φm are defined in (3.23). Integrating over the σ -field F , it follows that,
under the unconditional law,

∣∣P[|XtY0| is even]− P[|XtY0| is odd]∣∣≤ E
[

∏

m∈M

|1− 2φm|
]

.(3.28)

Since the φm are bounded away from zero and one and since |M| is with high
probability large if N is large, it follows that for each ε > 0 we can choose N large
enough such that (3.19) holds. !

LEMMA 8 (Many good configurations). Let X be started in a homogeneous
X-nontrivial initial law and let t > 0. Assume that yn ∈ {0,1}Zd

satisfy

lim
n→∞‖yn‖B =∞.(3.29)
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Then

|{i ∈ Zd :∃B ∈B s.t. yT
n (TiB)Xt = 1}| P−→

n→∞∞,(3.30)

where
P→ denotes convergence in probability.

PROOF. This proof very closely follows ideas from [15], Theorem (9.2). Set

Cn := {
i ∈ Zd :∃x ∈ {0,1}Zd

, B ∈B s.t. yT
n (TiB)x = 1

}
,

(3.31)
C′

n := {i ∈ Zd :∃B ∈B s.t. yT
n (TiB)Xt = 1}.

By (3.29), |Cn|→∞. We need to show that the random subsets C′
n ⊂ Cn satisfy

P[|C′
n|≥N ] −→

n→∞1(3.32)

for all N ≥ 1. By dividing Cn into N disjoint sets, each with size tending to infinity,
we can reduce this to showing (3.32) for N = 1. For each i ∈ Cn, choose Bi,n ∈B

and xi,n ∈ {0,1}Zd
such that

yT
n (TiBi,n)xi,n = 1.(3.33)

Since B is finite, by going to a subsequence if necessary, we can assume without
loss of generality that for some B ∈ B and z ∈ {0,1}R+(B), where R+(B) is as
in (3.20), |C̃n|→∞, where

C̃n := {
i ∈ Cn :Bi,n = B,

(
xi,n(i + j)

)
j∈R+(B) = z

}
.(3.34)

It now suffices to prove that P[|C̃′
n|≥ 1]→ 1, where

C̃′
n := {

i ∈ Cn :
(
Xt(i + j)

)
j∈R+(B) = z

}
.(3.35)

Equivalently, we need to show that

E
[

∏

i∈C̃n

1{(Xt (i+j))j∈R+(B) )=z}

]

−→
n→∞0.(3.36)

Fix ε > 0 and k ≥ 1. For each L≥ 1, we can find, for n sufficiently large, subsets
C̃L,k

n ⊂ C̃n such that |i−j |≥ L for all i, j ∈ C̃L,k
n , i )= j and |C̃L,k

n | = k. We claim
that there exists an L ≥ 1 such that the process Xx started in any deterministic
initial state Xx

0 = x ∈ {0,1}Zd
satisfies

E

[
∏

i∈C̃
L,k
n

1{(Xx
t (i+j))j∈R+(B) )=z}

]

(3.37)
≤

∏

i∈C̃
L,k
n

E
[
1{(Xx

t (i+j))j∈R+(B) )=z}
] + εk.
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One way to see this is to check that the conditions of [17], Theorem I.4.6 are ful-
filled. Alternatively, one can use the graphical representation. It is not hard to see
that, for L sufficiently large, the probability that there exist two paths between
time zero and time t , one ending at R+(TiB) and the other at R+(TjB) for some
i, j ∈ C̃L,k

n , i )= j , and both starting at the same site, is bounded by εk. This im-
plies (3.37).

By (3.37), Hölder’s inequality and the fact that P[X0 ∈ ·] is homogeneous, it
follows that

lim sup
n→∞

E
[

∏

i∈C̃n

1{(Xt (i+j))j∈R+(B) )=z}

]

≤ lim sup
n→∞

∫
P[X0 ∈ dx]E

[
∏

i∈C̃
L,k
n

1{(Xx
t (i+j))j∈R+(B) )=z}

]

≤ lim sup
n→∞

∫
P[X0 ∈ dx]

∏

i∈C̃
L,k
n

E
[
1{(Xx

t (i+j))j∈R+(B) )=z}
] + εk(3.38)

≤ lim sup
n→∞

∏

i∈C̃
L,k
n

(∫
P[X0 ∈ dx]P[(

Xx
t (i + j)

)
j∈R+(B) )= z

]k
)1/k

+ εk

=
∫

P[X0 ∈ dx]P[
(Xx

t (j))j∈R+(B) )= z
]k + εk.

Letting first ε→ 0 and then k→∞, using nontriviality, we arrive at (3.36). !

Lemmas 7 and 8 combine to give the following corollary.

COROLLARY 9 (Parity indeterminacy). Let X be started in a homogeneous
X-nontrivial initial law and let t > 0. Assume that yn ∈ {0,1}Zd

satisfy

lim
n→∞‖yn‖B =∞.(3.39)

Then

lim
n→∞P[|Xtyn| is odd] = 1

2 .(3.40)

PROOF OF THEOREM 6. Imagine that ν is a homogeneous X-nontrivial in-
variant law of X. Put

f (y) :=
∫
ν(dx)1{|xy| is odd} (y ∈ {0,1}Zd

, |y| <∞).(3.41)
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We claim that (f (Y
y
t ))t≥0 is a martingale. Indeed, if X is a stationary process

with law P[Xt ∈ ·] = ν (t ∈ R), independent of Yy , then, by duality (1.8) for y ∈
{0,1}Zd

with |y| <∞,

E[f (Y
y
t )] = P[|X0Y

y
t | is odd] = P[|XtY

y
0 | is odd] = f (y).(3.42)

Using, moreover, the Markov property of Y , this shows that (f (Y
y
t ))t≥0 is a

bounded martingale. Set

τN := inf
{
t ≥ 0 :‖Yy

t ‖B /∈ {1, . . . ,N}},(3.43)

which is a.s. finite for all N ≥ 1 by our assumption (3.15). Hence, by optional
stopping,

f (y) = E[f (Y y
τN

)] = P[|XtY
y
τN

| is odd|‖Yy
τN
‖B > N]P[‖Yy

τN
‖B > N ].(3.44)

Letting N →∞, using Corollary 9, we find that for y ∈ {0,1}Zd
with |y| <∞,

∫
ν(dx)1{|xy| is odd} = f (y) = 1

2P[Yy
t )= 0 ∀t ≥ 0].(3.45)

By (2.4), this implies that ν = ν
1/2
X .

If, moreover, (3.16) holds and X is started in any homogeneous X-nontrivial
initial law, then, by duality and Corollary 9,

P[|Xty| is odd] = P[|XsY
y
t−s | is odd]−→

t→∞
1
2P[Yy

t )= 0 ∀t ≥ 0].(3.46)

Since this holds for any finite y, it follows that P[Xt ∈ ·]⇒ ν
1/2
X as t →∞. !

3.3. Extinction versus unbounded growth. In order for Theorem 6 to be ap-
plicable, we need to check that the dual Y of a cancellative spin system X satisfies
a version of “extinction versus unbounded growth,” that is, we must show that
‖Yy

t ‖B is either zero or large at random times t or at large fixed t . Therefore, in
this section, we derive sufficient conditions for a cancellative spin system to show
this kind of behavior.

