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Chapter 1

Introduction

1.1. Global features of fingerprints

In fingerprint analysis one distinguishes between global and local features which are used to
describe and identify fingerprints: examples for local features are bifurcations and endings of
fingerprint ridges (so-called minutiae) or sweat pores; the most widely used global features are
singular points and the orientation field of a fingerprint. Throughout this thesis we will only
be concerned with these global features; see e.g. (Maltoni et al. 2003) for a broad overview
over the subjects of fingerprint analysis.

Intuitively, the orientation field at a point of a fingerprint pattern is given by the orien-
tation parallel to the fingerprint ridges at this point, see Figure 1.1. Note that it is not a
directional field as the ridges themselves are not oriented. Clearly, the orientation field is a
global feature of the fingerprint as it is only well-defined on a scale large enough to give sense
to the notion “parallel to the ridges”. We will give a mathematical definition of an orientation
field in Section 2.1.

As is visible from Figure 1.1, orientation

Figure 1.1. Orientation field and singu-
lar points of a fingerprint; ♦♦♦ marks a core,
MMM a delta. Original image taken from
(Watson and Wilson 1992).

fields may have singular points, i.e. points at
which no orientation can be defined: discon-
tinuities of the field. These singular points
have been marked in Figure 1.1 as cores and
deltas: a core is a point around which the
ridges make at least a half-turn, a delta is
a point where three ridges meet. This will
also be formalised in Section 2.1: we will see
that different singular points have different
Poincaré indices.

Global features have been used in fin-
gerprint analysis for a long time: Galton
(1892) already used them to classify finger-
prints into different classes though we adopt
a slightly different and more modern termi-
nology here, cf. Figure 1.2: an arch is a
fingerprint featuring no singular point at all,
loops and tented arches show one core and
one delta, whorls and twin-loops have two
deltas and one or two cores. Singular points
thus capture the “topology” of a fingerprint, cf. (Penrose 1969) as well as (Sherlock and Monro
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2 1. Introduction

Figure 1.2. Fingerprint classes: arch, left loop, right loop (top); tented arch, whorl, twin-
loop (bottom); MMM marks a delta, ♦♦♦ a core. Note that there is an invisible delta further to
the bottom left of the last image, which actually shows rather a tented-arch-and-loop than
a twin-loop. Original images taken from (Maio et al. 2002).

1993). They allow, however, only for a very coarse description of a fingerprint. Indeed, clas-
sification schemes based on singular points allow only for few clearly distinguishable classes,
cf. Bonnevie (1924) who conducted one of the first empirical studies on the distribution of
these classes. Moreover, arches and tented arches occur only rarely in the population. The
orientation field on the other hand contains additional information which might be used to
describe fingerprints more precisely on a global scale. This is the reason why we are interested
in its analysis.

Although they do not allow for discrimination between fingerprints of different fingers,
there are several uses for global features in fingerprint analyses; we mention some of the more
prominent ones:

(1) They are used for classifying fingerprints as well as for building continuous indices
of them; both allow to reduce the search time for finding a matching fingerprint in
a large database.

(2) Global features are also used when matching fingerprints: not only are the global
features compared for a match but they are also used to aid the mapping of one
fingerprint onto the other. Moreover, they are related to the distribution of the
minutiae points.

(3) As global features can usually be extracted more robustly than local ones, they are
often utilised for enhancing a fingerprint, e.g. by smoothing in the direction of the
orientation field.
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The aim to provide for these applications leads naturally to the quest for models of the
orientation field. Before we come to that, we note some of the difficulties regularly encountered
in fingerprint analyses:

Rotation and translation: imprints of the same finger vary since the finger will be
rotated and translated differently each time an imprint is taken.

Partial observation: different imprints of the same finger show different regions,
which, for instance, can mean that a singular point – usually a delta – is not observed
in some imprint.

Non-linear distortion: varying amounts of pressure and possibly rotation when press-
ing the finger on the sensor surface result in non-linear distortions.

Large variations in contrast: fingerprints of greasy, wet and dry fingers show widely
differing levels of contrast which has to be provided for when processing them.

Noise: Fingerprints show a large variety of noise and distortions: measurement noise
including reflections on the scanner surface, (temporary) cuts in the finger surface,
as well as phantoms left on the sensor surface, amongst others.

The impact of these problems, however, is greatly reduced when using global features. Note
that they also depend heavily on the sensor being used to obtain the fingerprint: for a live im-
age, most high-quality scanners require the user to touch a surface (e.g. a glass prism) leading
to distortions and phantoms. Cheaper scanners frequently used in mobile devices provide only
a narrow strip (usually a silicon chip measuring the skin’s capacity) over which the finger is
swept ; from the resulting overlap of the many strips the full image is then computed, resulting
in (erratic) distortions. Direct reading refers to a technology where the finger is photographed
by a digital camera from a short distance; although avoiding some distortions and phantoms
by being touchless (while introducing non-linear distortions through the projection), the ac-
quisition of uniformly sharp and high-contrast images is difficult. In the forensic sciences one
often uses digitally scanned ink-prints of fingers which usually vary strongly in contrast due
to differing heights of ridges, amounts of ink, or pressure; the possibility to roll the finger
over the paper however allows to obtain a fingerprint in its entirety. See (Maltoni et al. 2003,
Chapter 2) for a detailed discussion of the different fingerprint sensing technologies.

