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Abstract

We extend the central limit theorem for additive functionals of a stationary, ergodic
Markov chain with normal transition operator due to Gordin and Lif̌sic [12] to continuous-
time Markov processes with normal generators. As examples we discuss random walks on
compact commutative hypergroups as well as certain random walks on non-commutative,
compact groups.
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1 Introduction

The central limit theorem (CLT) for additive functionals of stationary, ergodic Markov chains
has been studied intensively during the last decades. Let (Xn)n≥0 be a stationary, ergodic
Markov chain with state space (X,B), transition operator Q and invariant initial distribution
µ. A situation which is particularly well understood is that in which Q is a normal operator
on LC

2 (µ). This was first considered by Gordin and Lif̌sic [12]. Denote by L0
2 the set of

real-valued functions with
∫
f dµ = 0 and let

Sn(f) = f(X1) + . . .+ f(Xn)

be the partial sums. Assume that Q is normal and given f ∈ L0
2 let ρf denote the spectral

measure of Q with respect to f (cf. Ref. [2] for the definition). In [12] it is shown that if
f ∈ L0

2 satisfies ∫
σ(Q)

1
|1− z|

dρf (z) <∞, (1)

then Sn(f)/
√
n is asymptotically normal with variance

σ2(f) =
∫

σ(Q)

1− |z|2

|1− z|2
dρf (z). (2)
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It seems that at that time their result did not receive much attention, and complete proofs
were only published later in [4]. Kipnis and Varadhan [16] reproved the result for reversible
chains, which correspond to self-adjoint Q, using a different technique, and Deriennic and
Lin [6] gave a proof for the normal case without use of the spectral theorem. They used
the condition f ∈ Im(

√
I −Q), which is equivalent to (1) (cf. Ref. [8]). In this paper

we mainly consider continuous-time Markov processes. Let (Xt)t≥0 be a stationary ergodic
Markov process, defined on a probability space (Ω,A, P ), with state space (X,B), transition
probability function p(t, x, dy) and stationary distribution µ. We assume that the contraction
semigroup

Ttf(x) =
∫

X
f(y) p(t, x, dy), f ∈ L2(µ),

is strongly continuous (on L2(µ)). Let (Ft)t≥0 be a filtration in (Ω,A, P ) such that (Xt)t≥0

is progressively measurable with respect to (Ft)t≥0 and satisfies the Markov property

E
(
f(Xt)|Fu

)
= Tt−uf(Xu), f ∈ L2(µ), 0 ≤ u < t.

Let L be the generator of (Tt)t≥0 and D(L) its domain of definition on LC
2 (µ). Given f ∈

L0
2, t > 0 let

St(f) =
∫ t

0
f(Xs) ds.

Without further assumptions on the generator L, Bhattacharya [1] proved asymptotic nor-
mality for St(f)/

√
t (in fact even the functional CLT) if f ∈ Im(L). For a reversible Markov

process (which corresponds to self-adjoint L), in Ref. [16] the CLT under the assumption
that f ∈ Im(

√
−L) is proved.

In this paper we study the case in which L is a normal operator, i.e. LL∗ = L∗L. Recall
that the generator L is normal if and only if each operator Tt, t > 0, of the corresponding
semigroup is normal (cf. Ref. [19], p. 360). In Section 2 the CLT for Markov processes with
normal generator L under a spectral assumption similar to (1) is proved, following the method
used in [16] for the self-adjoint case. We point out that the method of Gordin and Lif̌sic [12]
for discrete-time chains seems not to be applicable in continuous time. An interesting situa-
tion in which the generator L turns out to be normal but not necessarily self-adjoint is that
of a convolution semigroup on a compact, commutative hypergroup. In Section 3 we prove
a CLT for the corresponding random walks. Random walks on non-commutative compact
groups, where the corresponding convolution semigroup is contained in the center of measure
algebra, are discussed in Section 4.