We start with some simple observations. Let X be a nonexplosive continuous-
time Markov process with countable state space S (e.g., a cancellative spin system
restricted to the space of finite states). Let Xx denote the process X started in
Xx

0 = x and let D ⊂ S.

LEMMA 10 (Markov process leaving sets). (a) If infx∈D P[∃t ≥ 0 s.t. Xx
t /∈

D] > 0, then P[∃t ≥ 0 s.t. Xx
t /∈D] = 1 for all x ∈ S.

(b) If infx∈D P[∃t ≥ 0 s.t. Xx
u /∈D ∀u≥ t] > 0, then P[∃t ≥ 0 s.t. Xx

u /∈D ∀u≥
t] = 1 for all x ∈ S.
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PROOF. To prove part (b), set ε := infx∈D P[∃t ≥ 0 s.t. Xx
u /∈ D ∀u ≥ t]. Let

(Ft )t≥0 be the filtration generated by Xx . By the Markov property and martingale
convergence,

ε1D(Xs) ≤ P[∃t ≥ 0 s.t. Xu /∈D ∀u≥ t | Xs]
= P[∃t ≥ 0 s.t. Xu /∈D ∀u≥ t | Fs](3.47)

−→
s→∞ 1{∃t≥0 s.t. Xu /∈D ∀u≥t} a.s.

This shows that lims→∞ 1D(Xs) = 0 a.s. on the complement of the event
{∃t ≥ 0 s.t. Xu /∈ D ∀u ≥ t}, which implies our claim. Part (a) follows from
part (b), applied to the process stopped at τ := inf{t ≥ 0 :Xx

t /∈D}. !

As a simple consequence of Lemma 10, we obtain the following corollary. Re-
call the definition of |∇X| in (2.10).

COROLLARY 11 (Extinction versus unbounded growth). Let α < 1 and let X
be either the neutral Neuhauser–Pacala model, affine voter model or rebellious
voter model, and let Y be its dual parity preserving branching process. Then:

(a) One has

P[∃t ≥ 0 s.t. |∇Xx
t | /∈ {1, . . . ,N}] = 1 (N ≥ 1, |x| <∞),

(3.48)
P[∃t ≥ 0 s.t. |Y y

t | /∈ {1, . . . ,N}] = 1 (N ≥ 1, |y| <∞).

(b) If, moreover, d ≥ 2 and α > 0, then

P
[

lim
t→∞ |∇Xx

t | =∞ or ∃t ≥ 0 s.t. Xx
t = 0

]
= 1 (|x| <∞).(3.49)

PROOF. We claim that, for all N ≥ 1 and t > 0,

(i) inf
|∇x|≤N

P[|∇Xx
t | /∈ {1, . . . ,N}] > 0,

(3.50)
(ii) inf

|y|≤N
P[|Yy

t | /∈ {1, . . . ,N}] > 0,

and, if α > 0,

inf
0<|x|≤N

P[Xx
t = 0] > 0.(3.51)

Indeed, (3.50)(ii) follows from the fact that, by our assumption that α < 1, a par-
ticle lying sufficiently on the “outside” of y may produce N more particles before
anything happens to the other particles of y. Formula (3.50)(i) follows from sim-
ilar considerations. If α > 0, then by the voter model dynamics, a collection of
at most N ones has a uniformly positive probability to die out in time t , which
proves (3.51).
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By Lemma 10(a), (3.50) implies (3.48). By Lemma 10(b) applied to sets of
the form D := {x ∈ {0,1}Zd

: 0 < |x|≤N}, (3.51) implies that P[Ax
N ] = 1 for any

N ≥ 1, |x| <∞, where

Ax
N := {∃t ≥ 0 s.t. |Xx

u|≥N or Xx
t = 0 ∀u≥ t}.(3.52)

Since Ax
N ↓Ax with

Ax :=
{

lim
t→∞ |Xx

t | =∞ or ∃t ≥ 0 s.t. Xx
t = 0

}
,(3.53)

we obtain P[Ax] = 1. In dimensions d ≥ 2 this implies (3.49). !

In order to prove Theorem 3(a), we need to prove extinction versus unbounded
growth for the parity preserving branching process Y . In this case, Lemma 10(b)
is of no use, since the analogue of (3.51) for Y does not hold because of parity
preservation. In the following Section 3.4 we give a proof assuming that Y is not
stable and α > 0. An alternative approach, that works only for very small α, but
includes α = 0, is to use comparison with oriented percolation. For the rebellious
voter model, we will use this approach in Section 4.

3.4. Instability. The main result of this section is the next theorem, which will
be used in the proof of Theorem 3(a). We will also apply this result in [23], which
is why we formulate it in some generality here.

THEOREM 12 (Extinction versus unbounded growth for parity preserving
branching). Let Y be a spatially homogeneous parity preserving cancellative
spin system on Zd defined by rates a(A) satisfying (3.1). Assume that for L ≥ 1,
n≥ 0, t > 0,

inf{P[|Yy
t | = n] : |y| = n + 2, y(i) = 1 = y(j)

(3.54)
for some i )= j, |i − j |≤ L} > 0.

Assume that Y is not stable. Then

lim
t→∞P[0 < |Yy

t | < N ] = 0 (N ≥ 1, |y| <∞).(3.55)

As a first step, we prove that the convergence in (3.55) holds in Césaro mean.

PROPOSITION 13 (Extinction versus unbounded growth). Under the same as-
sumptions as in Theorem 12,

lim
T→∞

1
T

∫ T

0
dt P[0 < |Yy

t | < N ] = 0 (N ≥ 0, |y| <∞).(3.56)
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PROOF. The idea of the proof is as follows. By our assumption that Y is not
stable, one particle alone will soon produce at least three particles. In fact, if the
process does not die out, then most of the time it will contain at least three parti-
cles. These particles cannot stay close together, for else they would annihilate each
other. But single particles far from each other will soon each again produce at least
three particles, and therefore, the number of particles must keep growing.

To make this idea precise, we use induction. We write |y| = n mod(2) to indicate
that |y| <∞, and |y| is even or odd depending on whether n is even or odd. For
n≥ 0, consider the following statements:

(In) lim
T→∞

1
T

∫ T

0
dt P[0 < |Yy

t |≤ n] = 0 for all |y| = n mod(2).

(IIn) lim
T→∞

1
T

∫ T

0
dt P

[∃s ∈ [0, S] s.t. 0 < |Yy
t+s |≤ n

] = 0

for all |y| = n mod(2), S > 0.

(IIIn) lim
T→∞

1
T

∫ T

0
dt P

[∃s ∈ [0, S] s.t. |Yy
t+s | = n + 2 and

Y
y
t+s(i) = 1 = Y

y
t+s(j) for some i )= j, |i − j |≤ L

] = 0

for all |y| = n mod(2), S > 0,L≥ 1.

(IVn) lim
S→∞

lim sup
T→∞

E
[ 1
T

∫ T

0
dt

1
S

∫ S

0
ds 1{τn(t)≤S,0<|Yy

t+τn(t)+s |≤n}

]
= 0

for all |y| = n mod(2), where τn(t) := inf{u≥ 0 : 0 < |Yy
t+u|≤ n}.

(Vn) lim
S→∞

lim sup
T→∞

1
T

∫ T

0
dt

1
S

∫ S

0
ds P[0 < |Yy

t+s |≤ n] = 0

for all |y| = n mod(2).

