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In the world of multivariate extremes, estimation of the dependence structure still presents a challenge and
an interesting problem. A procedure for the bivariate case is presented that opens the road to a similar
way of handling the problem in a truly multivariate setting. We consider a semi-parametric model in which
the stable tail dependence function is parametrically modeled. Given a random sample from a bivariate
distribution function, the problem is to estimate the unknown parameter. A method of moments estimator
is proposed where a certain integral of a nonparametric, rank-based estimator of the stable tail dependence
function is matched with the corresponding parametric version. Under very weak conditions, the estimator
is shown to be consistent and asymptotically normal. Moreover, a comparison between the parametric and
nonparametric estimators leads to a goodness-of-fit test for the semiparametric model. The performance of
the estimator is illustrated for a discrete spectral measure that arises in a factor-type model and for which
likelihood-based methods break down. A second example is that of a family of stable tail dependence
functions of certain meta-elliptical distributions.

Keywords: asymptotic properties; confidence regions; goodness-of-fit test; meta-elliptical distribution;
method of moments; multivariate extremes; tail dependence

1. Introduction

A bivariate distribution function F with continuous marginal distribution functions F1 and F2
is said to have a stable tail dependence function l if for all x ≥ 0 and y ≥ 0, the following limit
exists:

lim
t→0

t−1
P{1 − F1(X) ≤ tx or 1 − F2(Y ) ≤ ty} = l(x, y); (1.1)

see [6,15]. Here, (X,Y ) is a bivariate random vector with distribution F .
The relevance of condition (1.1) comes from multivariate extreme value theory: if F1 and F2

are in the max-domains of attraction of extreme value distributions G1 and G2 and if (1.1) holds,
then F is in the max-domain of attraction of an extreme value distribution G with marginals G1
and G2 and with copula determined by l; see Section 2 for more details.

Inference problems on multivariate extremes therefore generally separate into two parts. The
first one concerns the marginal distributions and is simplified by the fact that univariate extreme
value distributions constitute a parametric family. The second one concerns the dependence struc-
ture in the tail of F and forms the subject of this paper. In particular, we are interested in the es-
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timation of the function l. The marginals will not be assumed to be known and will be estimated
nonparametrically. As a consequence, the new inference procedures are rank-based and therefore
invariant with respect to the marginal distribution, in accordance with (1.1).

The class of stable tail dependence functions does not constitute a finite-dimensional family.
This is an argument for nonparametric, model-free approaches. However, the accuracy of these
nonparametric approaches is often poor in higher dimensions. Moreover, stable tail dependence
functions satisfy a number of shape constraints (bounds, homogeneity, convexity; see Section 2)
which are typically not satisfied by nonparametric estimators.

The other approach is the semiparametric one, that is, we model l parametrically. At the price
of an additional model risk, parametric methods yield estimates that are always proper stable tail
dependence functions. Moreover, they do not suffer from the curse of dimensionality. A large
number of models have been proposed in the literature, allowing for various degrees of depen-
dence and asymmetry, and new models continue to be invented; see [1,20] for an overview of the
most common ones.

In this paper, we propose an estimator based on the method of moments: given a parametric
family {lθ : θ ∈ �} with � ⊆ R

p and a function g : [0,1]2 → R
p , the moment estimator θ̂n is

defined as the solution to the system of equations
∫ ∫

[0,1]2
g(x, y)l

θ̂n
(x, y)dx dy =

∫ ∫
[0,1]2

g(x, y)l̂n(x, y)dx dy.

Here, l̂n is the nonparametric estimator of l. Moreover, a comparison of the parametric and non-
parametric estimators yields a goodness-of-fit test for the postulated model.

The method of moments estimator is to be contrasted with the maximum likelihood estima-
tor in point process models for extremes [5,17] or the censored likelihood approach proposed in
[21,23] and studied for single-parameter families in [14]. In parametric models, moment estima-
tors yield consistent estimators, but often with a lower efficiency than the maximum likelihood
estimator. However, as we shall see, the set of conditions required for the moment estimator is
smaller, the conditions that remain to be imposed are much simpler and, most importantly, there
are no restrictions whatsoever on the smoothness (or even on the existence) of the partial deriva-
tives of l. Even for nonparametric estimators of l, asymptotic normality theorems require l to be
differentiable [6,7,15].

Such a degree of generality is needed if, for instance, the spectral measure underlying l is
discrete. In this case, there is no likelihood at all, so the maximum likelihood method breaks
down. An example is the linear factor model X = βF + ε, where X and ε are d × 1 random
vectors, F is a m×1 random vector of factor variables and β is a constant d ×m matrix of factor
loadings. If the m factor variables are mutually independent and if their common marginal tail is
of Pareto type and heavier than those of the noise variables ε1, . . . , εd , then the spectral measure
of the distribution of X is discrete with point masses determined by β and the tail index of the
factor variables. The heuristic is that if X is far from the origin, then with high probability, it will
be dominated by a single component of F . Therefore, in the limit, there are only a finite number
of directions for extreme outcomes of X. Section 5 deals with a two-factor model of the above
type, which gives rise to a discrete spectral measure concentrated on only two atoms. For more
examples of factor models and further references, see [11].
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The paper is organized as follows. Basic properties of stable tail dependence functions and
spectral measures are reviewed in Section 2. The estimator and goodness-of-fit test statistic are
defined in Section 3. Section 4 states the main results on the large-sample properties of the new
procedures. In Section 5, the example of a spectral measure with two atoms is worked out and
the finite-sample performance of the moment estimator is evaluated via simulations; Section 6
carries out the same program for the stable tail dependence functions of elliptical distributions.
All proofs are deferred to Section 7.

2. Tail dependence

Let (X,Y ), (X1, Y1), . . . , (Xn,Yn) be independent random vectors in R
2 with common continu-

ous distribution function F and marginal distribution functions F1 and F2. The central assump-
tion in this paper is the existence, for all (x, y) ∈ [0,∞)2, of the limit l in (1.1). Obviously, by
the probability integral transform and the inclusion–exclusion formula, (1.1) is equivalent to the
existence, for all (x, y) ∈ [0,∞]2 \ {(∞,∞)}, of the limit

lim
t→0

t−1
P{1 − F1(X) ≤ tx,1 − F2(Y ) ≤ ty} = R(x, y), (2.1)

so R(x,∞) = R(∞, x) = x. The functions l and R are related by R(x, y) = x + y − l(x, y) for
(x, y) ∈ [0,∞)2. Note that R(1,1) is the upper tail dependence coefficient.