1.2. Modelling orientation fields

In order to facilitate the use of orientation fields as global features in fingerprint analysis, we
need numerical descriptions of them. In spite of the problems mentioned above, like partial
observation for example, parametric models for orientation fields seem to be most promising.
They naturally offer their uses in a variety of applications:

Compression: a small number of model parameters allows for memory-efficient stor-
age of orientation fields.

Indexing: continuous parameters which do not change much between imprints of the
same finger can be used for indices in databases as described in Section 1.1.

Extrapolation: parametric models can be used to extrapolate orientation fields into
low-quality regions to aid enhancement and matching there.

Intrinsic coordinate systems: parametric models invariant under Euclidean mo-
tions can be used to define coordinates invariant under such transformations which
in turn can be used during the matching stage.

Let us review some of the literature on models for orientation fields of fingerprints: Smith
(1979) was one of the first to model orientation fields using differential equations; his work was
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later refined by Mardia et al. (1992). These early works were driven by the quest for differential
equations whose trajectories have the structure of fingerprint ridges. More recently, Kücken
and Newell (2004) have presented physically-motivated differential equations explaining the
formation of fingerprints. All these studies aimed at a qualitative explanation of fingerprint
patterns and cannot easily be used for the quantitative purposes we are striving for.

Sherlock and Monro (1993) took a slightly different approach: they used the argument of
a complex rational function whose zeros and poles match the singular points of the fingerprint
to model the orientation field. To make this precise, we will identify orientations with values
on the unit circle S1 ⊂ C, i.e. the orientation corresponding to some measured angle α will
be represented as e2αi where we have doubled the angle since orientations are undirected. For
simplicity of presentation in this introduction, we will restrict ourselves to models for loops
with a core at c ∈ C and a delta at d ∈ C. Then Sherlock and Monro (1993) propose to
model the loop’s orientation at a point z ∈ C by

(1.1)
QSM(z)−1

|QSM(z)−1|
where

(1.2) QSM(z) = α
z − d

z − c

for some constant α ∈ S1; note that we use the reciprocal of QSM(z) to easily relate this model
to a corresponding mathematical object: in the terminology of complex analysis, Sherlock and
Monro (1993) used a quadratic differential, actually the simplest one honouring the singular
points; this relationship has first been noted by Huckemann et al. (2006). We will see in
Sections 2.1 and 2.2 that indeed a (simple) zero of QSM gives rise to a delta, and a pole to a
core.

The model of Sherlock and Monro (1993) has provided the starting point not only for the
present work but also for several other authors: extensions have been proposed by Vizcaya
and Gerhardt (1996), Gu and Zhou (2004) as well as by Gu et al. (2004), all aiming to increase
the accuracy of that very simple model. Before we set out to propose models for orientation
fields and subsequently analyse them, we need to compile a catalogue of properties that we
expect such models to possess, such that they are of use for the applications mentioned above:

Accuracy: clearly, the model should fit the observed orientation field as precisely as
possible.

Invariance under Euclidean motions: for model parameters to be useable as data-
base indices, they need to be invariant under rotations and translations.

Robustness against partial observation: model parameters should be effected as
little as possible when observing different parts of the same finger.

Low dimension: the number of parameters translates linearly into the amount of
memory needed to store each orientation field in a database; moreover, increasing
the number of parameters will most likely decrease the reliability of estimates of single
parameters. For both reasons we are looking for models with as few parameters as
possible.

Predictive power: for enhancing bad quality regions of fingerprints, such models
should be useable for interpolation and possibly even extrapolation of the orientation
field.

Interpretability: parameters ideally should have a geometrical meaning, i.e. they
should relate to visible properties of the image and serve to understand the features
of the model.
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Obviously, it is not possible to fulfil all those requirements simultaneously: fewer parameters
mean less flexibility – low-dimensional models generally will be less accurate than high di-
mensional ones. One therefore has to balance the different goals: we will try to find models
that capture the main features of orientation fields whilst being as simple as possible. This
can only be achieved through careful modelling, taking into account the geometrical prop-
erties shared by all fingerprints. We will propose models based on quadratic differentials in
Section 2.3 which are determined by 5 real parameters only. The main idea is to extend
the complex rational function of Sherlock and Monro (1993) by introducing artificial singular
points outside the fingerprint domain in such a way that they reflect the geometry of a finger,
and by incorporating the Euclidean motion directly into the model.

Let us sketch how we develop such a model; details are given in Section 2.3. We note that
QSM quite accurately models the singular points and the “central area” of the fingerprint close
to them, cf. Figure 2.2. It however fails to capture the flow of the ridges from the lower-left
towards the fingertip, around the “central area” and down to the lower-right, cf. Figure 1.1.
An orientation field with such a property is provided by

(1.3) Qk(z) =
1

(z − 1)k(z + 1)k

for even k, which features two poles of order k at 1 and −1, respectively. The corresponding
orientations given by Qk(z)−1/|Qk(z)−1| are horizontal along the real axis, and form arches
from one pole to the other on the upper half-plane, see Figure 2.3 for illustrations. We thus
obtain a reasonable model for the “outer” or “background” field where the real axis represents
the horizontal ridge along the finger’s joint. We then combine this with the model of Sherlock
and Monro (1993), see Equation (1.2), to obtain a full model for the finger by multiplying
the respective rational functions, i.e. we consider

