
Convergence analysis of generalized iteratively reweighted
least squares algorithms on convex function spaces

Axel Munk1, Nicolai Bissantz1,2, Lutz Dümbgen3, and Bernd Stratmann1
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1 Introduction

The computation of robust parametric and nonparametric regression estimators often requires the

minimization of (convex) functionals on a set C which is determined by a priori information on the

model underlying the data. For example, C can be a linear finite-dimensional space (linear model)

or the set of isotonic vectors m = (m1, ...,md) ∈ R
d, m1 ≤ ... ≤ md, with d ≤ n. To this end
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the functional

F (ρ)(m) =
n∑

i=1

ρ(ri(m)) (1)

has to be minimized over C ⊂ R
d. Here ri, i = 1, ..., n denote the (model-dependent) residuals

of n data pairs (Xi, Yi), i = 1, . . . , n and ρ a given function (Huber 1981). Taking ρ(z) = z2/2

gives the ordinary least squares problem, and

ρ(z) = 2|z| ·
{

p z ≥ 0
1 − p z < 0

(2)

with 0 < p < 1 yields quantile regression (Koenker & Bassett 1978, Portnoy 1997). Other func-

tions are logistic ρ(z) = γz log(cosh(z/γ)) (Coleman et al. 1980) or Huber’s (1964) loss function

ρ(z) =
{

z2/2 |z| ≤ γ
γ|z| − γ2/2 |z| > γ

for some γ > 0. An important extension of (1) are functionals

F (m) = F (ρ)(m) + λP (m) , λ ≥ 0, (3)

where P (m) denotes a penalizing term such as, for instance, the discrete total variation semi-norm

of m ∈ R
d,

P (m) =
d−1∑
j=1

|mj − mj+1| ; (4)

see Künsch (1994), Koenker, Ng & Portnoy (1994) or Mammen & van de Geer (1997). In this

paper a generalization of the iteratively reweighted least squares (IRLS) algorithm - therefore

named GIRLS - is considered for minimization of a functional F as in (3) over any convex subset

C of R
d. This allows us to extend the IRLS algorithm for example to situations where C is defined

as the space of monotone (or k-modal) vectors or to the problem of nonparametric regression

estimates with total variation semi-norm penalization of its discrete derivative.

The general idea of the IRLS algorithm (and variants of it) is to approximate the functional F in a

first step by smooth functionals Fδ such that Fδ → F pointwise as δ ↘ 0. The collection (Fδ)δ>0

will be called a regularization of F (cf. Def. 1). In a second step, for each given base point f ∈ C
the functional Fδ will be approximated by Gδ(f, .) (cf. Def. 2). Here Gδ : C × R

d → R is a

functional which is chosen such that a quick and numerically stable iterative minimization can be

performed. The resulting minimizer will serve as an approximation for the minimizer m∗
δ of Fδ

and hence for a minimizer m∗ of F . In particular, if it is possible to choose Gδ as a polynomial of

degree two, the well known iteratively reweighted least squares algorithm may result (Lejeune &

Sarda 1988, McCullagh & Nelder 1989, Dodge & Jurečková 2000).
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The IRLS and related algorithms are based on the idea of majorizing functionals by a sequence

of quadratic approximations and subsequent minimization. These have been treated extensively

in the literature, e.g. Kuhn (1972), Katz (1973), Wolke & Schwetlick (1988), O’Leary (1990),

de Leeuw & Michailidis (2000), Hunter & Lange (2000), Lange, Hunter & Yang (2000), Vardi &

Zhang (2000, 2001), and the references therein. However, in most cases convergence is only shown

for C = R
d. This simplifies proofs notably, since the minimizers can be represented as zeros of

the derivatives of the functional. For arbitrary convex C, however, the minimizers are no longer

represented solely by such equality constraints, instead inequalities occur. Notable exceptions for

general convex C are Eckhardt (1980), where however, the convergence results are restricted to a

special class of functionals, requiring e.g. F (m) = O(‖m‖), Voß & Eckhardt (1980), who show

convergence on convex polyhedral sets under certain regularity conditions on the functional. Our

findings generalize these results to the case of C being an arbitrary convex closed set as well as

to more general functionals and functionals which are only required to be coercive and convex.

This appears to be close to the weakest possible set of assumptions required for a general proof of

convergence. Our proof adopts various arguments from convex analysis.

It is interesting to note that in the numerical literature the IRLS algorithm is denoted as the

Weiszfeld algorithm (Weiszfeld, 1936,1937) who suggested this algorithm to solve the Fermat-

Steiner-Weber problem (Weiszfeld 1936, 1937, Kuhn 1973, Katz 1974) which is known to the

statistical community as the computation of the spatial median (as mentioned in Brown 1983,

Brown et al. 1997, Ducharme & Milasevic 1987).