If C denotes the copula of F , that is, if F(x, y) = C{F1(x),F2(y)}, then (1.1) is equivalent
to

lim
t→0

t−1{1 − C(1 − tx,1 − ty)} = l(x, y) (2.2)

for all x, y ≥ 0 and also to

lim
n→∞Cn(u1/n, v1/n) = exp{−l(− logu,− logv)} =: C∞(u, v)

for all (u, v) ∈ (0,1]2. The left-hand side in the previous display is the copula of the pair of
componentwise maxima (maxi=1,...,n Xi,maxi=1,...,n Yi) and the right-hand side is the copula of
a bivariate max-stable distribution. If, in addition, the marginal distribution functions F1 and F2

are in the max-domains of attraction of extreme value distributions G1 and G2, that is, if there

exist normalizing sequences an > 0, cn > 0, bn ∈ R and dn ∈ R such that Fn
1 (anx +bn)

d→ G1(x)

and Fn
2 (cny + dn)

d→ G2(y), then actually

Fn(anx + bn, cny + dn)
d→ G(x,y) = C∞{G1(x),G2(y)},

that is, F is in the max-domain of attraction of a bivariate extreme value distribution G with
marginals G1 and G2 and copula C∞. However, in this paper, we shall make no assumptions
whatsoever on the marginal distributions F1 and F2, except for continuity.
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Directly from the definition of l, it follows that x ∨y ≤ l(x, y) ≤ x +y for all (x, y) ∈ [0,∞)2.
Similarly, 0 ≤ R(x, y) ≤ x ∧ y for (x, y) ∈ [0,∞)2. Moreover, the functions l and R are homo-
geneous of order one: for all (x, y) ∈ [0,∞)2 and all t ≥ 0,

l(tx, ty) = t l(x, y), R(tx, ty) = tR(x, y).

In addition, l is convex and R is concave. It can be shown that these requirements on l (or,
equivalently, R) are necessary and sufficient for l to be a stable tail dependence function.

The following representation will be extremely useful: there exists a finite Borel measure H

on [0,1], called spectral or angular measure, such that for all (x, y) ∈ [0,∞)2,

l(x, y) =
∫

[0,1]
max{wx, (1 − w)y}H(dw),

(2.3)

R(x, y) =
∫

[0,1]
min{wx, (1 − w)y}H(dw).

The identities l(x,0) = l(0, x) = x for all x ≥ 0 imply the following moment constraints for H :
∫

[0,1]
wH(dw) =

∫
[0,1]

(1 − w)H(dw) = 1. (2.4)

Again, equation (2.4) constitutes a necessary and sufficient condition for l in (2.3) to be a stable
tail dependence function. For more details on multivariate extreme value theory, see, for instance,
[1,4,8,10,13,22].

3. Estimation and testing

Let RX
i and RY

i be the rank of Xi among X1, . . . ,Xn and the rank of Yi among Y1, . . . , Yn,
respectively, where i = 1, . . . , n. Replacing P,F1 and F2 on the left-hand side of (1.1) by their
empirical counterparts, we obtain a nonparametric estimator for l. Estimators obtained in this
way are

L̂1
n(x, y) := 1

k

n∑
i=1

1{RX
i > n + 1 − kx or RY

i > n + 1 − ky},

L̂2
n(x, y) := 1

k

n∑
i=1

1{RX
i ≥ n + 1 − kx or RY

i ≥ n + 1 − ky},

defined in [7] and [6,15], respectively (here, k ∈ {1, . . . , n}). The estimator we will use here is
similar to those above and is defined by

l̂n(x, y) := 1

k

n∑
i=1

1
{
RX

i > n + 1

2
− kx or RY

i > n + 1

2
− ky

}
.
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For finite samples, simulation experiments show that the latter estimator usually performs slightly
better. The large-sample behaviors of the three estimators coincide, however, since L̂1

n ≤ L̂2
n ≤ l̂n

and, as n → ∞,

sup
0≤x,y≤1

∣∣√k
(
l̂n(x, y) − L̂1

n(x, y)
)∣∣ ≤ 2√

k
→ 0, (3.1)

where k = kn is an intermediate sequence, that is, k → ∞ and k/n → 0.
Assume that the stable tail dependence function l belongs to some parametric family

{l(·, ·; θ) : θ ∈ �}, where � ⊂ R
p , p ≥ 1. (In the sequel, we will write l(x, y; θ) instead of

lθ (x, y).) Observe that this does not mean that C (or F ) belongs to a parametric family, that
is, we have constructed a semiparametric model. Let g : [0,1]2 → R

p be an integrable function
such that ϕ :� → R

p defined by

ϕ(θ) :=
∫ ∫

[0,1]2
g(x, y)l(x, y; θ)dx dy (3.2)

is a homeomorphism between �o, the interior of the parameter space �, and its image ϕ(�o).
For examples of the function ϕ, see Sections 5 and 6. Let θ0 denote the true parameter value and
assume that θ0 ∈ �o.

The method of moments estimator θ̂n of θ0 is defined as the solution of

∫ ∫
[0,1]2

g(x, y)l̂n(x, y)dx dy =
∫ ∫

[0,1]2
g(x, y)l(x, y; θ̂n)dx dy = ϕ(θ̂n),

that is,

θ̂n := ϕ−1
(∫ ∫

[0,1]2
g(x, y)l̂n(x, y)dx dy

)
, (3.3)

whenever the right-hand side is defined. For definiteness, if
∫∫

gl̂n /∈ ϕ(�o), let θ̂n be some arbi-
trary, fixed value in �.

Consider the goodness-of-fit testing problem, H0 : l ∈ {l(·, ·; θ) : θ ∈ �} against Ha : l /∈
{l(·, ·; θ) : θ ∈ �}. We propose the test statistic

∫ ∫
[0,1]2

{l̂n(x, y) − l(x, y; θ̂n)}2 dx dy, (3.4)

with θ̂n as in (3.3). The null hypothesis is rejected for large values of the test statistic.