(1.4) QSM(z) Qk(z)

and assume that core and delta lie in the upper half-plane between the poles of order k, see
Figure 2.4(a). The orientations along the real axis now are no longer horizontal; this can
be fixed however by mirroring core and delta across the real axis, see Figure 2.4(b). Since
the finger ridges are horizontal below the joint, we also set the orientations horizontal on
the lower half-plane, see Figure 2.4(c). We finally adapt this model to a given fingerprint
by allowing it to independently scale along the real and imaginary axes, and by providing
for a rotation and a translation. This gives us two (real) scaling parameters and three (real)
parameters describing the Euclidean motion; the positions of core and delta can be extracted
from the given fingerprint and therefore do not constitute free parameters. If one views
the allowances for scaling and Euclidean motions as essential for any reasonable model for
fingerprint orientation fields, then our models use a minimal set of 5 (real) parameters.

This “geometric” approach is in sharp contrast to the existing extensions by Vizcaya and
Gerhardt (1996), Gu and Zhou (2004) as well as Gu et al. (2004) which improve the accuracy
while sacrificing our other goals, see Section 2.4 for a discussion. The approach using quadratic
differentials, however, will serve to review these models within a general framework, and to
better understand the structure of such orientation fields. One particularly is interested
in the “topology” of orientation fields within the medical field of dermatoglyphics where
the relationship between singular points and certain genetical conditions, e.g. trisomies, is
studied. Here, one not only analyses the orientation field on a single finger’s volar pad (as in
fingerprint analysis) but on the entire palm. It is then possible to diagnose e.g. Trisomy 18
(Edward’s disease) with the help of the observed pattern, in this case by observing an excess
number of arches, see Verbov (1970) for an overview. The study of quadratic differentials
will allow us to derive Penrose’s famous formula (Penrose 1969) of the relationship between
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the number of loops and deltas on an entire palm which is used in dermatoglyphics to ensure
that all singular points have been detected (a more difficult task on the entire palm than on
a finger’s volar pad):

(1.5) number of deltas + 1 = number of fingers + number of loops

where a loop is a core around which the ridges exactly make a half-turn, cores around which
they make a full-turn are called whorls and have to be counted as two loops for reasons
becoming apparent later, see Section 2.2.

Proposing models with good theoretical properties is not sufficient to show that they can
be applied in ways envisaged beforehand: they need to be tested on and applied to real data.
For the models we are going to propose it turns out that the main difficulty when trying to
fit them to observed orientation fields lies in the determination of the imprint’s particular
rotation. Hence, an important part of this study lay in the development of algorithms which
achieve just that, see Sections 3.2 and 3.3. They all are based on the observation that the
model for the “outer” or “background” field in Equation (1.3) is symmetric with respect to the
imaginary axis, cf. Figure 2.3, and subsequently aim to recover this symmetry axis. Clearly,
the main part of the fingerprint that we observe is its “central area” where the symmetry axis
is “hidden” under the field generated by the singular points, see Figure 1.2. This problem
can be solved however by “inverting” Equation (1.4), i.e. by considering the orientation field

(1.6) ψ(z) =
QSM(z)
|QSM(z)|

φ(z),

where φ is the orientation field extracted from the fingerprint image together with the locations
of the core and delta, cf. Equation (1.2). One could say that we obtained the “background”
field ψ by “lifting” the singular points from the observed orientation field φ. We can then look
for the symmetry axis of ψ. The most promising algorithm we propose for that task simply
searches for the optimal axis such that ψ and its mirrored self are as similar as possible, see
Section 3.3.

Using the NIST Special Database 4 (Watson and Wilson 1992) comprising 4000 fingerprint
images – 2 imprints for each of 2000 fingers – we compared the usefulness of our newly proposed
models with that of some existing models, namely the one by Sherlock and Monro (1993) as
well as the one by Zhou and Gu (2004), see Chapter 4. To the best of our knowledge we
are first to report such a large scale study for orientation field models. The results of this
empirical study show that our proposed models were more accurate than the other two, by a
considerable margin, see Section 4.1. Similarly, they gave better predictions than the others
when we randomly cut out regions of the fingerprint and compared to the “ground truth”,
see Section 4.2. Also, the extracted parameters turned out to be rather stable between
different imprints of the same finger, such that they could in principle be used for indexing,
see Section 4.3. We finally used the algorithms for finding the symmetry axis and the models
we proposed to define intrinsic coordinates, and analysed their stability. Although the vertical
axes found were quite stable between different imprints of the same finger, the position of
the horizontal axis proved more variable. Hence the symmetry axis found allows to define
relatively precise intrinsic x-coordinates but the y-coordinates defined through the position
of a model’s horizontal axis are not very reliable, see Section 4.4.

Our empirical results now allow us to examine how well we have succeeded in reaching
our aims, and how applicable these models really are. Indeed, our “geometric” approach
proved successful in leading to simple, low-dimensional models whose parameters have a clear
interpretation. They empirically appeared to be reasonably robust against partial observation,
Euclidean motions etc. and showed their potential usability for a variety of applications.
When compared to some models from the literature they were found to clearly outperform
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those. A more detailed discussion of their applicability, and on possible directions of further
research has been provided in Chapter 5.