2 The central limit theorem

In this section we will prove the CLT for stationary, ergodic Markov processes with normal
generator. Assume that L is a normal operator on LC

2 (µ) with spectrum σ(L) and for f ∈ L0
2

denote by ρf (dz) the spectral measure of L with respect to f . Recall that we have <(z) ≤ 0
for each z ∈ σ(L). Consider the condition∫

σ(L)

1
|z|

ρf (dz) <∞. (3)

Given ε > 0 let gε = (εI − L)−1f be the image under the resolvent mapping. Recall that
gε ∈ D(L), the domain of definition of L, for any ε > 0. The norm in LC

2 (µ) is denoted by
‖ · ‖ and the scalar product by < ·, · >.
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Lemma 1. Assume that L is normal and that f ∈ L0
2 satisfies (3). Then

lim
ε→0

ε < gε, gε >= 0 (4)

and
lim

δ,ε→0
< gε − gδ − Tt(gε − gδ), gε − gδ >= 0. (5)

Proof. In order to show (4), from the spectral theorem it follows that

ε < gε, gε >=
∫

σ(L)

ε

|ε− z|2
ρf (dz).

Since <(z) ≤ 0 for z ∈ σ(L) we estimate

|ε− z|2 = ε2 + |z|2 − 2ε · <(z)
≥ ε2 + |z|2 ≥ 2ε|z|.

Thus (4) follows from (3) and the dominated convergence theorem. As for (5), we have from
the spectral theorem

< gε − gδ − Tt(gε − gδ), gε − gδ > =
∫

σ(L)
(1− ezt)

[ 1
ε− z

− 1
δ − z

][ 1
ε− z̄

− 1
δ − z̄

]
ρf (dz)

≤
∫

σ(L)
|1− ezt| (ε− δ)2

|ε− z|2 · |δ − z|2
ρf (dz).

We can assume ε > δ > 0. Now |ε − z|2|δ − z|2 ≥ |z|2ε2. On σ(L) ∩ {|z| ≤ 1} we have
|1− ezt| ≤ |zt|et, and the integrand is dominated by tet/|z|. On σ(L) ∩ {|z| > 1} we have

|1− ezt| ≤ 1 + |ezt| = 1 + e<z t ≤ 2,

and the integrand is dominated by 2/|z|2 ≤ 2/|z|. Again (5) follows from (3) and the domi-
nated convergence theorem.

Theorem 1. Let (Xt)t≥0 be a progressively measurable stationary ergodic Markov process
with state space (X,B), strongly continuous contraction semigroup (Tt)t>0 and stationary
distribution µ. Assume that the generator L is normal on LC

2 (µ), and that f ∈ L0
2 satisfies

(3). Then
St(f)√

t

t→∞⇒ N(0, σ2(f)),

where the limit variance satisfies

σ2(f) = lim
t→∞

E
(
St(f)

)2
/t = −2

∫
σ(L)

1
z
ρf (dz).

Here N(0, σ2) denotes the normal law with mean 0 and variance σ2, and ⇒ denotes weak
convergence of distributions.
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Proof. Consider the decomposition

St(f) = Mt,ε + εSt(gε) +At,ε,

where

Mt,ε = gε(Xt)− gε(X0)−
∫ t

0
(Lgε)(Xs) ds,

At,ε = −gε(Xt) + gε(X0),

and (Mt,ε)t≥0 is a martingale with stationary increments and M0,ε = 0 for any ε > 0. For any
h ∈ L2(µ), from the Schwarz inequality,

E
( ∫ t

0
h(Xs) ds

)2
≤ E

(
t

∫ t

0
h(Xs)2 ds

)
= t2‖h‖2. (6)