We will prove that I0 and I1 hold, and In implies In+2. Observe that if σT is uni-
formly distributed on [0, T ] and independent of Yy , then

P[0 < |Yy
σT

|≤ n] = E
[ 1
T

∫ T

0
dt 1{0<|Yy

t |≤n}

]
.(3.57)

In the proofs below we will freely change between these and similar formulas.
I0 and I1 hold. I0 is trivial. Since, by assumption, Y viewed from its lower left

corner is not positively recurrent, the probability that Yt consists of a single particle
tends to zero as t →∞, which proves I1.

In implies IIn. This follows from the observation that

inf{P[0 < |Yy
t |≤ n ∀0≤ t ≤ 1] : 0 < |y|≤ n} =: p > 0.(3.58)

Indeed, conditional on 0 < |Yy
t+s | ≤ n for some s ∈ [0, S], with probability at

least p, the process has between 1 and n particles during a time interval of length
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one somewhere between time t and t + S + 1. Therefore, if σT and σS+1 are uni-
formly distributed on [0, T ] and [0, S + 1], respectively, independent of each other
and of Y y , then

lim sup
T→∞

P
[∃s ∈ [0, S] s.t. 0 < |Yy

σT +s |≤ n
]

≤ S + 1
p

lim sup
T→∞

P[0 < |Yy
σT +σS+1

|≤ n](3.59)

= S + 1
p

lim sup
T→∞

P[0 < |Yy
σT

|≤ n] = 0,

where in the last two steps we have used that the total variation distance between
P[σT ∈ ·] and P[σT + σS+1 ∈ ·] tends to zero as T →∞, and our assumption In,
respectively.

IIn implies IIIn. For n≥ 1, using (3.54), it is not hard to see that

inf{P[0 < |Yy
t |≤ n ∀1≤ t ≤ 2] : |y| = n + 2,

(3.60)
y(i) = 1 = y(j) for some i )= j, |i − j |≤ L} > 0.

From this the implication follows much in the spirit of the previous implication.
This argument does not work for n = 0, so we will prove that III0 holds by different
means. We observe that for N = 0 (3.54) implies that for L ≥ 1 we obtain for all
t > 0,

inf{P[Yy
t = 0] :y = δi + δj for some i )= j, |i − j |≤ L} > 0.(3.61)

By Lemma 10(b), this implies that, for L≥ 1,

P
[

lim
t→∞1{Yy

t =δi+δj for some i )=j,|i−j |≤L} = 0
]

= 1,(3.62)

which in turn implies III0.
I1, IIn and IIIn imply IVn+2. Let σS be uniformly distributed on [0, S], indepen-

dent of Yy . By I1 and parity preservation, for each ε > 0, we can choose S0 > 0
such that, for all S ≥ S0,

P[|Y δ0
σS

|≥ 3]≥ 1− ε.(3.63)

For each such S, we can choose L≥ 1 such that

P
[
Y δ0

s (i) = 0 ∀0≤ s ≤ S, |i|≥ L

2

]
≥ 1− ε.(3.64)

Therefore, if we start the process in a state y such that |y| = n + 2 and |i − j | > L
for all i )= j with y(i) = 1 = y(j), then with probability at least (1− 2ε)n+2, all
the n + 2 particles have produced at least 3 particles at time σS , without being
influenced by each other. Thus,

P[|Yy
σS

|≥ 3(n + 2)]≥ (1− 2ε)n+2 =: 1− ε′,(3.65)
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for each such y. Let σT be uniformly distributed on [0, T ] and independent of σS

and Yy . If T is large, then IIn and IIIn tell us that the probability that τn+2(σT )≤ S
while Y

y
σT +τn+2(σT ) does not consist of n + 2 particles, situated at distance at least

L from each other, is small. Therefore, by what we have just proved,

lim sup
T→∞

P
[
τn+2(σT )≤ S,

∣∣Yy
σT +τn+2(σT )+σS

∣∣≤ n + 2
]≤ ε′.(3.66)

Since ε′ can be made arbitrarily small, this proves IVn+2.
IVn implies Vn. One has

1
S

∫ S

0
ds P[0 < |Yy

t+s |≤ n] = E
[ 1
S

∫ S

τn(t)
ds 1{0<|Yy

t+s |≤n}

]

≤ E
[
1{τn(t)≤S}

1
S

∫ τn(t)+S

τn(t)
ds 1{0<|Yy

t+s |≤n}

]
(3.67)

= E
[ 1
S

∫ S

0
ds 1{τn(t)≤S, 0<|Yy

t+τn(t)+s |≤n}

]
.

Integrating from 0 to T , dividing by T , and taking the limsup as T →∞ and then
the limit S →∞, the claim follows.

Vn implies In. Let σT and σS be uniformly distributed on [0, T ] and [0, S],
respectively, independent of each other and of Y y . By Vn, we can choose S(T )
such that limT→∞ S(T )/T = 0 and

lim
T→∞

P
[
0 <

∣∣Yy
σT +σ(S(T ))

∣∣≤ n
] = 0.(3.68)

Since S(T ) 7 T , the total variation distance between P[σT + σS(T ) ∈ ·] and
P[σT ∈ ·] tends to zero as T →∞, so In follows. !

To get from Proposition 13 to Theorem 12, we need the following lemma, which
depends on another lemma.

LEMMA 14 (Aperiodicity). Under the same assumptions as in Theorem 12,

lim
t→∞ sup

s∈[0,S]

∣∣P[0 < |Yy
t | < N ]− P[0 < |Yy

t+s | < N ]∣∣ = 0(3.69)

(N ≥ 1, S > 0).

PROOF. We need to prove something like aperiodicity for an interacting parti-
cle system. This is not an easy problem in general. The only general result that we
are aware of is restricted to one-dimensional systems and due to Mountford [20].
In our present setting, however, we can use the fact that each time when there
are less than N particles, the next jump of our system happens after an exponen-
tial time with mean bounded from below, which causes enough uncertainty in the
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time variable to prove (3.69). We got this idea from [14], Lemma 2.4. Our way of
implementing this idea is quite different from that reference, though.

To make this idea rigorous, we proceed as follows. Let Zy be the embed-
ded Markov chain associated with Yy , which is defined as follows. For each
y ∈ {0,1}Zd

such that |y| <∞, let

r(y) :=
∑

A

a(A)1{Ay )=0 mod(2)}.(3.70)

Note that r(y) is the total rate of jumps of Y from the state y to any other state.
It follows from (3.54) that r(y) > 0 for all y )= 0. Now Zy = (Z

y
n)0≤n≤n∞ is the

Markov chain with state space {y ∈ {0,1}Zd
: |y| <∞}, started in Z

y
0 = y, which

jumps from the state y to the state y + Ay mod(2) with probability a(A)/r(y).
The process Zy is defined up to the random time n∞ := inf{n≥ 0 :y = 0}, which
may be infinite.

We may construct Yy from Zy as follows. Let (σn)n≥0 be i.i.d. exponentially
distributed random variables with mean one, independent of Zy . Set

η(t) := sup

{

n≥ 0 :
n∑

k=1

σn/r(Zy
n)≤ t

}

(t ≥ 0).(3.71)

Then η(t)≤ n∞ for all t ≥ 0 and

Y
y
t = Z

y
η(t) (t ≥ 0).(3.72)

Conditioning on the embedded chain Zy = (Z
y
n)0≤n≤n∞ yields

P[0 < |Yy
t | < N ] =

∞∑

n=0

P[0 < |Zy
n | < N, η(t) = n]

(3.73)
=

∫
P[Zy ∈ dz]

∑

n : 0<|zn|<N

P[η(t) = n | Zy = z].