1.3. Outline

The organisation of the material presented is as follows: Chapter 2 introduces quadratic
differentials and shows how they can be used to model orientation fields of fingerprints. In
passing, we derive Penrose’s formula and review some existing models from the literature
within the framework of quadratic differentials. We will discuss implementation details for
those models in Chapter 3. As mentioned above, a major difficulty lies in the extraction of
a “symmetry axis” from the orientation field for which we will present two approaches in
Sections 3.2 and 3.3. As we have different potential applications in mind for such models, we
conducted a large study of different models using 4000 images, the results of which are to be
found in Chapter 4. We conclude with a discussion in Chapter 5.

We record that, with the exception of Figure 1.1, all fingerprints shown and used to obtain
the orientation fields visualised in the various figures throughout this text have been taken
from the NIST Special Database 4 (Watson and Wilson 1992). Figure 2.1 was included by
courtesy of Stephan Huckemann.
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Chapter 2

Models for Orientation
Fields

This chapter starts out with a formal definition of orientation fields and singular points, our
main objects of interest. Their relationship to quadratic differentials will become apparent
in Section 2.2 where we cite some results from complex analysis which will allow us to model
orientation fields by quadratic differentials as demonstrated in Section 2.3. Finally, we review
some models from the literature within this framework, see Section 2.4.

2.1. Orientation fields and singular points

Although we observe our data only on a finite grid, we will model the area of a fingerprint
as a domain D ⊆ Ĉ where Ĉ = C ∪ {∞}. The reason for considering the whole Riemann
sphere will become clear later: the study of orientation fields greatly benefits when they
are considered on a compact manifold, see Remark 2.14; note also that Sherlock and Monro
(1993) already gave their free parameter the meaning of an orientation at ∞, cf. Definition 2.6
and Equation (2.10). Since an orientation given as an angle α is uniquely determined only
modulo π, we identify it with (eiα)2 = ei2α which is equivalent to doubling the angle. Hence,
orientations are uniquely represented by their values on the unit circle S1 = {z ∈ C : |z| = 1}.
We are now in a position to give a mathematical definition of our main object of interest:

Definition 2.1. A meromorphic orientation field on a domain D ⊆ Ĉ is a mapping
φ : D \ N → S1 which has a meromorphic representation f : D → Ĉ with φ(·) ≡ |f(·)|

f(·)
where N = {z ∈ D | f(z) = 0 ∨ f(z) = ∞} is the set of singular points of φ.

Later, when we introduce quadratic differentials in Section 2.2, it will become apparent
why we are using the reciprocal of f .

In general, an orientation field (with isolated singular points) will be a diffeomorphic1

deformation of a meromorphic orientation field; as the only non-conformal transformations
we are going to consider are (R2-) linear transformations, we will not formalise this notion,
cf. Definition 2.6 and Remark 2.7.

Definition 2.2. A simple zero of the meromorphic representation f of an orientation field
φ is called a delta of φ, a pole of f is called a core of φ; any zero or pole of f is called a

1Note that we call a mapping from C to C diffeomorphic if it is a C1-diffeomorphism between real vector spaces,
i.e. when we identify C with R2. If the mapping additionally is (C-) analytic we call it conformal.

8
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singular point of φ. We say φ is of order k at z if k is the order of f at z0 in its Laurent
power series expansion, i.e. zeros have positive order, poles have negative order and ordinary
points have order 0. The order of φ on D is the sum of the orders of φ at all points z ∈ D if
there are only finitely many z with non-zero order.

As fingerprints do not feature zeros of higher orders, we do not concern ourselves with
them here.

In the engineerings literature, singular points are usually defined through their Poincaré
index:

Definition 2.3. For a point z0 in D, the domain of a meromorphic orientation field φ, let
r > 0 be such that the closed unit disc with centre z0 and radius r is contained in D and
does not contain any singular points of φ except possibly z0. Further let α : [0, 2π] → C with
α(t) = z0 + reit. Then the Poincaré index of φ at z0 is defined as

(2.1)
1
4π

∫ 2π

0

(
d

dt
arg(φ(α(t)))

)
dt.

Note that we use 4π instead of 2π in the denominator since we have doubled the angles.
It is easy to see that the Poincaré index at a point is well-defined, invariant under diffeo-
morphic transformations, and equals zero for a non-singular point of φ in view of α being
null-homotopic in that case. One immediately gets the following

Lemma 2.4. With the notation of Definition 2.3 the Poincaré index of φ at the point z0
equals −k

2 where k is the order of φ at z0.

Thus a point is a delta iff its Poincaré index is −1
2 , it is a core iff its index is positive,

leading to an equivalent definition of singular points which is frequently used in the fingerprint
analysis literature, see e.g. Sherlock and Monro (1993).

2.2. Quadratic differentials

We are now going to introduce quadratic differentials, citing and motivating some of their
properties, see e.g. Jensen (1975) for an introduction, or Strebel (1984) for a more thorough
treatment of the subject.

In the following we will identify line elements dz with elements in C∗ = C \ {0}.2 One
way to interpret dz is as the (non-zero) velocity of a curve through z, cf. the remarks on
trajectories below. Note that squaring3 and normalising a line element dz gives the orientation
of that line element, dz2

|dz2| .