The paper is organized as follows. First, we motivate the GIRLS algorithm for the special case of

L1-regression in Section 2. Then we introduce the GIRLS-algorithm in a general framework and

prove various results about its convergence in Section 3. The algorithm is defined by

mk+1 := argmin
m∈C

Gδ(mk,m) , k ∈ N. (5)

Its convergence to the minimizer m∗
δ and hence to m∗ as δ ↘ 0 will be shown under very general

assumptions. Furthermore, we give a result showing geometric, or, more precisely, at least Q-linear

convergence of the sequence (mk)k to m∗
δ under slightly different conditions (cf. Voß & Eckhardt

(1980), and Böhning & Lindsay, 1988), and guidance is provided on the choice of the number of

iterates in (5) and the regularization parameter δ.

In Section 4 we describe the construction of Fδ and Gδ in some specific cases explicitly. Finally, we

present in Section 5 an application of the GIRLS algorithm to the estimation of the variance surface
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of brightness data from astrophysical measurements. Here the data is on a two-dimensional grid

and we impose a unimodal constraint in one direction and penalization of a regression function’s

non-smoothness. We’d like to mention that for univariate unimodal regression problems, the pool

adjacent violators algorithm (PAVA) is often more efficient whenever applicable (see Robertson et

al. 1988 for a comprehensive treatment). However, for regression with two- or higher dimensional

predictor this is not valid anymore, whereas the GIRLS algorithm can be transferred to predictors

of dimension ≥ 2. Furthermore, PAVA type algorithms are not available in general if an additional

penalization term as in (3) is added.

In summary, the main advantage of the GIRLS algorithm is twofold. First, it is simple to perform

and offers great flexibility for the choice of the approximating functionals Gδ. Second, it allows

us to combine various restrictions and minimisation criteria (such as monotonicity constraints

and roughness penalties). For such complex minimisation problems simple and quick algorithms

such as PAVA or Newton type algorithms are not available in general, and more complicated

and time consuming algorithms such as quadratic programming or interior point methods become

necessary. Here the GIRLS-algorithm represents a feasible alternative because it typically requires

in each updating step the computation of minimizers (e.g. a weighted L2 solution), which can be

obtained easily. Further, our numerical experiments have shown that a rather small number of

updating steps give already satisfactory results.

2 L1-regression with the GIRLS algorithm

As a motivating example consider the L1 linear regression problem for observations (X1, Y1),

(X2, Y2), . . . , (Xn, Yn) in R
d × R. Assuming that Yi equals X�

i m plus a random error, the goal

is to compute

m̂ := argmin
m∈Rd

n∑
i=1

|Yi − X�
i m| = argmin

m∈Rd

F (m) , (6)

an estimator of the unknown parameter vector m ∈ R
d. Iteratively reweighted least squares is

based on the idea that, in a first step, the L1 norm F , being a convex functional, will be approxi-

mated (regularized) by a family of smooth convex functionals Fδ , δ > 0, e.g.

Fδ(m) =
n∑

i=1

hδ

(
Yi − X�

i m
)

,

where

hδ(z) = [z2 + δ]1/2 . (7)
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It is supposed that minimisation of Fδ is numerically better tractable than minimisation of the

original functional F in in (6). Then m̂δ := argminm∈Rd Fδ(m) will be an approximation of m̂

(cf. Theorem 1). In order to compute m̂δ the following recursion formula is iterated:

m̂
(k+1)
δ = argmin

m∈Rd

n∑
i=1

(Yi − X�
i m)2

hδ(Yi − X�
i m̂

(k)
δ )

. (8)

Note, that in each updating step the computation of m̂
(k+1)
δ means solving a simple diagonally

reweigthed least squares minimisation problem, which can easily be done by using standard meth-

ods such as, e.g., Householder QR decomposition. As a starting value m̂
(0)
δ any (reasonable)

choice, e.g. the least squares estimator, may serve.

It is instructive to indicate a proof for this simple case. The basic idea is to approximate hδ(z)

from above for any given real number r by a quadratic function gδ(r, z) = c(r) + a(r)z2/2 of z

such that gδ(r, ·) ≥ hδ and gδ(r, r) = hδ(r). This can be achieved indeed with

gδ(r, z) = hδ(r) + hδ(r)−1(z2 − r2)/2 ; (9)

see also Lemma 1 in Section 4. The intrinsic reason is that hδ is an even convex function whose

second derivative h′′δ is non-increasing on [0,∞). Thus m̂
(k+1)
δ in (8) is the minimizer of

Gδ(m̂
(k)
δ ,m) :=

n∑
i=1

gδ

(
Yi − X�

i m̂
(k)
δ , Yi − X�

i m
)

over all m ∈ R
d. Note that Fδ as well as Gδ(m̂

(k)
δ , ·) are convex functions such that Fδ(m) ≤

Gδ(m̂
(k)
δ ,m) with equality for m = m̂

(k)
δ , and their gradients satisfy ∇Fδ(m̂

(k)
δ ) = ∇Gδ(m̂

(k)
δ , m̂

(k)
δ ).