From (6) and (4) it follows that ε2ESt(gε)2 → 0. Furthermore, since

E(At,ε −At,δ)2 = 2 < gε − gδ − Tt(gε − gδ), gε − gδ >,

the convergence of At,ε to some At as ε→ 0 follows directly from (5) via the Cauchy criterion.
Since Mt,ε = εSt(gε)+At,ε−St(f), Mt,ε also converges to a limit Mt, which is also a martingale
with stationary increments, and St(f) = Mt + At. Using (4) it is easy to show (see Kipnis
and Varadhan [16]) that EA2

t /t → 0 as t → ∞. Asymptotic normality follows from the
CLT for martingales with stationary increments. This result is well-known for discrete-time
martingales; see Chikin [5] for a careful discussion of the continuous-time case. Finally let us
prove the formula for σ2(f). From [14],

EM2
1 = σ2(f) = lim

n→∞
2n < g1/n − T1/ng1/n, g1/n > .

Now

2n < g1/n − T1/ng1/n, g1/n >= 2
∫

σ(L)

1− ez/n

1/n
1

|1/n− z|2
dρf (z).

The integrand converges to −1/z̄, and by an application of the dominated convergence theo-
rem which can be justified as above the formula for σ2(f) follows. This finishes the proof of
the theorem.

Remark 1. A functional CLT for Markov chains with normal transition operator, started
at a point, was proved in Ref. [7] under a spectral assumption slightly stronger than (3). It
would be of some interest to obtain a similar result for continuous-time Markov processes.

Remark 2. Kipnis and Varadhan [16] in fact obtained the functional central limit theorem
for reversible Markov processes under the condition (3). A simpler proof of the functional
part was given by Olla [18]. It is possible to deduce from his results that if

−
∫

σ(L)

1
<z

dρf (z) <∞,

then the functional CLT holds in case of a stationary Markov process with normal generator.
Whether such a result is already true under the milder spectral assumption (3) remains an
open problem.
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3 Random walks on compact commutative hypergroups

In this section we apply Theorem 1 to random walks on compact commutative hypergroups.
Roughly speaking, a hypergroup is a Hausdorff space H such that the space of regular finite
Borel measures Mb(H) can be equipped with a convolution operation which preserves the
probability measures. Axiomatic schemes for this concept were first introduced by Dunkl
[9] and Jewett [15]. Since then hypergroups have been investigated intensively, due to the
rich variety of examples, and a rather general notion of hypergroups has become standard
in the literature. Let H be a locally compact Hausdorff space. We denote by Mb(H) the
space of regular finite Borel measures and by M1(H) the subset of regular probabilities. Our
definition of a hypergroup is taken from Bloom and Heyer [3].

Definition 1. H is called a hypergroup if the space (Mb(H),+) admits a second binary
operation ∗ such that the following conditions are satisfied.

1. (Mb(H),+, ∗) is an algebra.

2. For any x, y ∈ H, δx ∗ δy ∈ M1(H) and supp(δx ∗ δy) is compact (here δx denotes the
Dirac measure at x ∈ H).

3. The mappings (x, y) 7→ δx ∗ δy and (x, y) 7→ supp(δx ∗ δy) of H ×H are continuous with
respect to the weak topology and the Michael topology, respectively.

4. There exists an involution x 7→ x̄ of H such that δx ∗ δy = δȳ ∗ δx̄ for all x, y ∈ H, where
ν̄ denotes the image of ν ∈Mb(H) under the involution .̄

5. There exists an element e ∈ H such that δe ∗ δx = δx ∗ δe = δx for all x ∈ H, and such
that e ∈supp(δx ∗ δy) if and only if y = x̄, x, y,∈ H.

The hypergroup H is called commutative if (Mb(H),+, ∗) is a commutative algebra. In the
following let H be a commutative hypergroup. The x-translate of a function f ∈ Cc(H) is
defined by

τxf(y) = f(x ∗ y) =
∫

H
fd(δx ∗ δy).

A measure ν ∈Mb(H) is called invariant if∫
H
τxf dµ =

∫
H
f dµ, f ∈ Cc(H), x ∈ H.