Definition 2.5. A quadratic differential on a domain D ⊆ Ĉ is a mapping σ : D×C∗ → Ĉ
which can be represented as σ(z, dz) = Q(z) dz2 where Q : Ĉ → Ĉ is meromorphic.4

The quadratic differential σ determines a meromorphic orientation field by imposing the
condition

(2.2) σ(z, dz) = Q(z) dz2 > 0

2Formally, a line element is a non-zero tangent vector at a point z of a Riemannian manifold. Since we are only

considering subsets of Ĉ, we choose the identical chart on C and canonically identify the tangent space with C itself;
at ∞ we will use the chart z 7→ z−1 if needed.

3Here and elswhere, dz2 is shorthand for (dz)2; d by itself bears no meaning.
4The representation of σ via Q at ∞ will be defined via the transformation rule in Definition 2.6 under the map

z 7→ z−1, cf. Footnote (2).
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on the line elements, i.e. there is a uniquely determined orientation field φ on D such that
Q(z) φ(z) > 0. A simple calculation shows that φ is represented by Q, i.e. φ(z) = |Q(z)|

Q(z) , cf.
Definition 2.1.

A curve γ : (a, b) → D is called a trajectory of σ if its tangent vectors5 fulfil the condition
in Equation (2.2), i.e. if Q(γ(t)) γ̇(t)2 > 0 for all t ∈ (a, b). We obtain a trajectory through
a non-singular point6 z of σ by solving the differential equation

(2.3) γ̇(t) =

√
1

Q(γ(t))

with initial condition7 γ(0) = z. Note that for any non-singular point there is always a
trajectory through it.

We will make use of the following transformation rule for quadratic differentials:

Definition 2.6. Let f : D → f(D) ⊆ Ĉ, z 7→ w = f(z) be a conformal mapping, σ(z, dz) =
Q(z) dz2 a quadratic differential on D. Then τ : f(D)×C∗ → C is the transformed quadratic
differential if τ(w, dw) = P (w) dw2 = Q(z) dz2 = σ(z, dz). Here, dw = f ′(z) dz denotes the
transformed line element.

Clearly, the transformed quadratic differential is given by

(2.4) P (w) dw2 =
(Q ◦ f−1)(w)(
(f ′ ◦ f−1)(w)

)2 dw2

for all w ∈ f(D).

Remark 2.7. One easily derives a similar transformation rule for a non-conformal, diffeo-
morphic f .

The following simple corollary to Definition 2.6 justifies our way of transforming quadratic
differentials, cf. also Theorem 2.12:

Lemma 2.8. Under the assumptions of Definition 2.6, P is meromorphic whenever Q is,
the order of σ at z ∈ D equals the order of τ at f(z), and trajectories of σ are mapped onto
trajectories of τ .

An important consequence of the transformation rule describes the global behaviour of
quadratic differentials on the Riemann sphere:

Corollary 2.9. The order of any quadratic differential σ on Ĉ is −4.

We emphasise that only classical complex analysis is needed to obtain the results quoted
here; to give a flavour of the arguments used we present a short proof of the above corollary:

Proof. Let σ(z, dz) = Q(z) dz2. Since Q is meromorphic on Ĉ, Q is a rational function, i.e.
there are points c1, . . . , cm, d1, . . . , dn ∈ C with ci 6= dj for i = 1, . . . ,m and j = 1, . . . , n such
that

(2.5) Q(z) =

∏n
j=1(z − dj)∏m
i=1(z − ci)

.

5We denote differentiation with respect to the parameter of the curve γ by a dot, γ̇(t) = d
dt

γ(t).
6Notions defined for orientation fields can also be transferred to quadratic differentials by applying them to the

corresponding orientation field.
7Here, we can choose either branch of the square-root; choosing the other one only reverses the direction.
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We now consider the transformation f(z) = z−1 which will allow us to compute the order
of σ at ∞. According to Equation (2.4) the transformed quadratic differential P (w) dw2 is
given by

(2.6) P (w) =
Q(w−1)(

− (w−1)−2
)2 = −w−4

∏n
j=1(w

−1 − dj)∏m
i=1(w−1 − ci)

= −w−4−n+m

∏n
j=1(1− djw)∏m
i=1(1− ciw)

.

Thus the order of P at 0 in its Laurent power series expansion is −4− n+m, which equals
the order of σ at ∞. Thus the order of σ is n−m− 4− n+m = −4. �

Remark 2.10. It is possible to extend this analysis to arbitrary compact Riemann surfaces,
the order of a quadratic differential d is then an invariant related to the topological genus g
of the surface, namely d = 4g − 4; this is a consequence of the Riemann-Roch theorem, cf.
(Farkas and Kra 1980, Corollary 2, p. 74).

The main result about quadratic differentials that we are going to need describes the local
structure of their trajectories, see e.g. (Jensen 1975, Theorem 8.2); observe from Definition 2.6
that it is sufficient to consider subdomains of C when studying a quadratic differential locally
since the behaviour at ∞ can be inferred using a suitable chart.