Here and in the following the gradient of Gδ is defined with respect to the second argument. Thus

Fδ(m̂
(k+1)
δ ) ≤ Gδ(m̂

(k)
δ , m̂

(k+1)
δ ) ≤ Gδ(m̂

(k)
δ , m̂

(k)
δ ) = Fδ(m̂

(k)
δ ) ,

and the last inequality is strict if, and only if, m̂
(k)
δ differs from the solution m̂δ. Consequently,

Fδ(m̂
(k)
δ ) is either strictly decreasing in k, or m̂

(k)
δ = m̂δ for sufficiently large k. This fact was

established by Lejeune & Sarda (1988) for the particular problem (6). Convergence of m̂
(k)
δ to m̂δ

as k → ∞ follows from our general Theorem 2 below.

3 The GIRLS algorithm

3.1 Main theorem and convergence analysis

Now let us turn to the general setting. We always assume that our target functional F : R
d → R is

convex and coercive, i.e. F (x) → ∞ as ‖x‖ → ∞. Moreover, let C ⊂ R
d be closed and convex.
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This entails that the set

M∗ := argmin
m∈C

F (m)

is a nonvoid, compact and convex subset of C. Now the first step is to approximate F by a family

of strictly convex and smooth functionals Fδ, δ > 0, converging pointwise to F as δ ↘ 0. This is

summarized in the following

Definition 1. A functional Fδ : R
d → R is called regular, if Fδ is strictly convex, continuously

differentiable and coercive. A regular class for F (or a regularization of F ) consists of regular

functionals Fδ, δ > 0, such that Fδ converges pointwise to F as δ ↘ 0.

Theorem 4 below shows that there exists always a regular class (Fδ)δ>0 for F . It follows from

strict convexity and coercivity of Fδ that it has a unique minimizer

m∗
δ := argmin

m∈C
Fδ(m)

which serves as an approximation to M∗. The next theorem provides an exact formulation of this

fact.

Theorem 1. (Approximation of M∗).

Let F : R
d → R be a convex and coercive functional, and let (Fδ)δ>0 be a regularization of F .

Then, as δ ↘ 0,

Fδ(m∗
δ)

F (m∗
δ)

}
→ min

x∈C
F (x) and d(m∗

δ ,M
∗) := inf

y∈M∗ ‖m
∗
δ − y‖ → 0 .

Before proving Theorem 1 we summarize some well known facts about convex functionals (see

Rockafellar 1970) which we utilize in the subsequent proofs. A convex functional on R
d is au-

tomatically continuous. If a sequence of convex functionals on R
d converges pointwise, then the

convergence is uniform on arbitrary bounded sets. Finally, if H : R
d → R is convex and dif-

ferentiable, and if C ⊂ R
d is closed and convex, then f ∈ C minimizes H over C if, and only

if,

∇H(f)�(m − f) ≥ 0 for all m ∈ C . (10)

Proof. For any set S ⊂ R
d let ‖F −Fδ‖S be the supremum norm of F −Fδ over S. For any fixed

ε > 0, the set Bε := {m ∈ C : d(m,M∗) ≤ ε} is compact. Thus ‖F − Fδ‖Bε tends to zero as

δ ↘ 0. In particular, for sufficiently small δ > 0,

min
m∈C : d(m,M∗)=ε

Fδ(m) > max
m∈M∗ Fδ(m) .
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In order to see the last inequality, note that this holds for F and use that Fδ → F uniformly on

bounded sets. But this implies that Fδ(mo) > minm∈Bε Fδ(m) for any mo ∈ C\Bε, i.e. m∗
δ ∈ Bε.

For let m∗ be the metric projection of mo onto M∗ and write mo = m∗ + tv for some unit vector

v ∈ R
d and a scalar t > ε. Then it follows from convexity of Fδ that

Fδ(mo) − Fδ(m∗) ≥ (ε/t)(Fδ(m∗ + εv) − Fδ(m∗)) > 0 .

Note also that in case of m∗
δ ∈ Bε,

|Fδ(m∗
δ) − F (m∗

δ)| ≤ ‖F − Fδ‖Bε ,

and

F (m∗
δ) − min

C
F ≤ max

m∈Bε

(
F (m) − min

M∗ F
)
.

Finally, the r.h.s. of this inequality can be made arbitrarily small for proper choice of δ and ε by

compactness of M∗ and continuity of F .