A compact hypergroup (i.e. H is a compact) always admits a unique invariant measure
µ ∈M1(H) (cf. [3], p. 40), and we have the formula (cf. [3], p. 34)∫

H
f(x ∗ y)g(y)dµ(y) =

∫
H
f(y)g(x̄ ∗ y)dµ(y) ∀ f, g ∈ LC

2 (µ). (7)

Furthermore, translation can be extended to the space LC
2 (µ). The convolution of a function

f ∈ LC
2 (µ) and a measure ν ∈Mb(H) is defined by

f ∗ ν(x) =
∫

K
f(x ∗ ȳ) dν(y).
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A non-zero, continuous function χ : H → C is called a character if

χ(x ∗ ȳ) = χ(x)χ(y), x, y ∈ H.

It follows that χ(e) = 1, |χ(x)| ≤ 1 and χ(x̄) = χ(x). The set of characters is denoted by
Ĥ. If H is compact and commutative, Ĥ is discrete (with respect to the topology of uniform
convergence), and forms an orthogonal basis of LC

2 (µ) (cf. [9], p. 340). The Fourier transform
of a function f ∈ LC

2 (µ) and of a measure ν ∈Mb(H) are defined respectively by

f̂ , ν̂ : Ĥ → C, f̂(χ) =
∫

H
fχ̄ dµ, ν̂(χ) =

∫
H
χ̄ dν.,

The Plancherel measure on Ĥ is given by π =
∑

χ∈H c(χ) δχ, where δχ is the Dirac measure
at x and

c(χ) =
( ∫

H
|χ|2dµ

)−1
.

Furthermore we have the Plancherel formula and the inversion formula (cf. [3], pp. 86, 91).
Firstly let us consider discrete-time random walks. Let Q ∈M1(H) be a probability measure
on H. Then we can define a Markov kernel Q on LC

2 (µ) by letting Qf(x) = f ∗Q(x). Using
the translation invariance of the Haar measure one shows that this Markov kernel preserves
µ. Now we are in the position to state the following result.

Theorem 2. Let H be a compact, commutative hypergroup with Haar measure µ. Let Q ∈
M1(H) and let (Xn)n≥0 be a random walk in H with transition operator Q and stationary
distribution µ. Suppose that 1 is a simple eigenvalue of Q and that f ∈ L0

2 satisfies∑
χ∈Ĥ

1
|1− Q̂(χ)|

c(χ)|f̂(χ)|2 <∞.

Then Sn(f)/
√
n is asymptotically normally distributed, and the limit variance is given by

σ2(f) =
∑
χ∈Ĥ

1− |Q̂(χ)|2

|1− Q̂(χ)|2
c(χ)|f̂(χ)|2.

Proof. We want to apply condition (1), as obtained by Gordin and Lif̌sic [12]. It is well-known
that the chain (Xn)n≥0 is ergodic if and only if 1 is a simple eigenvalue of Q. Now let us show
that Q is a normal operator. To this end, using (7) the following is easily shown.∫

H
(Qf)(x)g(x)dµ(x) =

∫
H
f(x)

∫
H
g(x ∗ y) dQ(y) dµ(x), f, g ∈ LC

2 (µ).

Therefore the adjoint operator is given by (Q∗g)(x) =
∫
g(x ∗ y)dQ(y), i.e. by convolution

with respect to the measure Q̄. By commutativity it follows that Q is normal. Furthermore
we have that

χ ∗Q = Q̂(χ)χ, χ ∈ Ĥ. (8)

Therefore Q has a discrete spectrum and each χ is an eigenvector with eigenvalue Q̂(χ). The
theorem now follows from (1) and (2).
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Remark 3. Related results on the central limit theorem for random walks on hypergroups,
where H is a non-compact interval or the lattice Z or Z+, can be found in [11].