Hence, in order to prove (3.69), it suffices to show for each z = (zn)0≤n≤n∞ ,

lim
t→∞ sup

s∈[0,S]

∑

n : 0<|zn|<N

∣∣P[η(t) = n | Zy = z]
(3.74)

− P[η(t + s) = n | Zy = z]∣∣ = 0.

If 0 < |zn| < N for finitely many n, then
∑

n : 0<|zn|<N

∣∣P[η(t) = n | Zy = z]− P[η(t + s) = n | Zy = z]∣∣

(3.75)
≤ P

[
0 < zη(t) < N | Zy = z

] + P
[
0 < zη(t+s) < N | Zy = z

]
,
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which tends to zero as t →∞, uniformly for all s ∈ [0, S]. If 0 < |zn| < N for
infinitely many n, then we estimate

∑

n : 0<|zn|<N

∣∣P[η(t) = n | Zy = z]− P[η(t + s) = n | Zy = z]∣∣

≤
∞∑

n=0

∣∣P[η(t) = n | Zy = z]− P[η(t + s) = n | Zy = z]∣∣(3.76)

= ∥∥P[η(t) ∈ · | Zy = z]− P[η(t + s) ∈ · | Zy = z]∥∥,
where ‖ · ‖ denotes the total variation norm. Since 0 < |zn| < N for infinitely
many n, it is easy to see that lim infn≥0 r(zn) <∞. Therefore, by Lemma 15 below,

lim
t→∞ sup

s∈[0,S]

∥∥P[η(t) ∈ · | Zy = z]− P[η(t + s) ∈ · | Zy = z]∥∥ = 0,(3.77)

as required. !

LEMMA 15 (Coupling of exponential variables). Let (σn)n≥1 be independent,
exponentially distributed random variables with mean one and let (λn)n≥1 be non-
negative constants. Set

η(t) := sup

{

n≥ 0 :
n∑

k=1

λkσk ≤ t

}

.(3.78)

If
∑∞

k=1 λ
2
k =∞, then

lim
t→∞ sup

s∈[0,S]

∥∥P[η(t) ∈ ·]− P[η(t + s) ∈ ·]∥∥ = 0,(3.79)

where ‖ · ‖ denotes the total variation norm.

PROOF. Our lemma is very similar to [20], Lemma 2.2, except that the latter
uses the additional technical assumption that supk≥1 λk/λk+1 <∞. Since we do
not want to assume this, our proof will be a bit different from the proof there.

Let (η(t))t≥0 and (η′(t))t≥s be continuous-time Markov processes on N that
jump from k − 1 to k with rate 1/λk . We start these processes at time 0 and time
−s in η(0) = 0 and η′(−s) = 0, respectively. From time 0 onward, we let them run
independently until the first time they meet, after which they are equal. We claim
that this coupling is succesful. To see this, set

$t :=
η′(t)∑

k=η(t)+1

λk (t ≥ 0),

τ0 := inf{t ≥ 0 :$t = 0},(3.80)

τR := inf{t ≥ 0 :$t ≥R} (R > 0).
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Then ($t )t≥0 is a nonnegative, square integrable martingale. Moreover, the
process Mt :=$2

t − 〈$〉t is a martingale, where

〈$〉t :=
∫ t∧τ0

0

(
λη(u)+1 + λη′(u)+1

)
du.(3.81)

By optional stopping, it follows that

E[〈$〉t∧τR ] = E[$2
t∧τR ]≤ E

[(
R ∨ η′(0)

)2]
(t ≥ 0),(3.82)

so letting t ↑∞, we see that 〈$〉τR <∞ a.s. for each R > 0. Since ($t )t≥0 is a
nonnegative martingale, it has an a.s. limit as t →∞, hence, a.s. τR =∞ for some
finite random R > 0. By (3.81), it follows that

∫ τ0

0

(
λη(u)+1 + λη′(u)+1

)
du <∞ a.s.(3.83)

Since
∑∞

k=1 λ
2
k =∞, it is not hard to see that

∫∞
0 λη(u)+1 du =∞ a.s. Therefore,

(3.83) implies that τ0 <∞ a.s.
This shows that our coupling is successful, hence, the total variation distance

between P[η(t) ∈ ·] and P[η′(t) ∈ ·] tends o zero as t →∞. It is easy to see
that the stopping time τ0 is stochastically increasing in s, hence, our estimates are
uniform for all s ∈ [0, S], for each S > 0. Since η(t) is distributed as the process
in (3.78) and η′(t) is distributed as η(t + s), our claim follows. !

PROOF OF THEOREM 12. It suffices to show that

lim
n→∞P[0 < |Yy

tn | < N ] = 0(3.84)

for any sequence of times tn →∞. By Lemma 14 and a diagonal argument, we
can choose Tn →∞ such that

lim
n→∞

∣∣∣∣P[0 < |Yy
tn | < N ]− 1

Tn

∫ Tn

0
ds P[0 < |Yy

tn+s | < N ]
∣∣∣∣ = 0.(3.85)

The proof of Proposition 13 actually works more generally than for Césaro times
only. Let σTn and σS be uniformly distributed on [0, Tn] and [0, S], respectively,
independent of each other and of Yy . Since for each fixed S > 0, the total variation
distance between P[tn + σTn ∈ ·] and P[tn + σTn + σS ∈ ·] tends to zero as n→∞,
the proof of Proposition 13 tells us that

lim
n→∞P

[
0 < |Yy

tn+σTn
| < N

] = 0.(3.86)

Combining this with (3.85), we arrive at (3.55). !
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3.5. Homogeneous invariant laws. In this section we prove Theorem 3, using
Theorem 6, Corollary 11 and Theorem 12. Since Theorem 6 speaks about non-
trivial laws, while we are interested in coexisting and nonzero laws, we need the
following lemma. Recall the definitions of local nonsingularity and X-nontriviality
above Theorem 6.

LEMMA 16 (Local nonsingularity). Let X be either the neutral Neuhauser–
Pacala model, affine voter model or rebellious voter model, and let Y be its dual
parity preserving branching process. Then, for any 0≤ α ≤ 1:

(a) Each homogeneous coexisting law on {0,1}Zd
is X-nontrivial.

(b) Each homogeneous nonzero law on {0,1}Zd
is Y -nontrivial.

Lemma 16 can be verified by simple, but lengthy considerations, which we leave
to the reader. To show that this point requires some care, we warn the reader that
the claim in (a) does not hold for the disagreement voter model with α = 0, since
for this model, the alternating configurations . . .0101010 . . . are traps.

PROOF OF THEOREM 3. We start with part (a). Since Y survives, by
Lemma 1, ν1/2

X is not concentrated on {0,1}. Conditioning on the complement
of the set {0,1}, we obtain a homogeneous coexisting invariant law of X. By
Lemma 16, each homogeneous coexisting invariant law of X is X-nontrivial in the
sense of Theorem 6. Therefore, since α < 1, it follows from Theorem 6 and Corol-
lary 11(a) that ν1/2

X is the only homogeneous coexisting invariant law. If, moreover
α > 0 and Y is not stable, then by Theorem 6 and Theorem 12, the convergence
in (1.13) holds. Here, condition (3.54) of Theorem 12 is easily seen to follow from
our assumption that α > 0.