The second step is to determine m∗
δ via approximations Gδ(f, ·) of Fδ for various f ∈ C as in (5).

The following definition summarizes our assumptions on Gδ .

Definition 2. Let Fδ : R
d → R be a regular functional. Another functional Gδ : C × R

d → R is

called a smooth approximation of Fδ from above, if it is continuous in both arguments and satisfies

the following additional properties for arbitrary f ∈ C:

(i) Gδ(f, ·) is strictly convex and continuously differentiable,

(ii) Gδ(f,m) ≥ Fδ(m) for all m ∈ R
d with equality for m = f .

The functional Gδ is called a quadratic approximation of Fδ from above if, in addition, Gδ(f, ·) is

always a polynomial of order two, i.e.

Gδ(f,m) = Fδ(f) + ∇Fδ(f)�(m − f) + 2−1(m − f)�B(f)(m − f) (11)

for some symmetric, positive definite matrix B(f) ∈ R
d×d.

Note that from (i) and (ii) it follows that ∇Fδ(f) = ∇Gδ(f, f). The next theorem is the main

result of this paper.

Theorem 2. (Convergence of the GIRLS algorithm).

Let C ⊂ R
d be a closed convex set and Fδ : R

d → R be a regular functional which can be

smoothly approximated from above by Gδ. Then the GIRLS algorithm, defined by

m
(k+1)
δ := argmin

m∈C
Gδ(m

(k)
δ ,m) for k = 0, 1, 2, . . . (12)
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with an arbitrary starting point m
(0)
δ ∈ C, yields a sequence (m(k)

δ )∞k=0 converging to m∗
δ .

Proof. At first we prove that Fδ(m
(k)
δ ) is decreasing in k. It follows from property (ii) in Def-

inition 2 that the gradients ∇Gδ(m
(k)
δ ,m) (with respect to the second argument) and ∇Fδ(m)

coincide for m = m
(k)
δ . Thus it follows from (10) that m

(k+1)
δ = m

(k)
δ if, and only if, m

(k)
δ = m∗

δ .

Otherwise,

Fδ(m
(k+1)
δ ) ≤ Gδ(m

(k)
δ ,m

(k+1)
δ ) < Gδ(m

(k)
δ ,m

(k)
δ ) = Fδ(m

(k)
δ ) .

By monotonicity of (Fδ(m
(k)
δ ))k , all points m

(k)
δ lie in the set

{
m ∈ C : Fδ(m) ≤ Fδ(m

(0)
δ )

}
,

which is compact by continuity and coercivity of Fδ. Hence it is sufficient to show that any limit

point mo equals m∗
δ . Now, take an arbitrary convergent subsequence (m(k�)

δ )� with limit mo. For

any v ∈ C,

Fδ

(
m

(k�+1)
δ

)
≤ Gδ

(
m

(k�)
δ ,m

(k�+1)
δ

)

≤ Gδ

(
m

(k�)
δ , v

)

→ Gδ(mo, v) as � → ∞ ,

by continuity of Gδ. But

lim
�→∞

Fδ

(
m

(k�+1)
δ

)
≥ lim

�→∞
Fδ

(
m

(k�+1)
δ

)
= Fδ(mo) = Gδ(mo,mo) .

Thus Gδ(mo,mo) ≤ Gδ(mo, v) for all v ∈ C, i.e. mo is the unique minimizer of Gδ(mo, ·). As

argued above, this entails that mo = m∗
δ .

The next theorem states that convex and coercive functionals F can always be regularized and

approximated quadratically from above. Hence GIRLS is, in principle, always applicable.

Theorem 3. (Regularization and approximation of F ).

Let F : R
d → R be a convex and coercive functional. Then there exists a regularization (Fδ)δ>0

of F such that each Fδ admits a quadratic approximation Gδ from above.

In order to prove Theorem 3 we require the following result.

Theorem 4. Let F be a nonnegative, coercive, convex functional on R
d. Then there are strictly

convex and infinitely often differentiable functionals Fδ ≥ F , δ > 0, such that Fδ → F pointwise

as δ ↘ 0.
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Proof. Let K(x) := 1{‖x‖ < 1}C exp
(−(1 − ‖x‖2)−1

)
, where C is chosen such that K inte-

grates to one. This is a well-known example of an infinitely differentiable, nonnegative, even kernel

function with compact support {x : ‖x‖ ≤ 1}. For δ > 0 we define Kδ(x) := δ−1K(δ−1x) and

Fδ(x) :=
∫

F (y)Kδ(x − y) dy =
∫

F (x + δz)K(z) dz.

Elementary calculus shows that Fδ is convex and infinitely often differentiable with limit F point-

wise. Moreover, since K is even,

Fδ(x) =
∫

F (x + δz) + F (x − δz)
2

K(z) dz ≥
∫

F (x)K(z) dz = F (x) ,

by convexity of F . Finally, if Fδ fails to be strictly convex, we may add to Fδ the strictly convex

function x �→ δ‖x‖2.