Theorem 2.11. Consider a quadratic differential σ(z, dz) = Q(z) dz2 on a domain D ⊆ C.
If z ∈ D is

• an ordinary point, i.e. Q has a Laurent power series expansion of order 0 at z, then
there is exactly one trajectory through z, see Figure 2.1(a);

• a zero of order k, then there are exactly k + 2 trajectories emanating from z at
regularly distributed angles, see Figure 2.1(b);

• a pole of order 1, then there is exactly one trajectory ending at z, see Figure 2.1(c);
• a pole of order 2, then the structure in a sufficiently small neighbourhood U further

depends on the lowest order coefficient in the expansion, a−2 = limζ→z ζ
2Q(ζ):

– if a−2 < 0 no trajectory ends at z and any trajectory through ζ ∈ U , ζ 6= z is
closed, see Figure 2.1(d);

– if a−2 > 0 any trajectory through ζ ∈ U , ζ 6= z ends at z and no two distinct
trajectories ending at z have the same limiting direction there, see Figure 2.1(e);

– for any other a−2 6∈ R any trajectory through ζ ∈ U , ζ 6= z has z as a limit
point, spiralling around it infinitely often, see Figure 2.1(f);

• a pole of order k > 2, then there is a neighbourhood U of z such that any ζ ∈ U ,
ζ 6= z is connected with z by a trajectory and all such trajectories meet at z at k
regularly distributed limiting directions, see Figure 2.1(g)-(h).

This theorem is proven by direct calculation starting from the so-called Normal-Form
Theorem (Jensen 1975, Theorem 8.1):

Theorem 2.12. Let σ(z, dz) = Q(z) dz2 be a quadratic differential on a domain D ⊆ Ĉ.
Then for any z0 ∈ D there is a neighbourhood U of z0 and a conformal mapping z 7→ w = f(z)
such that the transformed quadratic differential fulfils

(2.7) Q(z)dz2 =



dw2 if z0 is an ordinary point,
wk dw2 if z0 is a zero of order k,
w−k dw2 if z0 is a pole of odd order k,
a−2w

−2 dw2 if z0 is a pole of order 2,
(w−k/2 +√

a−2w
−1)2 dw2 if z0 is a zero of odd order k ≥ 4,

where a−2 is defined as in Theorem 2.11.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.1. Behaviour of trajectories near points of different orders, see Theorem 2.11:
(a) ordinary point, (b) simple zero, (c) simple pole, (d) double pole with a−2 < 0, (e) double
pole with a−2 > 0, (f) double pole with a−2 6∈ R, (g) fourth-order pole, (h) sixth-order pole.
Illustration courtesy of Stephan Huckemann.

One proves this theorem using Equation (2.4) while carefully distinguishing the cases of
poles of order 2, higher odd order poles, and points of any other order. Note that a−2 plays
a special rôle for poles of odd orders since √a−2 is the residue of

√
Q.

We conclude this section noting some of the areas in which quadratic differentials are
used:

Remark 2.13. Historically, quadratic differentials have been introduced by Grötzsch (1929)
and Teichmüller (1940) during the 1930s in their studies of invariants of Riemann surfaces, cit-
ing only two of their many works on the subject. Subsequently, quadratic differentials played
a fundamental rôle in the development of Teichmüller theory due to their close relationship
to extremal quasiconformal mappings and Teichmüller maps, cf. e.g. (Gardiner 1987). More
recently, they have been used to study the ergodicity of dynamical systems (Kerckhoff et al.
1986) as well as defects and textures of crystals (Kholodenko 2000), to give just two examples
showing their current use in a broad range of applications.

2.3. Models based on quadratic differentials

Comparing the trajectories of quadratic differentials in Figure 2.1 with the ridge structure
of fingerprints in Figure 1.2, one immediately understands how they relate to orientation
fields of fingerprints: reasonable models for them are given by quadratic differentials whose
zeros and poles match the deltas and cores of the fingerprint according to Definition 2.2.
This connection between orientation fields of fingerprints and quadratic differentials has been
noted by Stephan Huckemann and initiated the present work, cf. (Huckemann, Hotz and
Munk 2006).
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Let us from now on assume that D is the area of the fingerprint which we observe,
containing all singular points of the fingerprint. Empirically, one observes that there are at
most two deltas and two cores in a fingerprint.

Remark 2.14. The orientation field of a fingerprint has empirically found to have order 0.
This is to be expected from Corollary 2.9: a fingertip can be viewed as topologically being
equivalent to a half-sphere, where the ridges flow along the joint, i.e. along the equator.
We thus can continue the field onto the Riemann sphere if we place a second-order pole
on the other half-sphere. Further note that fingerprint ridges flow along the border of the
fingernail, which henceforth also can be represented as a second-order pole. These are the
only “boundary conditions”. From Corollary 2.9 we know that the order on the Riemann
sphere is −4, and the boundary conditions already account for an order of −4, leaving order
0 for the orientation field of the fingerprint itself. (One could also identify the boundary of
the fingernail with the joint, obtain a torus and use the fact that the order of a quadratic
differential on a torus is 0, cf. Remark 2.10.)