To prove also part (b), we observe that since X survives, by Lemma 1, ν1/2
Y is

not concentrated on 0, hence, ν1/2
Y conditioned on being nonzero is a homogeneous

nonzero invariant law of Y . By Lemma 16, each homogeneous nonzero invariant
law of Y is Y -nontrivial. Therefore, since α < 1, it follows from Theorem 6 and
Corollary 11(a) that ν1/2

Y is the only homogeneous nonzero invariant law. If, more-
over, α > 0 and d ≥ 2, then by Theorem 6 and Corollary 11(b), the convergence
in (1.14) holds. !

3.6. A counterexample to a result by Simonelli. Our Theorem 6 is similar to
Theorem 1 in [22]. The proof is also similar, with his Theorem 2 playing the same
role as our Corollary 9. An important difference is that while we use the “norm”
‖ · ‖B defined in (3.11), Simonelli works with the usual 01-norm | · |. As we will
see in a moment, the result of this is that his Theorem 2 is false. We do not know
if his main result Theorem 1 is correct or not; as it is, his proof depends on his
Theorem 2, and is therefore not correct.
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More precisely, in [22] it is assumed that X and Y are interacting particle sys-
tems on Zd satisfying a duality relation of the form (1.8). It is assumed that

0 < P[Yy
t (i) = 1] < 1 (t > 0, i ∈ Zd, y )= 0),(3.87)

where Yy denotes the process y started in Y
y
0 = y. Then, translated into our termi-

nology, Simonelli ([22], Theorem 2) states that:

If P[Y0 ∈ ·] is homogeneous and nonzero, and xn ∈ {0,1}Zd
satisfy limn→∞ |xn| =∞,

then limn→∞ P[|Yt xn| is odd] = 1
2 for all t > 0.

This claim is false, as is shown by the following:

COUNTEREXAMPLE. We pick some α ∈ (0,1) and we take for Y the
ADBARW, which is the dual of the rebellious voter model. It is easy to see
that Y satisfies (3.87). Set P[Y0 = 1] = 1, which is homogeneous and nonzero,
and xn(i) := 1 for i = 1, . . . , n and xn(i) := 0 otherwise. Using duality, we see
that P[|Ytxn| is odd] = P[|Y0X

xn
t | is odd], where Xxn denotes the rebellious voter

model started in X
xn
0 = xn. The dynamics of the rebellious voter model are such

that at t = 0, the only places where sites can flip are at the endpoints of the interval
{1, . . . , n}. Therefore, it is easy to see that P[Xxn

t = xn]≥ 1− e−4t , and as a result,

lim
t→0

P[|Y0X
xn
t | is odd] =

{
1, if n is odd,
0, if n is even,

(3.88)

where the convergence is uniform in n. It follows that, for t sufficiently small, the
limit limn→∞ P[|Ytxn| is odd] does not exist.

There seems to be no easy way to repair Simonelli’s Theorem 2. The essential
observation behind our Lemma 7 is that, instead of xn being large, one needs that
xn contains many places where parity can change. For the rebellious voter model,
this means that xn must contain many places where the two types meet. Our proof
of Lemma 7 differs substantially from the methods used in [22].

The place where Simonelli’s proof goes wrong is his formula (5), where it is
claimed that if P[Y0 ∈ ·] is homogeneous and nonzero, then for each ε > 0 and
t > 0 there exists a δ > 0 such that, for all s ∈ [0, ε],

P
[
Yt ∈ {y : δ < P[Yy

s (0) = 1] < 1− δ}] > 1− ε ([22], (5)).

While this inequality is true for any s > 0 fixed with δ = δ(t, s, ε) depending
on s, t , and ε due to his assumption (3.87) and continuity of probability mea-
sures, δ cannot be chosen uniformly in s ∈ [0, ε]. In fact, for s = 0, the set
{y : δ < P[Yy

s (0) = 1] < 1− δ} is empty for any δ > 0.

4. Complete convergence of the rebellious voter model. In this section we
prove coexistence and complete convergence for the rebellious voter model, as
stated in Theorem 4. The main tool for this will be Theorem 5, which states that
the dual ADBARW dominates oriented percolation. This theorem is formulated
and proven in the following Section 4.1.
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4.1. Comparison with oriented percolation. We let Y be an ADBARW started
in an arbitrary deterministic initial state Y0 = y ∈ {0,1}Z, and we define sets of
“good” points (χn)n≥0 as in (2.13). We start by considering a single time step in
the case that α = 0. Our first result says that “good” events have a large probability.

PROPOSITION 17 (Good events are probable). Assume that α = 0. Then, for
each p < 1, there exist L≥ 1 and T > 0, not depending on the initial state y, such
that P[x ∈ χ1]≥ p for all x ∈ Zodd such that χ0 ∩ {x − 1, x + 1} )= ∅.

PROOF. Our basic observation is that, in case α = 0, the right-most particle
of an ADBARW started in a finite initial state has a drift to the right. Indeed, if
rt := max{i ∈ Z :Yt(i) = 1}, then depending on the configuration near the right-
most particle, the changes in rt due to the various possible jumps and the resulting
drift are as follows:

configuration change in rt rate drift
. . .00100 . . . +2 1 +2

. . .01100 . . .

{+2
+1

1
1

}
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. . .10100 . . .

{+2
−1

1
1

}
+1

. . .11100 . . .






+2
+1
−2

1
1
1




 +1.

(4.1)

This shows that in each configuration the drift is at least one. We note, however,
that it is not possible to stochastically bound rt from the left by a random walk with
positive drift (independent of anything else). This will cause a slight complication
in what follows; in fact, we will use two random walks that become active when
Y(rt − 1) = 0 or 1, respectively [see formula (4.11) below].

We need to prove that if χ0 ∩ {x − 1, x + 1} )= ∅ for some x ∈ Zodd, then
P[x ∈ χ1]≥ p. By symmetry, we may without loss of generality assume that x = 1
and 0 ∈ χ0. To simplify notation, let us identify subsets of Z with their indica-
tor functions. Then, assuming that y ∩ {−L, . . . ,L} )= ∅, which is equivalent to
0 ∈ χ0, we need to show that the probability

P
[
YT ∩ {L, . . . ,3L} )= ∅ and Yt ∩ {−2L, . . . ,6L} )= ∅ ∀0 < t < T

]
(4.2)

can be made arbitrarily large by choosing L and T appropriately. In view of this,
we are actually not interested in the right-most particle of our ADBARW, but in
the particle that is closest to our target 2L. Thus, we put

st := inf{i ≥ 0 :Yt (2L− i)∨ Yt (2L + i) = 1}.(4.3)
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Assuming that s0 ≤ 3L which follows from y ∩ {−L, . . . ,L} )= ∅, we need to
show that the probability

P
[
sT ≤L, sup

0≤t≤T
st ≤ 4L

]
(4.4)

can be made arbitrarily large. For any n≥ 0, we set

τ≤n := inf{t ≥ 0 : st ≤ n},
(4.5)

τ≥n := inf{t ≥ 0 : st ≥ n}.
We observe from (4.1) that whenever an ADBARW borders at least two empty
sites, it tends to invade these with a drift of at least one. In view of this, we choose
T = 2L. By Lemmas 18 and 19 below, there exist constants C,λ> 0 such that

P[τ≤2 ≤ T and τ≥4L ≥ T ]≥ 1−Ce−λL.(4.6)

Using Lemma 19 once more, we see that, moreover, for some C′,λ′ > 0,

P[st ≤L ∀τ≤2 ≤ t ≤ T ]≥ 1−C′e−λ
′L.(4.7)

Combining these two estimates, we see that the probability in (4.4) can be made
as close to one as one wishes by choosing L large enough. !