We mention that the construction of Fδ given here is mainly for theoretical purposes, and may in

practice be difficult to evaluate numerically due to the high dimensionality of the integral.

Proof of Theorem 3. Let (Fδ)δ>0 be a regularization of F such that D2Fδ is positive definite ev-

erywhere; cf. Theorem 4 and its proof. It may happen that lim sup‖m‖→∞ Fδ(m)/‖m‖2 = ∞,

rendering quadratic approximation of Fδ from above impossible. Thus we modify the functions

Fδ as follows: Let

cδ := max
‖m‖≤δ−1

λmax(D2Fδ(m))

with λmax(A) denoting the largest eigenvalue of a symmetric matrix A ∈ R
d×d. Starting from the

representation

Fδ(m) = Fδ(0) + ∇Fδ(0)�m +
∫ 1

0
m�D2Fδ(tm)m (1 − t) dt,

we define

F̃δ(m) := Fδ(0) + ∇Fδ(0)�m +
∫ 1

0
m� min(D2Fδ(tm), cδI)m (1 − t) dt.

Here min(A, cδI) ∈ R
d×d is obtained from the spectral representation of A by replacing each

eigenvalue λi(A) with min(λi(A), cδ). Note that F̃δ is twice continuously differentiable with

F̃δ(0) = Fδ(0), ∇F̃δ(0) = ∇Fδ(0) and D2F̃δ = min(D2Fδ, cδI). The hessian matrix is positive

definite with largest eigenvalue never exceeding cδ . In addition, F̃δ = Fδ on {m : ‖m‖ ≤ δ−1}.

Thus for sufficiently small δ > 0, F̃δ is regular, and a quadratic approximation of F̃δ from above

is given by

Gδ(f,m) := F̃δ(f) + ∇F̃δ(f)�(m − f) + cδ‖m − f‖2/2.
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Remark 1. In Definition 1 we assume that Fδ is strictly convex. This property is only required

for notational convenience, because it guarantees uniqueness of the minimizer m∗
δ . A careful in-

spection of the proof of Theorem 1 shows, however, that convergence continues to hold if strict

convexity is replaced with convexity. Only the assertion d(m∗
δ ,M

∗) → 0 has to be replaced by

sup
x∈M∗

δ

inf
y∈M∗ ‖x − y‖ → 0,

where M∗
δ := argminm∈C Fδ(m). An analogous modification holds for Theorem 2.

We close the section with the following result, which shows under additional regularity conditions

on Fδ and C geometric, or, more precisely, at least Q-linear convergence of the GIRLS algorithm

(cf. Böhning & Lindsay, 1988, Theorem 4.1, for a related result).

Theorem 5. (Geometric convergence of the GIRLS algorithm).

Let Fδ : R
d → R be coercive and twice continuously differentiable with positive definite hessian

matrix D2F (m∗
δ) =: A. Further let Gδ : R

d × R
d be a quadratic approximation of Fδ from

above with hessian matrix B(m∗
δ) =: B as in (11). Then the GIRLS algorithm yields a sequence

(m(k)
δ )∞k=0 converging to m∗

δ = argminC Fδ such that

lim sup
k→∞

‖m(k+1)
δ − m∗

δ‖A

‖m(k)
δ − m∗

δ‖A

≤ 1 − λmin

(
B−1A

) ∈ [0, 1).

Here ‖v‖A := (v�Av)1/2, and λmin(B−1A) ∈ (0, 1] denotes the smallest eigenvalue of B−1A.

Proof. According to Theorem 2, limk→∞ m
(k)
δ = m∗

δ . Since C = R
d, ∇Fδ(m∗

δ) = 0 and

m
(k+1)
δ = m

(k)
δ − B(m(k)

δ )−1∇Fδ(m
(k)
δ )

= m
(k)
δ − B(m(k)

δ )−1

∫ 1

0
D2Fδ

(
(1 − t)m∗

δ + tm
(k)
δ

)
(m(k)

δ − m∗
δ) dt

= m
(k)
δ − B−1A(m(k)

δ − m∗
δ) + o

(
‖m(k)

δ − m∗
δ‖

)
.

Thus
‖m(k+1)

δ − m∗
δ‖A

‖m(k)
δ − m∗

δ‖A

=
‖(I − B−1A)(m(k)

δ − m∗
δ)‖A

‖m(k)
δ − m∗

δ‖A

+ o(1) ,
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and for any vector v ∈ R
d,

‖(I − B−1A)v‖2
A

‖v‖2
A

=
v�(I − AB−1)A(I − B−1A)v

v�Av

=
w�A−1/2(I − AB−1)A(I − B−1A)A−1/2w

‖w‖2
(with w := A1/2v)

=
w�C2w

‖w‖2
(with C := I − A1/2B−1A1/2)

≤ λmax(C2) .