Similar arguments allow us to derive Penrose’s formula (Penrose 1969) about the number
of loops and deltas on an entire palm:

(2.8) number of deltas + 1 = number of fingers + number of loops,

where a whorl counts as two loops. Since the number of deltas equals the number of zeros
of the corresponding quadratic differential on the palm and the number of loops then equals
the number of poles counting multiplicities, this formula is equivalent to asserting that the
order of a quadratic differential on the entire palm is one less than the number of fingers. Let
us now derive this property of orientation fields on the entire palm: like before, we consider
the entire hand as a half-sphere with ridges parallel to the wrist represented as the equator.
Thus on the entire hand the order of the orientation field must be −2 due to the “boundary
condition” on the equator. We now argue by induction, starting with a hand with one finger:
since the finger has again one fingernail being equivalent to a second-order pole, indeed the
order of the orientation field is 0, one less than the number of fingers. If we now add a finger,
we add an order of −2 due to the finger’s “boundary condition” as above; at the same time
we will have to add two deltas – one on the palm and one on the back of the hand, i.e. the
order of the orientation field on the palm increases by one, which proves the induction step
and thus Penrose’s formula.

The above deliberations lead one to consider the following rational function which has
first been proposed by Sherlock and Monro (1993), albeit without a rigorous justification:

(2.9) Qc1,c2,d1,d2(z) =
(z − d1)(z − d2)
(z − c1)(z − c2)

,

where c1 and c2 are the locations of (simple) cores, d1 and d2 are the locations of deltas; for
a whorl we set c1 = c2 resulting in a second-order pole; for a loop or tented arch set c2 = d2

arbitrary leaving only one core and one delta; and for an arch set c1 = d1 = c2 = d2 arbitrary
such that all terms cancel, leaving no singular point at all. Thus Qc1,c2,d1,d2 incorporates all
possible singular points in a fingerprint.

To account for rotations of the finger, Sherlock and Monro (1993) suggest to use the
following quadratic differential for modelling the orientation field of a fingerprint:

(2.10) σSM(z, dz) = α Qc1,c2,d1,d2(z) dz
2,

where α ∈ C gives the orientation at ∞. This model is far too simplistic: for an arch it
results in parallel trajectories whose orientations are |α|/α – thus modelling the arches not
at all, see Figure 2.2. Observe however that the model improves as the number of singular
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Figure 2.2. Model σSM of Sherlock and Monro (1993) fitted to the orientation fields of an
arch, a right loop and a whorl, respectively.

points increases: this is to be expected since the field in the centre of the fingerprint is then
dominated by these singular points which can adequately be modeled by Qc1,c2,d1,d2 .

Before proposing improvements for this model, we note that Qc1,c2,d1,d2 will only model
the ridge structure in the central part of the fingerprint; its effects vanish if we move away
from the singular points. More precisely:

Lemma 2.15. Assume we have two singular points, a core at c ∈ C and a delta at d ∈ C, i.e.
we are interested in the behaviour of the quadratic differential Q(z) dz2 given by Q(z) = z−d

z−c .

Then the orientation field φ(z) = |Q(z)|
Q(z) generated by this quadratic differential fulfils

(2.11) tan arg φ(z) =
sinα

|z−d|
|d−c| + cosα

,

where α = arg(z − d) − arg(d − c) is the angle between the line connecting z with the delta
and the line connecting the delta with the core.8.

Proof. We start from

(2.12) Q(z)−1 =
z − c

z − d
=
z − d+ d− c

z − d
= 1 +

d− c

z − d
= 1 + P−1,

where P = z−d
d−c such that α = argP . Then, using that for w ∈ C∗

(2.13) sin argw =
w − w̄

2i|w|
, cos argw =

w + w̄

2|w|
, and tan argw = i−1w − w̄

w + w̄
,

we have that

i tan arg φ(z) = i tan argQ(z)−1 =
Q(z)−1 −Q(z)−1

Q(z)−1 +Q(z)−1
=

P−1 − P−1

2 + P−1 + P−1
(2.14)

=
P̄ − P

2|P |2 + P + P̄
=
−i−1 sin argP
|P |+ cos argP

= i
sinα

|z−d|
|d−c| + cosα

.

�

Corollary 2.16. Generalising the above result, let Q(z) =
∏n

i=1
(z−di)

ki

(z−ci)ki
for ki ∈ N, i =

1, . . . , n, and let φ(z) = |Q(z)|
Q(z) . Then

(2.15) arctan |arg(φ(z))| ≤
n∑

i=1

ki
sinαi

|z−di|
|di−ci| + cosαi

,

8Note that the left-hand side is infinite whenever the right hand side is; this happens iff z lies on the circle through
c and d with centre (c + d)/2
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Figure 2.3. Orientation fields generated by σ2, σ4 and σ6, respectively. The artificial poles
have been marked by orange stars. The hypothetical fingerprint area is shown as a grey
window. The green unit circle is a trajectory of σ2.

where αi = |arg(z − di)− arg(di − ci)|. In particular,

(2.16) |arg(φ(z))| ≤
n∑

i=1

ki min

{
sinαi

|di − ci|
|z − di|

, tanαi

}
.

Proof. This is immediate from Lemma 2.15; note that arctanβ ≤ β for β ∈ [0, π/2). �

Remark 2.17. Since |arg φ(z)| = |argQ−1(z)| = |argQ(z)|, we can interchange the rôles of
ci and di for any i and thus the above results remain valid for αi = |arg(z− ci)− arg(ci− di)|
if we substitute |z − di| by |z − ci|.