4. Results

The method of moments estimator is consistent for every intermediate sequence k = kn under
minimal conditions on the model and the function g.
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Theorem 4.1 (Consistency). Let g : [0,1]2 → R
p be integrable. If ϕ in (3.2) is a homeomor-

phism between �o and ϕ(�o) and if θ0 ∈ �o, then as n → ∞, k → ∞ and k/n → 0, the right-

hand side of (3.3) is well defined with probability tending to 1 and θ̂n
P→ θ0.

Denote by W a mean-zero Wiener process on [0,∞]2 \ {(∞,∞)} with covariance function

EW(x1, y1)W(x2, y2) = R(x1 ∧ x2, y1 ∧ y2)

and for x, y ∈ [0,∞), let

W1(x) := W(x,∞), W2(y) := W(∞, y).

Further, for (x, y) ∈ [0,∞)2, let R1(x, y) and R2(x, y) be the right-hand partial derivatives of
R at the point (x, y) with respect to the first and second coordinate, respectively. Since R is
concave, R1 and R2 defined in this way always exist, although they are discontinuous at points
where ∂

∂x
R(x, y) or ∂

∂y
R(x, y) do not exist.

Finally, define the stochastic process B on [0,∞)2 and the p-variate random vector B̃ by

B(x, y) = W(x,y) − R1(x, y)W1(x) − R2(x, y)W2(y),

B̃ =
∫ ∫

[0,1]2
g(x, y)B(x, y)dx dy.

Theorem 4.2 (Asymptotic normality). In addition to the conditions in Theorem 4.1, assume
the following:

(C1) the function ϕ is continuously differentiable in some neighborhood of θ0 and its deriva-
tive matrix Dϕ(θ0) is invertible;

(C2) there exists α > 0 such that as t → 0,

t−1
P{1 − F1(X) ≤ tx,1 − F2(Y ) ≤ ty} − R(x, y) = O(tα),

uniformly on the set {(x, y) :x + y = 1, x ≥ 0, y ≥ 0};
(C3) k = kn → ∞ and k = o(n2α/(1+2α)) as n → ∞.

Then
√

k(θ̂n − θ0)
d→ Dϕ(θ0)

−1B̃. (4.1)

Note that condition (C2) is a second-order condition quantifying the speed of convergence
in (2.1). Condition (C3) gives an upper bound on the speed with which k can grow to infinity. This
upper bound is related to the speed of convergence in (C2) and ensures that θ̂n is asymptotically
unbiased.

The limiting distribution in (4.1) depends on the model and on the auxiliary function g. The
optimal g would be the one minimizing the asymptotic variance, but this minimization problem
is typically difficult to solve. In the examples in Sections 5 and 6, the functions g were chosen so
as to simplify the calculations.
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From the definition of the process B , it follows that the distribution of B̃ is p-variate normal
with mean zero and covariance matrix

�(θ0) = Var(B̃) =
∫ ∫ ∫ ∫

[0,1]4
g(x, y)g(u, v)�σ(x, y,u, v; θ0)dx dy dudv, (4.2)

where σ is the covariance function of the process B , that is, for θ ∈ �,

σ(x, y,u, v; θ) = EB(x, y)B(u, v)

= R(x ∧ u,y ∧ v; θ) + R1(x, y; θ)R1(u, v; θ)(x ∧ u)
(4.3)

+ R2(x, y; θ)R2(u, v; θ)(y ∧ v) − 2R1(u, v; θ)R(x ∧ u,y; θ)

− 2R2(u, v; θ)R(x, y ∧ v; θ) + 2R1(x, y; θ)R2(u, v; θ)R(x, v; θ).

Denote by Hθ the spectral measure corresponding to l(·, ·; θ). The following corollary allows
the construction of confidence regions.

Corollary 4.3. Under the assumptions of Theorem 4.2, if the map θ 
→ Hθ is weakly continuous
at θ0 and if �(θ0) is non-singular, then, as n → ∞,

k(θ̂n − θ0)
�Dϕ(θ̂n)

��(θ̂n)
−1Dϕ(θ̂n)(θ̂n − θ0)

d→ χ2
p.

Finally, we derive the limit distribution of the test statistic in (3.4).

Theorem 4.4 (Test). Assume that the null hypothesis H0 holds and let θH0 denote the true
parameter. If

(1) for all θ0 ∈ � the conditions of Theorem 4.2 are satisfied (and hence � is open);
(2) on �, the mapping θ 
→ l(x, y; θ) is differentiable for all (x, y) ∈ [0,1]2 and its gradient

is bounded in (x, y) ∈ [0,1]2,

then ∫ ∫
[0,1]2

k
(
l̂n(x, y) − l(x, y; θ̂n)

)2 dx dy

d→
∫ ∫

[0,1]2

(
B(x, y) − Dl(x,y;θ)(θH0)Dϕ(θH0)

−1B̃
)2 dx dy

as n → ∞, where Dl(x,y;θ)(θH0) is the gradient of θ 
→ l(x, y; θ) at θH0 .

5. Example 1: Two-point spectral measure

The two-point spectral measure is a spectral measure H that is concentrated on only two points
in (0,1) \ {1/2} – call them a and 1 − b. The moment conditions (2.4) imply that one of those



1010 J.H.J. Einmahl, A. Krajina and J. Segers

points is less than 1/2 and the other one is greater than 1/2, and the masses on those points
are determined by their locations. For definiteness, let a ∈ (0,1/2) and 1 − b ∈ (1/2,1), so the
parameter vector θ = (a, b) takes values in the square � = (0,1/2)2. The masses assigned to a

and 1 − b are

q := H({a}) = 1 − 2b

1 − a − b
and 2 − q = H({1 − b}) = 1 − 2a

1 − a − b
.

This model is also known as the natural model and was first described by Tiago de Oliveira [24,
25].

By (2.3), the corresponding stable tail dependence function is

l(x, y;a, b) = q max{ax, (1 − a)y} + (2 − q)max{(1 − b)x, by}.
The partial derivatives of l with respect to x and y are

∂l(x, y;a, b)

∂x
=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1, if y <
a

1 − a
x,

(1 − b)(2 − q), if
a

1 − a
x < y <

1 − b

b
x,

0, if y >
1 − b

b
x

and (∂/∂y)l(x, y;a, b) = (∂/∂y)l(y, x;b, a). Note that the partial derivatives do not exist on the
lines y = a

1−a
x and y = 1−b

b
x. The same is true for the partial derivatives of R. As a conse-

quence, the maximum likelihood method is not applicable and the asymptotic normality of the
nonparametric estimator breaks down. However, the method of moments estimator can still be
used since, in Theorem 4.2, no smoothness assumptions whatsoever are made on l.