It follows from property (ii) of Gδ in Definition 2 that B − A is nonnegative definite, which

implies that λi(B−1A) = λi(A1/2B−1A1/2) ∈ (0, 1]. This entails that C is nonnegative definite

with λmax(C2) = λmax(C)2 = (1 − λmin(B−1A))2.

3.2 Proper choice of δ and the number of iterations

In practical applications the points m∗
δ are never calculated exactly. Instead after finitely many, say

I(δ), iterations of (12) the iteration is terminated and the regularization parameter δ is decreased,

e.g. replaced with δ/2. An obvious question is how to choose the iteration numbers I(δ). We found

empirically in most cases that for a fixed parameter δ > 0, the values F (m(k)
δ ) are decreasing for

k ≤ k(δ) and increasing in k ≥ k(δ) for some fixed k(δ) ∈ N. Hence we may take

I(δ) := min
({

k ∈ N0 : F (m(k+1)
δ )/F (m(k)

δ ) ≥ 1 − ε
}
∪ {kmax}

)
(13)

for a small constant ε > 0 and a large maximal number kmax. In the examples discussed subse-

quently, we found that for ε = 10−5 and kmax = 100, the number I(δ) was never larger than 30,

which seems to compensate for the fact that the sequence m
(k)
δ converges only geometrically. This

is similar to numerical findings of an implementation of an algorithm by Lejeune & Sarda (1988,

Section 5) for the median and various parametric regression models.

Having determined I(δ) and m
(I(δ))
δ for one particular δ > 0, we define m

(0)
δ/2 := m

(I(δ))
δ and

repeat the same procedure with δ/2 in place of δ, provided that I(δ) > 0. We proceed as long as

F is decreased, otherwise we terminate the algorithm.

4 Regularization and quadratic approximation for different types of
regression problems

In the subsequent data examples the target functional F (m) is always of type (1) or (3), i.e.

F (m) =
n∑

i=1

ρ(ri(m)) + λP (m) (14)
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with λ ≥ 0, where each residual ri(m) is an affine linear functional of m ∈ R
d. Here each

summand of F is regularized and approximated separately. We will start with an auxiliary result

justifying the quadratic approximation (9).

Lemma 1. Let h : R → R be even and twice differentiable such that h′′ is non-negative and

non-increasing on [0,∞). For r, z ∈ R define

g(r, z) := h(r) + (h′(r)/r)(z2 − r2)/2,

where h′(0)/0 := h′′(0). Then g(r, z) ≥ h(z) with equality if z = ±r.

Proof. One verifies easily that g(r, z) is even in both arguments with g(r, r) = h(r). Thus it

suffices to show that g(r, z) ≥ h(z) for any r, z ≥ 0. Now,

g(r, z) − h(z) = g(r, z) − h(r) − (h(z) − h(r))

= (h′(r)/r)(z2 − r2)/2 − h′(r)(z − r) −
∫ z

r
(h′(t) − h′(r)) dt

= (h′(r)/r)(z − r)2/2 −
∫ z

r
(h′(t) − h′(r)) dt

=
∫ z

r

(
h̃(r, 0) − h̃(r, t)

)
(t − r) dt

=
∫ max(r,z)

min(r,z)

(
h̃(r, 0) − h̃(r, t)

)
|t − r| dt, (15)

where h̃(r, t) := (h′(t) − h′(r))/(t − r) for t = r, and h̃(r, r) := h′′(r). One can deduce easily

from h′′ being non-increasing on [0,∞) that h̃(r, ·) has the same property. Thus the integrand of

(15) is non-negative.

Let us first describe how to approximate ρ itself in three special cases. After this we will discuss

several penalisations P in (14). Finally we comment on isotonic regression, an example with

C = R
d.

Quantile regression. Let ρ(z) be given by (2). This may be rewritten as

ρ(z) = |z| + (2p − 1)z.

Hence we utilize the functions hδ and gδ from (7) and (9), which yields the regularization

z �→ hδ(z) + (2p − 1)z

and by means of Lemma 1 the quadratic approximation

z �→ gδ(r, z) + (2p − 1)z = cδ(r) + hδ(r)−1z2/2 + (2p − 1)z

12



of z �→ ρ(z), where cδ(r) is an irrelevant constant.

Lq–regression. Let ρ(z) := |z|q for some q ∈ [1,∞). If 1 ≤ q < 2, one may generalize

definitions (7) and (9) immediately as follows:

hδ(z) := (z2 + δ)q/2,

gδ(r, z) := hδ(r) + q(r2 + δ)1−q(z2 − r2)/2

= cδ(r) + q(r2 + δ)1−qz2/2.