We still need to prove two lemmas.

LEMMA 18 (Hitting the target). For each δ > 0, there exist constants C,λ> 0
such that if s0 ≤K , then

P[τ≤2 ≥ (1 + δ)K]≤ Ce−λK (K ≥ 1).(4.8)

PROOF. Let

s−t := inf{i ≥ 0 :Yt(2L− i) = 1}.(4.9)

Since the evolution rules of the process are symmetric, we may assume without
loss of generality that s−0 ≤K . We set

φq(t) :=
∫ t

0
1{Y (s−t −1)=q} du (t ≥ 0, q = 0,1).(4.10)

Let R0,R1 be continuous-time random walks on Z, starting in zero, with the fol-
lowing jump rates:

random walk jump size rate

R0
t
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1
1

R1
t
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1
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(4.11)
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In view of (4.1), we can couple s−t to R0,R1 in such a way that

s−t ≤ s−0 −R0
φ0(t)

−R1
φ1(t)

(0≤ t ≤ τ≤2),(4.12)

where R0 and R1 are independent of each other and of φ0,φ1. It follows from large
deviation theory, more precisely, from Cramér’s theorem (Theorem 27.3 in [16])
and a little calculation, that for each ε > 0 there exist constants Cε and λε > 0 such
that

P[|Rq
t − t |≥ εt]≤ Cεe

−λε t (t ≥ 0, q = 0,1).(4.13)

We claim that there exist C ′
ε and λ′ε such that

P[|Rq
s − s|≥ εt]≤ C′

εe
−λ′ε t (0≤ s ≤ t, q = 0,1).(4.14)

Since it is not obvious that P[|Rq
s − s| ≥ εt] ≤ P[|Rq

t − t | ≥ εt], it is not entirely
trivial to get from (4.13) to (4.14). Here is a clumsy argument: If 1

2 t ≤ s ≤ t , then

P[|Rq
s − s|≥ εt]≤ P[|Rq

s − s|≥ εs]≤ Cεe
−λεs ≤ Cεe

−(1/2)λε t .(4.15)

If 0≤ s ≤ 1
2 t , then, by the independence of random walk increments and what we

have just proved,

P
[|Rq

t − t |≥ 1
2εt

]≥ P[|Rq
s − s|≥ εt]P[|Rq

t−s − (t − s)|≤ 1
2εt

]

(4.16)
≥ P[|Rq

s − s|≥ εt](1−Cε/2e
−(1/2)λε/2t

)
,

hence, by (4.13),

P[|Rq
s − s|≥ εt]≤ (

1−Cε/2e
−(1/2)λε/2t

)−1
Cεe

−λε/2t .(4.17)

Combining (4.15) and (4.17), we obtain (4.14).
To prove (4.8), we set M := (1 + δ)K , we choose ε such that (1− ε)M = K ,

and observe that by (4.12), the fact that φ0(M) + φ1(M) = M , and (4.14),

P[τ≤2 ≥M]≤ P
[
R0
φ0(M) + R1

φ1(M) ≤ (1− ε)M]

≤ P
[∣∣R0

φ0(M) + R1
φ1(M) − φ0(M)− φ1(M)

∣∣≥ εM]
(4.18)

≤
1∑

q=0

P
[∣∣Rq

φq (M) − φq(M)
∣∣≥ 1

2εM
]≤ 2C′

ε/2e
−λ′ε/2M.

Setting C := 2C′
ε/2 and λ := λ′ε/2(1 + δ), we arrive at (4.8). !

LEMMA 19 (Escaping the target). For each δ > 0, there exist constants C,
λ> 0 such that if s0 ≤K , then

P
[
τ≥(1+δ)K ≤ T

]≤ C(T + 1)e−λK (T > 0, K ≥ 1).(4.19)
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PROOF. We start by showing that we can choose λ > 0 such that if s0 ≤
L′ ≤ L, then

P[τ≤2 > τ≥L]≤ e−λ(L−L′).(4.20)

Indeed, it is not hard to see from (4.1) that, for λ sufficiently small, the process

Mt := e
λsinf{t,τ≤2} (t ≥ 0)(4.21)

is a supermartingale. Setting τ := inf{τ≤2, τ≥L}, by optional stopping, it follows
that

eλLP[sτ ≥ L]≤ E[Mτ ]≤ eλL
′
,(4.22)

which proves (4.20). To prove (4.19), we note that each time the process st enters
{0,1,2}, it must stay there at least an exponentially distributed time with mean 1

2 .
Therefore, the number of excursions from {0,1,2} during a time interval of length
T is bounded by a Poisson random variable with mean 2T , and by (4.20), the
number of excursions from {0,1,2} that go beyond (1 + δ)K is bounded by a
Poisson random variable W with

P[W > 0]≤ E[W ] = 2T e−λ((1+δ)K−2).(4.23)

Using (4.19) once more, we conclude that the probability in (4.19) is bounded by
e−λδK + 2T e−λ((1+δ)K−2). !

We now turn to the proof of Theorem 5. It suffices to prove the statement for a
single time step; the general statement then follows by induction. Thus, we need
to show that for each p < 1 we can find L,T so that we can define i.i.d. Bernoulli
random variables {ω(x,1) :x ∈ Zodd} with P[ω(x,1) = 1] = p such that x ∈ χ1 when-
ever ωx,1 = 1 and χ0 ∩ {x − 1, x + 1} )= ∅. Since we can thin the set of points
where ω(x,1) = 1 if necessary, it suffices if the {ω(x,1) :x ∈ Zodd} are independent
and P[ω(x,1) = 1] ≥ p for each x. It actually suffices if the {ω(x,1) :x ∈ Zodd} are
m-dependent for some fixed m ≥ 1, since a well-known result (see [19], Theo-
rem B26) tells us that m-dependent random variables with intensity p can be esti-
mated from below by independent random variables with intensity p′ = p′(p,m)

depending on p and m in such a way that limp→1 p′(p,m) = 1. See also [12] who
considers a more general form of m-dependence for oriented percolation and the
comparison argument.

PROOF OF THEOREM 5. As mentioned before, it suffices to prove the state-
ment for a single time step, and for the process started in any deterministic ini-
tial state Y0 = y. A naive approach is to put ω(x,1) := 1{x∈χ1} for x ∈ J := {x ∈
Z :χ0∩ {x−1, x +1} )= ∅} and ω(x,1) := 1 otherwise. However, since these events
are not m-dependent for any fixed m, we are going to extend our definition of a
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“good” event, in such a way that the new events still have a high probability, and
are m-dependent. To that aim, we put

χ ′1 := {
x ∈ χ1 : there is no path in the graphical representation ending

at time T in {2Lx − 4L, . . . ,2Lx + 4L} and starting(4.24)

at time 0 outside {2Lx − 11L, . . . ,2Lx + 11L}},
where, as before, we choose T = 2L. The motivation for this is as follows. Let

rt := sup
{
i ∈ Z : there is a path starting at (i, T − t)

(4.25)
and ending in {T }× {2Lx − 4L, . . . ,2Lx + 4L}}.