As explained in the Introduction, discrete spectral measures arise whenever extremes are de-
termined by a finite number of independent, heavy-tailed factors. Specifically, let the random
vector (X,Y ) be given by

(X,Y ) = (
αZ1 + (1 − α)Z2 + ε1, (1 − β)Z1 + βZ2 + ε2

)
, (5.1)

where 0 < α < 1 and 0 < β < 1 are coefficients and where Z1, Z2, ε1 and ε2 are independent
random variables satisfying the following conditions: there exist ν > 0 and a slowly varying
function L such that P(Zi > z) = z−νL(z) for some ν > 0, i = 1,2; P(εj > z)/P(Z1 > z) → 0
as z → ∞, j = 1,2. (Recall that a positive, measurable function L defined in a neighborhood of
infinity is called slowly varying if L(yz)/L(z) → 1 as z → ∞ for all y > 0.) Straightforward, but
lengthy, computations show that the spectral measure of the random vector (X,Y ) is a two-point
spectral measure having masses q and 2 − q at the points a and 1 − b, where

q := (1 − α)ν

αν + (1 − α)ν
+ βν

βν + (1 − β)ν
,

a := (1 − α)ν

αν + (1 − α)ν
q−1, 1 − b := αν

αν + (1 − α)ν
(2 − q)−1.
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Write 
 = {(x, y) ∈ [0,1]2 :x + y ≤ 1} and let 1
 be its indicator function. The function
g
 : [0,1]2 → R

2 defined by g
(x, y) = 1
(x, y)(x, y)� is obviously integrable and the func-
tion ϕ in (3.2) is given by

ϕ(a, b) =
∫ ∫




(x, y)�l(x, y;a, b)dx dy = (J (a, b),K(b, a))�,

where K(a,b) = J (b, a) and

J (a, b) = 1
24 {(2ab − a − b)(b − a + 1) + a(b − 1) + 3}.

Nonparametric estimators of J and K are given by

(Ĵn, K̂n) =
∫ ∫




(x, y)� l̂n(x, y)dx dy

and the method of moment estimators (ân, b̂n) are defined as the solutions to the equations

(Ĵn, K̂n) = (J (ân, b̂n),K(ân, b̂n)).

Due to the explicit nature of the functions J and K , these equations can be simplified: if we
denote cJ,n := 3(8Ĵn − 1) and cK,n := 3(8K̂n − 1), the estimator b̂n of b will be a solution of the
quadratic equation

3(2cJ,n + 2cK,n + 3)b2 + 3(−5cJ,n + cK,n − 3)b + 3cJ,n − 6cK,n − (cJ,n + cK,n)
2 = 0

that falls into the interval (0,1/2) and the estimator of a is

ân = 3b̂n + cJ,n + cK,n

6b̂n − 3
.

In the simulations, we used the following models:

(i) Z1,Z2 ∼ Fréchet(1), so ν = 1, and ε1, ε2 ∼ N(0,1) (Figures 1, 2, 3);
(ii) Z1,Z2 ∼ t2, so ν = 1/2, and ε1, ε2 ∼ N(0,0.52) (Figures 4, 5, 6).

The figures show the bias and the root mean squared error (RMSE) of ân and b̂n for 1000 samples
of size n = 1000. The method of moments estimator performs well in general. We see a very good
behavior when a0 = b0 ≈ 0. Of course, the heavier the tail of Z1, the better the performance of
the estimator.

6. Example 2: Parallel meta-elliptical model

A random vector (X,Y ) is said to be elliptically distributed if it satisfies the distributional equal-
ity

(X,Y )� d= μ + ZAU , (6.1)
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Figure 1. Model (5.1) with Z1,Z2 ∼ Fréchet(1), ε1, ε2 ∼ N(0,1), a0 = b0 = 0.001.

where μ is a 2 × 1 column vector, Z is a positive random variable called the generating random
variable, A is a 2 × 2 matrix such that � = AA� is of full rank and U is a two-dimensional
random vector independent of Z and uniformly distributed on the unit circle {(x, y) ∈ R

2 :x2 +
y2 = 1}. Under the above assumptions, the matrix � can be written as

� =
(

σ 2 ρσv

ρσv v2

)
, (6.2)

Figure 2. Model (5.1) with Z1,Z2 ∼ Fréchet(1), ε1, ε2 ∼ N(0,1), a0 = b0 = 0.3125.
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Figure 3. Model (5.1) with Z1,Z2 ∼ Fréchet(1), ε1, ε2 ∼ N(0,1), a0 = 0.125, b0 = 0.375.

where σ > 0, v > 0 and −1 < ρ < 1. The special case ρ = 0 yields the subclass of parallel
elliptical distributions.

By [16], the distribution of Z satisfies P(Z > z) = z−νL(z) with ν > 0 and L slowly varying
if and only if the distribution of (X,Y ) is (multivariate) regularly varying with the same index.
Under this assumption, the function R of the distribution of (X,Y ) was derived in [18]. In case

Figure 4. Model (5.1) with Z1,Z2 ∼ t2, ε1, ε2 ∼ N(0,0.52), a0 = b0 = 0.001.
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Figure 5. Model (5.1) with Z1,Z2 ∼ t2, ε1, ε2 ∼ N(0,0.52), a0 = b0 = 0.3125.

ρ = 0, the formula specializes to

R(x, y;ν) = x
∫ π/2
f (x,y;ν)

(cosφ)ν dφ + y
∫ f (x,y;ν)

0 (sinφ)ν dφ∫ π/2
−π/2(cosφ)ν dφ

(6.3)

with f (x, y;ν) = arctan{(x/y)1/ν}. Hence, the class of stable tail dependence functions belong-
ing to parallel elliptical vectors with regularly varying generating random variables forms a one-

Figure 6. Model (5.1) with Z1,Z2 ∼ t2, ε1, ε2 ∼ N(0,0.52), a0 = 0.125, b0 = 0.375.
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dimensional parametric family indexed by the index of regular variation ν ∈ (0,∞) = � of Z.
We will call the corresponding stable tail dependence functions l parallel elliptical.