Again it follows from Lemma 1 that gδ(r, z) ≥ hδ(z) with equality for z = ±r.

In case of q > 2, the second derivative of z �→ |z|q is increasing in |z| and unbounded, hence

Lemma 1 cannot be applied directly. To circumvent this problem, one could redefine

hδ(z) :=
{ |z|q if |z| ≤ δ−1

aδ + bδ|z| + q(q − 1)δ2−qz2/2 otherwise

with constants aδ, bδ such that hδ is twice continuously differentiable, and then use the quadratic

approximation

gδ(r, z) := hδ(r) + h′
δ(r)(z − r) + q(q − 1)δ2−q(z − r)2/2. (16)

Logistic regression. For data sets with a covariable X and a dichotomous response Y ∈ {0, 1},

maximum likelihood estimation of M(X) := log [P (Y = 1 |X)/P (Y = 0 |X)] involves “resid-

uals” z = (1/2 − Y )M(X) and

ρ(z) := h(z) + z with h(z) := log[ez + e−z] .

Note that h satisfies the conditions of Lemma 1 with h′(r) = tanh(r) and h′′(r) = 1− tanh(r)2.

Thus regularization is superfluous, while quadratic approximation is straightforward. In this case,

the well known IRLS algorithm results (McCullagh & Nelder 1989).

Roughness penalties. Let us start with two particular examples for P (m). For given real numbers

x1 < x2 < · · · < xd let M be a function on [x1, xd] and m := (M(xj))dj=1. Then let

TV(0)(m) :=
d−1∑
j=1

|mj − mj+1| ,

TV(1)(m) :=
d−1∑
j=2

|Δjm| with Δjm :=
mj+1 − mj

xj+1 − xj
− mj − mj−1

xj − xj−1
.

If M is continuous and piecewise linear with knots in {x1, . . . , xd}, then TV(0)(m) and TV(1)(m)

are the total variation of M and its first derivative, respectively. One could also think about
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smoother functions M and approximate the total variation of its second or higher order deriva-

tive by suitable divided differences of m.

Generally, let P (m) be a sum of several functionals of the form

m �→ |v�m|

with a given vector v ∈ R
d \ {0}. For instance, TV(0)(m) involves

vi = v
(j)
i :=

⎧⎨
⎩

1 if i = j,
−1 if i = j + 1,
0 else

for 1 ≤ j < d, while TV(1)(m) involves

vi = v
(j)
i :=

⎧⎪⎪⎨
⎪⎪⎩

(xj − xj−1)−1 if i = j − 1,
−(xj − xj−1)−1 − (xj+1 − xj)−1 if i = j,

(xj+1 − xj)−1 if i = j + 1,
0 else,

for 1 < j < d. Now an obvious strategy is to regularize m �→ |v�m| by m �→ hδ(v�m) and

approximate this quadratically by

m �→ gδ(v�f, v�m) = cδ(v�f) + hδ(v�f)−1
(
v�m

)2
/2.

Often it is desirable to work with quadratic approximations G(f, ·) whose Hessian matrix B(f) is

diagonal. For that purpose one can modify the quadratic term Q(m) :=
(
v�m

)2
as follows:

Q(m) =
(
v�f

)2
+ 2f�vv�(m − f) +

(
v�(m − f)

)2

≤
(
v�f

)2
+ 2f�vv�(m − f) + ‖v‖2

∑
i:vi 
=0

(mi − fi)2

= c(v, f) − 2w(v, f)�m + ‖v‖2
∑

i:vi 
=0

m2
i

for some irrelevant constant c(v, f) and w(v, f)i := 1vi 
=0‖v‖2fi − v�fvi.

Isotonic regression. In some applications one seeks to minimize a functional such as (14) over

all vectors in C↗ := {m ∈ R
d : m1 ≤ · · · ≤ md}. In the simplest case, d = n and ρ(ri(m)) =

(Yi −mi)q for some q ∈ [1,∞], where q = ∞ corresponds to supremum norm of Y −m. For this

special case it is well-known (see Barlow & Ubhaya 1971) that an explicit solution exists only for

q = 1, 2,∞. In general, via regularization and suitable quadratic approximation from above, each

updating step of the GIRLS algorithm involves minimisation of

Gδ(f,m) = C(f) +
d∑

i=1

wi(f)(mi − bi(f))2

over all vectors m ∈ C↗ with certain weights wi(f) > 0, an irrelevant constant C(f) and certain

numbers bi(f). This minimisation problem can be solved explicitly by means of the PAVA.
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5 A numerical example: Unimodal regression on a two-dimensional
grid