It is not hard to see that rt can be bounded from above by a random walk that makes
jumps of size +1 and +2, both with rate 1. Therefore, the expected distance cov-
ered by such a random walk is 3T = 6L. A large deviation estimate of the same
sort as used in the proof of Lemma 18 now tells us that for each x ∈ Zodd, the
probability of there being a path ending at time T in {2Lx − 4L, . . . ,2Lx + 4L}
and starting at time 0 outside {2Lx−11L, . . . ,2Lx +11L} tends to zero exponen-
tially fast as L→∞. Combining this with Proposition 17, we see that for each p
we can choose L,T in such a way that P[x ∈ χ ′1] ≥ p for all x ∈ J . Choosing α′
close enough to zero so that the probability of any event with rate α′ happening in
the graphical representation in the block [0, T ]× {2Lx− 11L, . . . ,2Lx + 11L} is
small, we conclude that

For each p < 1 there exist an α′ > 0 such that for all α ∈ [0,α′)
there exist L≥ 1 and T > 0 such that P[x ∈ χ ′1]≥ p for all x ∈ J .(4.26)

We now put ω(x,1) := 1{x∈χ ′1} for x ∈ J and ω(x,1) := 1 otherwise. The {ω(x,1) :x ∈
Zodd} constructed in this way are m-dependent for a suitable m [in fact, ω(x,1)

and ω(x′,1) are independent if |x − x′| ≥ 12], so by the arguments preceding this
proof, they can be bounded from below by i.i.d. Bernoulli random variables with
an intensity that can be made arbitrarily high. !

4.2. Complete convergence. In this section we prove Theorem 4 about co-
existence and complete convergence for the rebellious voter model X for small
enough α. Throughout this section we choose some p ∈ (pc,1), where pc is the
critical value for survival of oriented percolation, and we fix α′ > 0, L ≥ 1, and
T > 0 such that the process (χn)n≥0 defined in (2.13) can be coupled to an oriented
percolation process (Wn)n≥0 with parameter p as in Theorem 5. The proof of The-
orem 4 is based on the following two lemmas. Recall from Section 2.1 that the
ADBARW is both the dual and the interface model of the rebellious voter model.

LEMMA 20 (Almost sure extinction versus unbounded growth). For all α ∈
[0,α′), the ADBARW Yy started in any finite initial state Y

y
0 = y satisfies

P
[

lim
t→∞ |Yy

t | =∞ or ∃t ≥ 0 s.t. Y
y
t = 0

]
= 1 (|y| <∞).(4.27)
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Moreover, P[limt→∞ |Yy
t | =∞] > 0 for all y )= 0.

LEMMA 21 (Intersection of independent processes). For all α ∈ [0,α′), two
independent ADBARW’s Y and Y ′ satisfy for t ≥ 0,N ≥ 1

lim
t→∞P[|YtY

′
t |≥N ] = P[Yt )= 0 ∀t ≥ 0] · P[Y ′t )= 0 ∀t ≥ 0].(4.28)

PROOF OF THEOREM 4. If α is as in Lemma 20, then the ADBARW is un-
stable and survives. Therefore, by Lemmas 1 and 2, the rebellious voter model
exhibits coexistence, survival, and its dual ADBARW is not stable. This proves
part (a).

To prove part (b), it suffices to consider deterministic initial states. Let Xx de-
note the rebellious voter model started in Xx

0 = x and set ρq(x) := P[Xx
t =

q for some t ≥ 0] (q = 0,1). By (2.4), it suffices to show that, for each |y| <∞,

lim
t→∞P[|Xx

t y| is odd ]
(4.29)

= (
1− ρ0(x)− ρ1(x)

)1
2P[Yy

t )= 0 ∀t ≥ 0] + ρ1(x)1{|y| is odd}.

Since the dynamics of X are symmetric for the 0’s and 1’s, we may without loss of
generality assume that the starting configuration x has infinitely many 0’s. In this
case ρ1(x) = 0 and (4.29) reduces to

lim
t→∞P[|Xx

t y| is odd ] = 1
2
(
1− ρ0(x)

)
P[Yy

t )= 0 ∀t ≥ 0].(4.30)

Since, by duality,

P[|Xx
t y| is odd ]

(4.31)
=

∫
P

[
Xx

(t−1)/2 ∈ dx̃
] ∫

P
[
Y

y
(t−1)/2 ∈ dỹ

]
P[|Xx̃

1Y
ỹ
0 | is odd],

by Lemma 7, in order to prove (4.30), it suffices to show that

lim
t→∞P

[∣∣{i ∈ Z :Yy
(t−1)/2(i) = 1,

Xx
(t−1)/2(i + 1) )= Xx

(t−1)/2(i + 2)
}∣∣≥N

]
(4.32)

= P[Xx
t )= 0 ∀t ≥ 0] · P[Yy

t )= 0 ∀t ≥ 0] (N ≥ 1).

Let Y ′t (i) := 1{Xx
t (i+1) )=Xx

t (i+2)}, that is, Y ′ is the interface model of Xx , translated
over a distance one. Then (4.32) simplifies for N ≥ 1 to

lim
t→∞P

[∣∣Yy
(t−1)/2Y

′
(t−1)/2

∣∣≥N
] = P[Y ′t )= 0 ∀t ≥ 0] · P[Yy

t )= 0 ∀t ≥ 0],(4.33)

which is true by Lemma 21. !

The rest of this section is occupied by the proofs of Lemmas 20 and 21.
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PROOF OF LEMMA 20. By Lemma 10(b), the claims will follow provided
that we show that

inf
|y|>0

P
[

lim
t→∞ |Yy

t | =∞
]

> 0.(4.34)

By translation invariance, it suffices to consider the infimum over all y such that
y(0) = 1. Choose p > pc, the critical value for survival of oriented percolation.
By Theorem 5, the process (χn)n≥0 defined in (2.13) can be coupled to an oriented
percolation process (Wn)n≥0 such that W0 = χ0 and Wn ⊂ χn for all n≥ 1. Since
0 ∈ χ0 due to the fact that y(0) = 1, and since p > pc, there is a positive probability
that limn→∞ |Wn| =∞ and, hence, limt→∞ |Yy

t | =∞. !

The proof of Lemma 21 is somewhat more involved. We start with some
preparatory lemmas. Our first lemma says that if y and y′ are close in many places,
then |Yy

t y′| is large with probability close to one.

LEMMA 22 (Charging target sets). Assume that α < 1, let Yy be an ADBARW
started in y, let y′ ∈ {0,1}Z, and let K ≥ 1, t > 0. Set DK(y, y′) := {(i, j) ∈
Z2 :y(i) = 1 = y′(j), |i − j |≤K}. Then

lim
M→∞

inf
|DK(y,y′)|≥M

P[|Yy
t y′|≥N ] = 1 (N ≥ 1).(4.35)

PROOF. Set C := {j :∃i s.t. (i, j) ∈ DK(y, y′)}. For each j ∈ C, choose in
some unique way a site i with y(i) = 1 for which |i − j | is minimal. Let I :=
{i, . . . , j} if i ≤ j and I := {j, . . . , i} if j ≤ i. Let Gj denote the event that in
the graphical representation for Yy (see Section 3.1), there is an odd number of
paths from (i,0) to (j, t), while during the time interval [0, t], there are no arrows
starting outside I and ending in I . Then, for given K and t , the probability of Gj

is uniformly bounded from below. To see this, by symmetry, we may assume i ≤ j .
Then the particle at i may branch to the right, producing two particles at i + 1 and
i + 2, which can again branch to the right, creating, in a finite number of steps,
a particle at j , while with positive probability, nothing else happens in I . Now, if
|DK(y, y′)|≥M , then we can select C′ ⊂ C such that |j − j ′|≥ 2K + 1 for each
j, j ′ ∈ C′ with j )= j ′, and |C′|≥M/(2K + 1)2. Then the events Gj with j ∈ C′

are independent with a probability that is uniformly bounded from below, hence, if
M is sufficiently large, then with large probability many of these events will occur.
This proves (4.35). !