In [9], meta-elliptical distributions are defined as the distributions of random vectors of the
form (s(X), t (Y )), where the distribution of (X,Y ) is elliptical and s and t are increasing func-
tions. In other words, a distribution is meta-elliptical if and only if its copula is that of an elliptical
distribution. Such copulas are called meta-elliptical in [12] (note that a copula, as a distribution
function on the unit square, cannot be elliptical in the sense of (6.1)). Since a stable tail de-
pendence function l of a bivariate distribution F is only determined by F through its copula C

(see (2.2)), the results in the preceding paragraph continue to hold for meta-elliptical distribu-
tions. In the case ρ = 0, we will speak of parallel meta-elliptical distributions. In the case where
the generating random variable Z is regularly varying with index ν, the function R is given
by (6.3).

For parallel meta-elliptical distributions, the second-order condition (C2) in Theorem 4.2 can
be checked via second-order regular variation of Z.

Lemma 6.1. Let F be a parallel meta-elliptical distribution with generating random variable Z.
If there exist ν > 0, β < 0 and a function A(t) → 0 of constant sign near infinity such that

lim
t→∞

P(Z > tx)/P(Z > t) − x−ν

A(t)
= x−ν xβ − 1

β
, (6.4)

then condition (C2) in Theorem 4.2 holds for every α ∈ (0,−β/ν).

Note that although the generating random variable is only defined up to a multiplicative con-
stant, condition (6.4) does makes sense: that is, if (6.4) holds for a random variable Z, then it also
holds for cZ with c > 0, for the same constants ν and β and for the rate function A∗(t) := A(t/c).
Note that |A| is necessarily regularly varying with index β; see [2], equation (3.0.3).

Now, assume that (X1, Y1), . . . , (Xn,Yn) is a random sample from a bivariate distribution
F with parallel elliptical stable tail dependence function l, that is, l ∈ {l(·, ·;ν) :ν ∈ (0,∞)},
where l(x, y;ν) = x + y − R(x, y;ν) and R(x, y;ν) is as in (6.3). We will apply the method of
moments to estimate the parameter ν. Since l is defined by a limit relation, our assumption on F

is weaker than the assumption that F is parallel meta-elliptical with regularly varying Z, which,
as explained above, is, in turn, weaker than the assumption that F itself is parallel elliptical with
regularly varying Z. The problem of estimating the R for elliptical distributions was addressed
in [18] and for meta-elliptical distributions was addressed in [19].

We simulated 1000 random samples of size n = 1000 from models for which the assumptions
of Theorem 4.2 hold and which have the function R(·, ·;ν) as in (6.3), with ν ∈ {1,5}. The
three models we used are of the type (X1, Y1)

� = ZU . In the first model, the generating random
variable Z is such that P(Z > z) = (1 + z2)−1/2 for z ≥ 0, that is, the first model is the bivariate
Cauchy (ν = 1). In the other two models, Z is Fréchet(ν) with ν ∈ {1,5}.

Figures 7 to 9 show the bias and the RMSE of the moment estimator of ν. The auxiliary
function g : [0,1]2 → R is g(x, y) = 1(x + y ≤ 1). For comparison, Figures 10 and 11 show
the plots of the means and RMSE of the parametric and nonparametric estimates R(1,1; ν̂n)
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Figure 7. Estimation of ν = 1 in the bivariate Cauchy model.

Figure 8. Estimation of ν = 1 in the model (X1, Y1)� = ZU , where Z is Fréchet(1).

Figure 9. Estimation of ν = 5 in the model (X1, Y1)� = ZU , where Z is Fréchet(5).
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Figure 10. Estimation of R(1,1;1) in the bivariate Cauchy model.

and R̂n(1,1) = 2 − l̂n(1,1) of the upper tail dependence coefficient R(1,1). We can see that
the method of moments estimator of the upper tail dependence coefficient R(1,1;ν) performs
well. In particular, it is much less sensitive to the choice of k than the nonparametric estima-
tor.

Figure 11. Estimation of R(1,1;5) in the model (X1, Y1)� = ZU , where Z is Fréchet(5).
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7. Proofs

Proof of Theorem 4.1. First, note that
∣∣∣∣
∫ ∫

[0,1]2
g(x, y)l̂n(x, y)dx dy −

∫ ∫
[0,1]2

g(x, y)l(x, y; θ0)dx dy

∣∣∣∣
≤ sup

0≤x,y≤1
|l̂n(x, y) − l(x, y; θ0)|

∫ ∫
[0,1]2

|g(x, y)|dx dy.

The second term is finite by assumption and

sup
0≤x,y≤1

|l̂n(x, y) − l(x, y; θ0)| P→ 0

by (3.1) and [15], Theorem 1; see also [6]. Therefore, as n → ∞,
∫ ∫

[0,1]2
g(x, y)l̂n(x, y)dx dy

P→
∫ ∫

[0,1]2
g(x, y)l(x, y; θ0)dx dy = ϕ(θ0).

Since ϕ(θ0) ∈ ϕ(�o), which is open, and since ϕ−1 is continuous at ϕ(θ0) by assumption, we
can apply the function ϕ−1 on both sides of the previous limit relation so that, by the continuous

mapping theorem, we indeed have θ̂n
P→ θ0. �

For the proof of Theorem 4.2, we will need the following lemma, the proof of which follows
from [8], Lemma 6.2.1.