In this example we illustrate the flexibility of the GIRLS algorithm, where we combine an uni-

modality constraint together with TV penalization. In order to reconstruct the spatial luminosity

distribution of the Milky Way, the surface brightness of the Milky Way at the sky was measured

on an equidistant grid of angles running in horizontal direction from −89.25◦ to 89.25◦ and in

vertical direction from −29.25◦ to 29.25◦ in steps of 1.5◦, respectively. The data set is part of

the DIRBE experiment on board the COBE satellite (cf. Spergel et al. 1996 for a comprehensive

description of the data, proper calibration and dust correction). Bissantz & Munk (2001) fitted a

parametric model of the spatial luminosity distribution of the Milky Way to this data and a map of

the resulting squared residuals is displayed there. This suggests that the variability of the data in-

creases in the outer regions of the Milky Way. Moreover, due to this pronounced heteroscedasticity

of the data, the reliability of any conclusions about physical properties (such as scale lengths) of

the Milky Way from the parameters of a (parametric) model would be improved substantially if

the variance surface of the data is known and used in the fitting process.

In the following we will consider estimation of the variance surface from the squared residuals

by a penalized least squares fit with an unimodality constraint. The assumption of unimodality is

suggested by physical reasoning. Such an estimate of the variance surface can then be used in a

further investigation of the surface brightness data.

In more detail, the data considered here, denoted as Yij , i = 1, ..., 120, j = 1, ..., 40, are the

squared residuals of the the parametric fit in Bissantz & Munk (2001) to the observed surface

brightness data.

First, we consider a least squares fit m = (mij)i,j to the data Y = (Yij)i,j . Namely, we want to

minimize the sum F (m) of

‖Y − m‖2 =
∑
ij

(Yij − mij)2 ,

and the total variation penalty λTV(m), where λ > 0 and

TV(m) :=
119∑
i=1

40∑
j=1

|mi+1,j − mij| +
120∑
i=1

39∑
j=1

|mi,j+1 − mij| .

For the regularization Fδ and quadratic approximation Gδ(f, ·), the least squares term is kept

unchanged, while each summand |m(a) − m(b)| of TV(m) is treated as described in section 4:
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First we regularize it by hδ(m(a) − m(b)). Then as a first quadratic approximation we use

gδ(f(a) − f(b),m(a) − m(b)) = Cδ,(a),(b)(f) +
(m(a) − m(b))2

2hδ(f(a) − f(b))
.

Alternatively, one might replace the enumerator (m(a) − m(b))2 with

2
(
m(a) −

f(a) + f(b)

2

)2
+ 2

(
m(b) −

f(a) + f(b)

2

)2
,

which is never less than (m(a) − m(b))2 with equality for m = f . The advantages of this lat-

ter quadratic approximation are computational simplicity and feasibility of isotonic least squares

algorithms when incorporating additional monotonicity constraints. Moreover, we impose in ad-

dition unimodality in vertical direction with minimum mode at the 0-line. Hence, in each step

for each vertical half line the isotonic regression has to be calculated by means of some standard

algorithm calculating the isotonic weighted least squares fits like PAVA. This is feasible with our

second quadratic approximation. Figure 1 shows the resulting surface. Note that smoothness along

the vertical direction of the estimated variance surface is already guaranteed by the unimodality

constraint, and does not rely on a proper selection of the smoothing parameter λ. This relaxes sig-

nificantly the requirements for a data-driven estimation of the variance surface, and, subsequently,

of the spatial luminosity distribution of the Milky Way.

−89.25
−59.5

−29.75
0

29.75
59.5

89.25

−29.5

−14.75

0

14.75

29.5
0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 1: TV penalized fit with parameter λ = 4

under additional unimodality constraint.
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[4] D. Böhning, and B. Lindsay, Monotonicity of quadratic-approximation algorithms, Ann.
Inst. Statist. Math., 40(1988), pp. 641–663.

[5] A. W. Bowman, and A. Azzalini, Applied Smoothing Techniques for Data Analysis: The
Kernel Approach with S-Plus Illustrations, Oxford University Press, Oxford, UK, 1997.

[6] B. M. Brown, Statistical uses of the spatial median, J. Roy. Statist. Soc. Ser. B, 45(1983), pp.
25–30.

[7] B. M. Brown, P. Hall, and G. A. Young, On the effect of inliers on the spatial median, J.
Multivariate Anal., 63(1997), pp. 88–104.

[8] D. Coleman, P. Holland, N. Kaden, V. Klema, and S. C. Peters, A system of subroutines for
iteratively reweighted least squares computations, ACM Trans. Math. Softw., 6(1980), pp.
327–336.

[9] J. de Leeuw, and G. Michailidis, Discussion article on the paper by Lange, Hunter & Yang
(2000), Journ. Comput. Graph. Statist., 9(2000), pp. 26–31.
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