In what follows, for any x ∈ Z, we define Ix as in (2.12), and for y ∈ {0,1}Z,
we define

η(y) := {x ∈ Zeven :∃i ∈ Ix s.t. y(i) = 1}.(4.36)
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LEMMA 23 (Charging target intervals). If Y is an ADBARW with parameter
α ∈ [0,α′), started in Y0 = y, then

lim
t→∞P[Yt )= 0 and |η(Yt )| < N ] = 0 (N ≥ 1).(4.37)

PROOF. By Lemma 22 applied with K = L and y′ = ∑
x∈Z δ2Lx , for each

t > 0,

lim
M→∞

inf
|y|≥M

P[|η(Y y
t )|≥N ] = 1 (N ≥ 1).(4.38)

Now write

P[Yt )= 0 and |η(Yt )| < N ]
= P[Yt )= 0 and |η(Yt )| < N | 0 < |Yt−1| < M]P[0 < |Yt−1| < M](4.39)

+ P[Yt )= 0 and |η(Yt )| < N | |Yt−1|≥M]P[|Yt−1|≥M].

By Lemma 20, the first term on the right-hand side of (4.39) tends to zero as
t →∞, while by (4.38), the limsup as t →∞ of the second term can be made
arbitrarily small by choosing M large enough. !

Fix Bernoulli random variables {ωz : z ∈ Z2
even} with intensity p as in Sec-

tion 4.1, and for each A ⊂ Zeven, let WA = (WA
n )n≥0 denote the oriented per-

colation process started in A defined in (2.11). Using the same Bernoulli random
variables ωz, we can define a process W = (Wn)n∈Z by

Wn := {x ∈ Z : (x, n) ∈ Z2
even,−∞→ (x, n)} (n ∈ Z),(4.40)

where −∞→ (x, n) means that there exists an infinite open path with respect to
the ωz, starting at time −∞ and ending at (x, n). Then W is a stationary (with
respect to shifts on Z2

even) oriented percolation process. We call

νW := P[W 2n ∈ ·] (n ∈ Z)(4.41)

the upper invariant law of W . It is known that, for each K ≥ 1 and x ∈ Zeven,

lim
n→∞P

[
W {x}

n )= ∅ and Wn ∩ [−K,K] )⊂W {x}
n

] = 0.(4.42)

This follows, for example, from [17], Theorem 2.27 (see also Theorem 2.28). The
statements there are for the one-dimensional nearest neighbor voter model, but the
proofs apply to our setting as well. Alternatively, one may consult [10] and [2],
Theorem 5, where this (as well as the much more powerful shape theorem) is
proved in a multidimensional setting, for p sufficiently close to one and for p > pc,
respectively.
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LEMMA 24 (Local comparison with upper invariant law). Let Y be an
ADBARW with parameter α ∈ [0,α′), started in Y0 = y, and let tk →∞. Then,
for each k, we can couple Ytk to a random variable Vk with law νW, in such a way
that

lim inf
k→∞

P
[
Vk ∩ [−K,K]⊂ η(Ytk )

]≥ P[Yt )= 0 ∀t ≥ 0] (K ≥ 1).(4.43)

PROOF. By Theorem 5, for each s ≥ 0, we can couple Y to an oriented perco-
lation process Ws = (Ws

n)n≥0 started in Ws
0 = η(Ys), defined by Bernoulli random

variables that are independent of (Yu)u∈[0,s], in such a way that

Ws
n ⊂ η(Ys+nT ) (n≥ 0).(4.44)

We couple Ws to an “upper invariant” oriented percolation process W
s as in (4.40),

and put Vs,n := W
s
2n (n ≥ 0). Fix K ≥ 1 and ε > 0. It is not hard to see that

limN→∞ inf|A|≥N P[WA
n )= ∅ ∀n ≥ 0] = 1. Therefore, by Lemma 23, we can

choose s0 ≥ 0 such that, for all s ≥ s0,

P[Ws
n )= ∅ ∀n≥ 0]≥ P[Ys )= 0]− 1

2ε.(4.45)

Since the process Y cannot move infinitely far in finite time, it is not hard to see
from (4.42) that for each s ∈ [s0, s0 + 2nT ), we can choose n0 ≥ 0 such that, for
all n≥ n0,

P
[
Vs,n ∩ [−K,K]⊂ η(Ys+2nT )

]≥ P[Ws
n )= ∅ ∀n≥ 0]− 1

2ε.(4.46)

It follows that for all t ≥ s0 + 2n0T we can choose s ∈ [s0, s0 + 2nT ) and n≥ n0
such that s + 2nT = t and

P
[
Vs,n ∩ [−K,K]⊂ η(Yt )

]≥ P[Yt )= 0 ∀t ≥ 0]− ε.(4.47)

Since K and ε are arbitrary, for each tk →∞, we can find Kk →∞, εk → 0, and
sk, nk such that

P
[
Vsk,nk ∩ [−Kk,Kk]⊂ η(Ytk )

]≥ P[Yt )= 0 ∀t ≥ 0]− εk,(4.48)

which proves our claim. !

PROOF OF LEMMA 21. Set ρ := P[Yt )= 0 ∀t ≥ 0] and ρ′ := P[Y ′t )= 0 ∀t ≥
0]. It suffices to prove the convergence in (4.28) along an arbitrary sequence of
times tk →∞. It is clear that the limsup is bounded from above by ρρ′. To bound
the liminf from below, by Lemma 22, it suffices to prove that

lim inf
k→∞

P[D2L(Ytk−1, Y
′
tk
)≥N ]≥ ρρ′ (N ≥ 1).(4.49)

By Lemma 24, we can couple (Ytk−1, Y
′
tk
) to random variables Vk,V

′
k each having

law νW, in such a way that (Ytk−1,Vk) is independent of (Y ′tk , V
′
k), and for K ≥ 1,

lim inf
k→∞

P
[
Vk ∩ [−K,K]⊂ η(Ytk−1),V

′
k ∩ [−K,K]⊂ η(Ytk )

]≥ ρρ ′.(4.50)
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It is not hard to see that if V,V ′ is a pair of independent random variables each
having law νW, then |V ∩ V ′| = ∞ a.s. Therefore, for each N, ε > 0, we can
choose K large enough such that

P
[|V ∩ V ′ ∩ [−K,K]| < N

]≤ ε,(4.51)

and hence, by (4.50),

lim inf
k→∞

P[D2L(Ytk−1, Y
′
tk
)≥N ]≥ ρρ′ − ε.(4.52)

Since ε > 0 is arbitrary, (4.49) follows. !
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