Lemma 7.1. The function R in (2.3) is differentiable at (x, y) ∈ (0,∞)2 if H({z}) = 0 with
z = y/(x + y). In that case, the gradient of R is given by (R1(x, y),R2(x, y))�, where

R1(x, y) =
∫ z

0
wH(dw), R2(x, y) =

∫ 1

z

(1 − w)H(dw). (7.1)

For i = 1, . . . , n, let Ui := 1 − F1(Xi) and Vi := 1 − F2(Yi). Let Q1n and Q2n denote the
empirical quantile functions of (U1, . . . ,Un) and (V1, . . . , Vn), respectively, that is,

Q1n

(
kx

n

)
= U�kx�:n, Q2n

(
ky

n

)
= V�ky�:n,

where U1:n ≤ · · · ≤ Un:n and V1:n ≤ · · · ≤ Vn:n are the order statistics and where �a� is the
smallest integer not smaller than a. Define

S1n(x) := n

k
Q1n

(
kx

n

)
, S2n(y) := n

k
Q2n

(
ky

n

)
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and

R̂1
n(x, y) := 1

k

n∑
i=1

1
{
Ui <

k

n
S1n(x),Vi <

k

n
S2n(y)

}
,

= 1

k

n∑
i=1

1
{
Ui < U�kx� : n,Vi < V�ky�:n

}
,

= 1

k

n∑
i=1

1{RX
i > n + 1 − kx,RY

i > n + 1 − ky},

Rn(x, y) := n

k
P

(
U1 ≤ kx

n
,V1 ≤ ky

n

)
,

Tn(x, y) := 1

k

n∑
i=1

1
{
Ui <

kx

n
,Vi <

ky

n

}
.

Further, note that

R̂1
n(x, y) = Tn(S1n(x), S2n(y)).

Write vn(x, y) = √
k(Tn(x, y) − Rn(x, y)), vn,1(x) := vn(x,∞) and vn,2(y) := vn(∞, y).

From [7], Proposition 3.1 we get
(
vn(x, y), x, y ∈ [0,1];vn,1(x), x ∈ [0,1];vn,2(y), y ∈ [0,1])

d→ (
W(x,y), x, y ∈ [0,1];W1(x), x ∈ [0,1];W2(y), y ∈ [0,1]),

in the topology of uniform convergence, as n → ∞. Invoking the Skorokhod construction (see,
e.g., [27]) we get a new probability space containing all ṽn, ṽn,1, ṽn,2, W̃ , W̃1, W̃2 for which it
holds that

(ṽn, ṽn,1, ṽn,2)
d= (vn, vn,1, vn,2),

(W̃ , W̃1, W̃2)
d= (W,W1,W2)

as well as

sup
0≤x,y≤1

|ṽn(x, y) − W̃ (x, y)| a.s.→ 0,

sup
0≤x≤1

|ṽn,j (x) − W̃j (x)| a.s.→ 0, j = 1,2.

We will work on this space from now on, but keep the old notation (without tildes). The following
consequence of the above and Vervaat’s lemma [28] will be useful

sup
0≤x≤1

∣∣√k
(
Sjn(x) − x

) + Wj(x)
∣∣ a.s.→ 0, j = 1,2. (7.2)
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Proof of Theorem 4.2. In this proof, we will write l(x, y) and R(x, y) instead of l(x, y; θ0) and
R(x, y; θ0), respectively.

First, we will show that as n → ∞,∣∣∣∣
√

k

(∫ ∫
[0,1]2

g(x, y)L̂1
n(x, y)dx dy − ϕ(θ0)

)
+ B̃

∣∣∣∣ P→ 0. (7.3)

Since, for each x, y ∈ (0,1],

(L̂1
n + R̂1

n)(x, y) = �kx� + �ky� − 2

k

almost surely, from ∣∣∣∣�kx� + �ky� − 2

k
− x − y

∣∣∣∣ ≤ 2

k
,

it follows that∣∣∣∣
√

k

(∫ ∫
[0,1]2

g(x, y)L̂1
n(x, y)dx dy −

∫ ∫
[0,1]2

g(x, y)l(x, y)dx dy

)

+ √
k

(∫ ∫
[0,1]2

g(x, y)R̂1
n(x, y)dx dy −

∫ ∫
[0,1]2

g(x, y)R(x, y)dx dy

)∣∣∣∣
=

∣∣∣∣
∫ ∫

[0,1]2
g(x, y)

√
k

(�kx� + �ky� − 2

k
− x − y

)
dx dy

∣∣∣∣ = O

(
1√
k

)

almost surely. Hence, to show (7.3), we will prove
∣∣∣∣
∫ ∫

[0,1]2
g(x, y)

√
k
(
R̂1

n(x, y) − R(x, y)
)

dx dy − B̃

∣∣∣∣ P→ 0. (7.4)

First, we write
√

k
(
R̂1

n(x, y) − R(x, y)
) = √

k
(
R̂1

n(x, y) − Rn(S1n(x), S2n(y))
)

+ √
k
(
Rn(S1n(x), S2n(y)) − R(S1n(x), S2n(y))

)
+ √

k
(
R(S1n(x), S2n(y)) − R(x, y)

)
.

From the assumption on integrability of g and the proof of [7], Theorem 2.2, page 2003, we get
∫ ∫

[0,1]2
|g(x, y)|∣∣√k

(
R̂1

n(x, y) − Rn(S1n(x), S2n(y))
) − W(x,y)

∣∣dx dy

≤ sup
0≤x,y≤1

∣∣√k
(
R̂1

n(x, y) − Rn(S1n(x), S2n(y))
) − W(x,y)

∣∣ ∫ ∫
[0,1]2

|g(x, y)|dx dy (7.5)

P→ 0
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and, by conditions (C2) and (C3),
∫ ∫

[0,1]2
|g(x, y)|∣∣√k

(
Rn(S1n(x), S2n(y)) − R(S1n(x), S2n(y))

)∣∣dx dy

≤ sup
0≤x,y≤1

∣∣√k
(
Rn(S1n(x), S2n(y)) − R(S1n(x), S2n(y))

)∣∣ ∫ ∫
[0,1]2

|g(x, y)|dx dy (7.6)

P→ 0.

Take ω in the Skorokhod probability space introduced above such that sup0≤x≤1 |W1(x)| and
sup0≤y≤1 |W2(y)| are finite and (7.2) holds. For such ω, we will show, by means of dominated
convergence, that

∫ ∫
[0,1]2

|g(x, y)|∣∣√k
(
R(S1n(x), S2n(y)) − R(x, y)

)
(7.7)

+ R1(x, y)W1(x) + R2(x, y)W2(y)
∣∣dx dy → 0.

(i) Pointwise convergence of the integrand to zero for almost all (x, y) ∈ [0,1]2. Convergence
in (x, y) follows from (7.2), provided R(x, y) is differentiable. The set of points in which this
might fail is, by Lemma 7.1, equal to

DR :=
{
(x, y) ∈ [0,1]2 :H({z}) > 0, z = y

x + y

}
.