Now let us consider continuous-time random walks. A convolution semigroup (Qt)t>0 ⊂
M1(H) is a family of probability measures such that Qt ∗Qs = Qs+t. It is called e-continuous
(or simply continuous) if limt→0Qt = δe in the topology of weak convergence. For every
e-continuous convolution semigroup there exists a negative definite function ψ ∈ N

(s)
B (Ĥ)

(see [3], p. 334), called the exponent of the convolution semigroup, such that Q̂t = exp(−tψ).
Given an e-continuous convolution semigroup, we obtain a contraction semigroup by letting
Tt = f ∗ Qt, f ∈ LC

2 (µ) (cf. [3], p. 427). This semigroup commutes with translations, and
gives rise to a stationary Markov process (Xt)t≥0 with stationary distribution µ. We have the
following

Theorem 3. Let H be a compact, commutative hypergroup with Haar measure µ. Let (Qt)t>0

be an e-continuous convolution semigroup with exponent ψ ∈ N (s)
B (Ĥ) and let (Xt)t≥0 be the

corresponding continuous-time random walk with semigroup Tt, generator L, and stationary
distribution µ. Suppose that 0 is a simple eigenvalue of L and that f ∈ L0

2 satisfies∑
χ∈Ĥ

1
|ψ(χ)|

c(χ)|f̂(χ)|2 <∞. (9)

Then St(f)/
√
t is asymptotically normally distributed with limit variance

σ2(f) = 2
∑
χ∈Ĥ

1
ψ(χ)

c(χ)|f̂(χ)|2.

Proof. First let us show that the semigroup (Tt) is strongly continuous. In fact, the Fourier
transform gives rise to the contraction semigroup on LC

2 (Ĥ, π) given by the multiplication op-
erators MtF = exp(−tψ)F , F ∈ LC

2 (Ĥ, π). Such contraction semigroups are always strongly
continuous (cf. Nagel and Schlotterbeck [17], p. 8), and their generator is the densely-defined
multiplication operator L̂F = −ψF . Thus from the Fourier isometry, it follows that the
generator L of (Tt) is also densely defined with domain

D(L) = {f ∈ LC
2 (H,µ) : ψf̂ ∈ LC

2 (Ĥ, π)},

and
(̂Lf) = −ψf̂, f ∈ D(L).

For f = χ with χ ∈ Ĥ this gives

(̂Lχ)(γ) = −ψ(χ)c(χ)−11l{χ}(γ), χ, γ ∈ Ĥ .

From the inversion theorem ([3], pp. 89 - 92) we get that

Lχ = −ψ(χ)χ.

The theorem follows from Theorem 1.

Remark 4. Observe that L is self-adjoint if and only if Qt = Q̄t for all t > 0.
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Example 1 (Compact Abelian groups). In this examples we illustrate the use of Theorems 2
and 3 by considering random walks on a separable compact Abelian group G. Let Γ denote
the dual group of G and let µG be the normalized Haar measure. It is well known that
characters form an orthonormal basis of LC

2 (G). There is a hypergroup structure on G given
by the usual convolution, i.e. δx ∗ δy = δx+y. Thus Haar measure on the hypergroup is the
usual Haar measure on G, and the characters of the hypergroup are given by the characters
of the group. Theorems 2 and 3 apply, and c(χ) = 1 for all χ ∈ Γ. In discrete time, this
example was studied by Gordin & Lif̌sic ([4], pp. 171,72). Given an e-continuous convolution
semigroup, the generating functional ψ can be decomposed as follows:

ψ = ψ1 + ψ2 + ψ3,

where ψ1 is a continuous primitive form, ψ2 a continuous square form, and ψ3 is given in terms
of the Lévy function and the Lévy measure (see Heyer [13], pp. 70, 308). Let us consider the
one-dimensional torus T 1, where characters are of the form χn(θ) = einθ, θ ∈ [0, 2π). In this
case (cf. Zimple [20], p. 493),

ψ1(χn) = −ian, ψ2(χn) = bn2, a ∈ R, b ≥ 0.