Since H is a finite measure, there can be at most countably many z for which H({z}) > 0. The set
DR is then a union of at most countably many lines through the origin and hence has Lebesgue
measure zero.

(ii) The domination of the integrand for all (x, y) ∈ [0,1]2. Comparing (7.1) and the mo-
ment conditions (2.4), we see that for all (x, y) ∈ [0,1]2, it holds that |R1(x, y)| ≤ 1 and
|R2(x, y)| ≤ 1. Hence, for all (x, y) ∈ [0,1]2,

|g(x, y)|∣∣√k
(
R(S1n(x), S2n(y)) − R(x, y)

) + R1(x, y)W1(x) + R2(x, y)W2(y)
∣∣

≤ |g(x, y)|(√k|R(S1n(x), S2n(y)) − R(x, y)| + |W1(x)| + |W2(y)|).
We will show that the right-hand side in the above inequality is less than or equal to M|g(x, y)|
for all (x, y) ∈ [0,1]2 and some positive constant M (depending on ω). For that purpose, we
prove that

sup
0≤x,y≤1

√
k|R(S1n(x), S2n(y)) − R(x, y)| = O(1).

The representation (2.1) implies that for all x, x1, x2, y, y1, y2 ∈ [0,1],
|R(x1, y) − R(x2, y)| ≤ |x1 − x2|,
|R(x, y1) − R(x, y2)| ≤ |y1 − y2|.
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By these inequalities and (7.2), we now have

sup
0≤x,y≤1

√
k|R(S1n(x), S2n(y)) − R(x, y)|

≤ sup
0≤x,y≤1

√
k|R(S1n(x), S2n(y)) − R(S1n(x), y)| + sup

0≤x,y≤1

√
k|R(S1n(x), y) − R(x, y)|

≤ sup
0≤x≤1

√
k|S1n(x) − x| + sup

0≤y≤1

√
k|S2n(y) − y|

= O(1).

Recalling that sup0≤x≤1 |W1(x)| and sup0≤y≤1 |W2(y)| are finite completes the proof of domina-
tion and hence the proof of (7.7).

Combining (7.5), (7.6) and (7.7), we get (7.4) and therefore also (7.3). Property (3.1) provides
us with a statement analogous to (7.3), but with L̂1

n replaced by l̂n. That is, we have∣∣∣∣
√

k

(∫ ∫
[0,1]2

g(x, y)l̂n(x, y)dx dy − ϕ(θ0)

)
+ B̃

∣∣∣∣ P→ 0. (7.8)

Using condition (C1) and the inverse mapping theorem, we get that ϕ−1 is continuously dif-
ferentiable in a neighborhood of ϕ(θ0) and Dϕ−1(ϕ(θ0)) is equal to Dϕ(θ0)

−1. By a routine
argument, using the delta method (see, e.g., Theorem 3.1 in [26]), (7.8) implies that

√
k(θ̂n − θ0)

P→ −Dϕ(θ0)
−1B̃

and since B̃ is mean-zero normally distributed (B̃
d= −B̃),

√
k(θ̂n − θ0)

d→ Dϕ(θ0)
−1B̃. �

Lemma 7.2. Let Hθ be the spectral measure and �(θ) the covariance matrix in (4.2). If the
mapping θ 
→ Hθ is weakly continuous at θ0, then θ 
→ �(θ) is continuous at θ0.

Proof. Let θn → θ0. In view of the expression for �(θ) in (4.2) and (4.3), the assumption that
g is integrable and the fact that R, |R1| and |R2| are bounded by 1 for all θ and (x, y) ∈ [0,1]2,
it suffices to show that R(x, y; θn) → R(x, y; θ) and Ri(x, y; θn) → Ri(x, y; θ) for i = 1,2 and
for almost all (x, y) ∈ [0,1]2.

Convergence of R for all (x, y) ∈ [0,1]2 follows directly from the representation of R in terms
of H in (2.3) and the definition of weak convergence. Convergence of R1 and R2 in the points
(x, y) ∈ (0,1]2 for which Hθ0({y/(x + y)}) = 0 follows from Lemma 7.1; see, for instance, [3],
Theorem 5.2(iii) (note that by the moment constraints (2.4), Hθ/2 is a probability measure).
Since Hθ0 can have at most countably many atoms, R1 and R2 converge in all (x, y) ∈ (0,1]2,
except for at most countably many rays through the origin. �

Proof of Corollary 4.3. By the continuous mapping theorem, it suffices to show that

(�(θ̂n))
−1/2Dϕ(θ̂n)

√
k(θ̂n − θ0)

d→ N(0, Ip)
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with Ip being the p ×p identity matrix. By condition (C1) of Theorem 4.2, the map θ 
→ Dϕ(θ)

is continuous at θ0 so that by the continuous mapping theorem, Dϕ(θ̂n)
P→ Dϕ(θ0) as n → ∞.

Slutsky’s lemma and (4.1) yield

Dϕ(θ̂n)
√

k(θ̂n − θ0)
d→ Dϕ(θ0)Dϕ(θ0)

−1B̃ = B̃

as n → ∞. By Lemma 7.2 and the assumption that the map θ 
→ Hθ is weakly continuous,

�(θ̂n)
−1/2 P→ �(θ0)

−1/2. Applying Slutsky’s lemma once more concludes the proof. �

Proof of Theorem 4.4. We will show that for the Skorokhod construction introduced before the
proof of Theorem 4.2,

∣∣∣∣
∫ ∫

[0,1]2

(
k
(
l̂n(x, y) − l(x, y; θ̂n)

)2 − (
B(x, y) − Dl(x,y;θ)(θH0)Dϕ(θH0)

−1B̃
)2)dx dy

∣∣∣∣ P→ 0

as n → ∞. The left-hand side of the previous expression is less than or equal to

sup
0≤x,y≤1

∣∣√k
(
l̂n(x, y) − l(x, y; θ̂n)

) − B(x, y) + Dl(x,y;θ)(θH0)Dϕ(θH0)
−1B̃

∣∣

×
(∣∣∣∣

∫ ∫
[0,1]2

(√
k
(
l̂n(x, y) − l(x, y; θH0)

) + B(x, y)
)

dx dy

∣∣∣∣
+

∫ ∫
[0,1]2

∣∣√k
(
l(x, y; θH0) − l(x, y; θ̂n)

) − Dl(x,y;θ)(θH0)Dϕ(θH0)
−1B̃

∣∣dx dy

)

=: S(I1 + I2).

From (7.8) with g ≡ 1,1 ∈ R
p , we have I1

P→ 0. We need to prove that S = OP(1) and I2 =
oP(1).

Proof of S = OP(1). We have

S ≤ sup
0≤x,y≤1

|B(x, y)| + sup
0≤x,y≤1

∣∣√k
(
l̂n(x, y) − l(x, y; θH0)

)∣∣

+ sup
0≤x,y≤1

∣∣√k
(
l(x, y; θH0) − l(x, y; θ̂n)

) + Dl(x,y;θ)(θH0)Dϕ(θH0)
−1B̃

∣∣
=: sup

0≤x,y≤1
|B(x, y)| + S1 + S2.

From the definition of process B , it follows that |B(x, y)| is almost surely bounded. Furthermore,
we have

S1 = sup
0≤x,y≤1

∣∣√k
(
R̂1

n(x, y) − R(x, y; θH0)
)∣∣ + o(1)

≤ sup
0≤x,y≤1

∣∣√k
(
R̂1

n(x, y) − Rn(S1n(x), S2n(y))
)∣∣
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+ sup
0≤x,y≤1

∣∣√k
(
Rn(S1n(x), S2n(y)) − R(S1n(x), S2n(y); θH0)

)∣∣

+ sup
0≤x,y≤1

∣∣√k
(
R(S1n(x), S2n(y); θH0) − R(x, y; θH0)

)∣∣ + o(1)

almost surely. In the last part of the proof of Theorem 4.2, we have shown that the third term is
almost surely bounded and by the proof of [7], Theorem 2.2, we know that the first two terms
are bounded in probability. Let M denote a constant (depending on θH0 ) bounding the gradient
of θ → l(x, y; θ) at θH0 in (x, y) ∈ [0,1]2. Then, by (4.1),

S2 ≤ M
∥∥√

k(θ̂n − θH0)
∥∥ + M‖Dϕ(θH0)

−1B̃‖ = OP(1).

Proof of I2 = oP(1). In Theorem 4.2, we have shown that

Tn := √
k(θ̂n − θH0)

P→ −Dϕ(θH0)
−1B̃ =: N.

By Slutsky’s lemma, it is also true that (Tn,N)
P→ (N,N). By the Skorokhod construction, there

exists a probability space, call it �∗, which contains both T ∗
n and N∗, where (T ∗

n ,N∗) d= (Tn,N)

and

(T ∗
n ,N∗) a.s.→ (N∗,N∗). (7.9)

Set θ̂∗
n := T ∗

n /
√

k + θH0

d= Tn/
√

k + θH0 = θ̂n. Let �∗
0 ⊂ �∗ be a set of probability 1 on which

N∗ is finite and the convergence in (7.9) holds. We will show that on �∗
0,

I ∗
2 :=

∫ ∫
[0,1]2

X∗
n(x, y)dx dy

:=
∫ ∫

[0,1]2

∣∣√k
(
l(x, y; θ̂∗

n ) − l(x, y; θH0)
) − Dl(x,y;θ)(θH0)N

∗∣∣dx dy

converges to zero. Since I ∗
2

d= I2, the above convergence (namely I ∗
2

a.s.→ 0) will imply that

I2
P→ 0. To show that I ∗

2 converges to zero on �∗
0, we will once more apply the dominated

convergence theorem. Hereafter, we work on �∗
0.

(i) Pointwise convergence of X∗
n(x, y) to zero. We have that

X∗
n(x, y) ≤ ∣∣√k

(
l(x, y; θ̂∗

n ) − l(x, y; θH0) − Dl(x,y;θ)(θH0)(θ̂
∗
n − θH0)

)∣∣
+ ∣∣Dl(x,y;θ)(θH0)(T

∗
n − N∗)

∣∣.
Because of (7.9), differentiability of θ 
→ l(x, y; θ) and continuity of matrix multiplication, the
right-hand side of the above inequality converges to zero for all (x, y) ∈ [0,1]2.

(ii) Domination of X∗
n(x, y). Let M be as above. Since the sequence (T ∗

n ) = (
√

k(θ̂∗
n − θH0))

is convergent, and hence bounded, we have

sup
0≤x,y≤1

X∗
n(x, y) ≤ M

∥∥√
k(θ̂∗

n − θH0)
∥∥ + M‖N∗‖ = O(1).



A method of moments estimator of tail dependence 1025

This concludes the proof of domination and hence the proof of I2
P→ 0. �

Proof of Lemma 6.1. Without loss of generality, we can assume that F is itself a parallel ellip-
tical distribution, that is, (X,Y ) is given as in (6.1) with ρ = 0 in (6.2). Under the assumptions of
the lemma and by [18], Theorem 2.3, there exists a function h : [0,∞)2 → R such that as t ↓ 0
and for all (x, y) ∈ [0,∞)2,

t−1
P{1 − F1(X) ≤ tx,1 − F2(Y ) ≤ ty} − R(x, y;ν)

A(F←
2 (1 − t))

→ h(x, y). (7.10)

Moreover, the convergence in (7.10) holds uniformly on {(x, y) ∈ [0,∞)2 :x2 + y2 = 1} and the
function h is bounded on that region; see [18] for an explicit expression of the function h.

Condition (6.4) obviously implies that z 
→ P(Z > z) is regularly varying at infinity with
index −ν. Hence, the same is true for the function 1 − F2; see [16]. By [2], Proposition 1.5.7
and Theorem 1.5.12, the function x 
→ |A(F←

2 (1 − 1/x))| is regularly varying at infinity with
index β/ν. Hence, for every α < −β/ν, we have A(F←

2 (1 − 1/x)) = o(x−α) as x → ∞ or
A(F←

2 (1 − t)) = o(tα) as t ↓ 0. As a consequence, for every α < −β/ν, we have, as t ↓ 0,

t−1
P{1 − F1(X) ≤ tx,1 − F2(Y ) ≤ ty} − R(x, y;ν) = O(tα),

uniformly on {(x, y) ∈ [0,∞)2 :x2 + y2 = 1}. Uniformity on {(x, y) ∈ [0,∞)2 :x + y = 1} now
follows as in the proof of [7], Theorem 2.2. �
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