If ψ = ψ1, Xt = eiat is a deterministic motion. As can be expected, (9) is satisfied for any
f ∈ L0

2 but σ2(f) = 0. If ψ = ψ2, the Qt are wrapped Gaussian distributions with densities

qt(θ) =
1
2π

∑
n∈Z

e−tn2b cos(nθ).

(9) is also satisfied for any f ∈ L0
2, and σ2(f) 6= 0 if f 6= 0 (and b 6= 0). Notice that L is

self-adjoint in this case. If the Lévy measure α is bounded, then

ψ3(χn) =
∫

G\{e}

(
1− χn(θ)

)
dα(θ).

In this case (as well as in the case of general ψ), asymptotic normality depends on the Fourier
expansion of f ∈ L0

2.

4 Random walks on compact, non-Abelian groups

In this section we show how to apply Theorem 1 to certain random walks on compact, possibly
non-Abelian groups.
Let G be a compact, separable group with normalized Haar measure µG and let Ĝ denote
the set of equivalence classes of irreducible unitary representations of G. If α ∈ Ĝ, we let
α also stand for some representative of this equivalence class, acting on a space Vα of finite
dimension nα. We have the orthogonal Hilbert space decomposition

LC
2 (G) = ⊕α∈ĜHα, Hα = {g 7→ tr(α(g)C), g ∈ G, C ∈ End(Vα)}, α ∈ Ĝ,

where tr(C) denotes the trace of the endomorphism C (cf. Ref. [10]). The orthogonal
projection of f ∈ LC

2 (G) to Hα is given by nαfα, where fα = f ∗ χα = χα ∗ f , and χα is the
character of α.
Let H be the set of conjugacy classes with the quotient topology. There is a one-to-one
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correspondence between Mb(H) and Z(Mb(G)), the center of Mb(G). Therefore H can be
equipped with a commutative hypergroup structure, and Theorems 2 and 3 apply to random
walks on H. Explicitly, the characters of H are given by the normalized characters of the
group γπ = χπ/nα.
We want to extend this result to functions which are not necessarily conjugation-invariant.
Notice that Q ∈ Z(Mb(G)) is ergodic on LC

2 (G) if and only if it is ergodic on LC
2 (H,µ), since

0 is either a simple or multiple eigenvalue in both cases.

Theorem 4. Let G be a compact, separable, non-Abelian group and let Q be a probability on
G. Suppose that Q ∈ Z(Mb(G)) and that Q, as a convolution operator, has 1 as a simple
eigenvalue. Let (Xn)n≥0 be a random walk on G with transition operator Q and stationary
distribution µG. If f ∈ L0

2 satisfies∑
α∈Ĝ

1∣∣1− Q̂(χα)/nα

∣∣ n2
α‖fα‖2 <∞,

then there is a martingale approximation to Sn(f), where the limit variance is given by

∑
α∈Ĝ

1−
∣∣Q̂(χα)/nα

∣∣2∣∣1− Q̂(χα)/nα

∣∣2 n2
α‖fα‖2 <∞.

Proof. Since Q ∈ Z(Mb(G)), from (8) we obtain Q∗γα = Q̂(γα)γα or Q∗χα = Q̂(χα)/nα χα.
Given any f ∈ LC

2 (G) and α ∈ Ĝ, we have since Q ∈ Z(Mb(G)),

Q ∗ fα = Q ∗ f ∗ χα = f ∗Q ∗ χα = Q̂(χα)/nα f ∗ χα = Q̂(χα)/nα fα.

Therefore, each space Hα is an eigenspace of Q with eigenvalue Q̂(χα)/nα and in particular,
Q is a normal operator. The theorem follows from condition (1), due to Gordin and Lif̌sic
[12].

A similar result can be formulated for e-continuous convolution semigroups in Z(Mb(G)).
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