Hence the influence of cancelling singular points declines as the reciprocal distance to
them. Thus Qc1,c2,d1,d2 indeed will model only the central part of the fingerprint and we are
left with the problem of adequately modelling the outer part of the finger, i.e. its global ridge
structure.

We observe, cf. Figure 1.2, that the ridges are parallel to the joint of the second and
third phalanx, i.e. they are horizontal at the bottom of a properly aligned fingerprint, and
they are circular or elliptic near the finger tip, cf. Remark 2.14. We can most easily create
a field with these properties by placing two artificial poles of identical order outside the
observed fingerprint region at the line representing the joint. For now we will assume that
the fingerprint is aligned such that the real axis represents the joint, and it is scaled such that
D ⊂ {z ∈ C | − 1 < Re z < 1}, i.e. the fingerprint region is contained in the vertical strip
between −1 and 1. Then a simple model for the outer field of a fingerprint is given through

(2.17) σk(z, dz2) =
1

(z − 1)k(z + 1)k
dz2 =

dz2

(z2 − 1)k

for even k ∈ N. Note that the real line is a trajectory of σk as required. Furthermore, there
is a trajectory through every purely imaginary z crossing the imaginary axis horizontally and
connecting z with both poles. This results in the trajectories forming arches as required, see
Figure 2.3.

Starting from this outer – or background – field, we add the singular points by multipli-
cation with Qc1,c2,d1,d2(z), i.e. we consider

(2.18) Qc1,c2,d1,d2(z) σk(z, dz).
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(a) (b) (c)

Figure 2.4. Construction of σbasic,k: orientation fields for a loop generated by the quadratic
differentials of Equations (2.18) to (2.20), respectively, for k = 2.

Now, the real line no longer is a trajectory any more, see Figure 2.4(a). To fix this, we
restore the symmetry with respect to the real axis by mirroring all singular points across
it. We thus artificially add simple poles c̄1, c̄2 and zeros d̄1, d̄2, leading to the quadratic
differential

(2.19) Qc1,c2,d1,d2(z) Qc̄1,c̄2,d̄1,d̄2
(z) σk(z, dz) =

(z − d1)(z − d2)
(z − c1)(z − c2)

(z − d̄1)(z − d̄2)
(z − c̄1)(z − c̄2)

dz2

(z2 − 1)k
.

Figure 2.4(b) shows that indeed the real axis is a trajectory again, a fact easily verified.
Noting that near to and beyond the joint of a fingerprint the ridges are parallel we extend
the field from the upper half plane continuously to the lower half plane by parallel lines, see
Figure 2.4(c):

(2.20) σbasic,k(z, dz) =

{
Qc1,c2,d1,d2(z) Qc̄1,c̄2,d̄1,d̄2

(z) σk(z, dz) for Im z > 0,
dz2 for Im z ≤ 0.

This is the basic model for the orientation field of a fingerprint. See Figure 2.4(c) and
Figure 2.5(a)-(b) for an illustration of σbasic,k with k = 2, 4, 6 for a right loop. Note that
using poles of order k ≥ 8 does not change the qualitative behaviour of the trajectories in
the region we are considering, cf. also Figure 2.1, but that they have empirically been found
to lead to instabilities if they get too close to the fingerprint domain. We thus consider only
poles of order 2, 4 or 6.

Recalling that the ridges are circular or elliptic near the fingertip, we might want to
incorporate this into our model as well. From Figure 2.3 we see that σ2 has the unit circle

(a) (b) (c)

Figure 2.5. Orientation fields for a loop generated by the quadratic differentials of σbasic,4,
σbasic,6, and σcirc, respectively. The green upper half of the unit circle is a trajectory of σcirc.
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as a trajectory; after the introduction of the singular points this property is lost, however.
We can restore it by additionally mirroring all singular points, including the artificial ones,
across the unit circle, i.e. we add simple poles 1/c1, 1/c2, 1/c̄1, 1/c̄2 and zeros 1/d1, 1/d2,
1/d̄1, 1/d̄2. This results in the circular model

(2.21) σcirc(z, dz) =

{
Q 1

c1
, 1
c2

, 1
d1

, 1
d2

(z) Q 1
c̄1

, 1
c̄2

, 1
d̄1

, 1
d̄2

(z) σbasic,k(z, dz) for Im z > 0,

dz2 for Im z ≤ 0.

It again possesses the real line and the upper half of the unit circle as trajectories, see
Figure 2.5(c). Indeed, for |z| = 1, Im z > 0, noting z−1 = z̄,

(2.22) (z − a)(z − a−1)(z − ā)(z − ā−1) = z2 |a|2 (z − a)(a− z̄)(z − ā)(ā− z̄) = ca(z) z2

with ca(z) > 0. We thus get for dz = iz which is tangential to the unit circle, and for some
c(z) > 0,

(2.23) σcirc(z, dz) = c(z)
dz2

(z2 − 1)2
= c(z)

(iz)2

(2i Im z)2z2
> 0

as required.
Finally, we adapt these models (σbasic,k and σcirc) to a given fingerprint by allowing for the

following R2-linear transformations: firstly, we rescale allowing different scaling parameters
horizontally and vertically, i.e. we consider

(2.24) z′ = Ssx,sy(z) = sx Re z + i sy Im z

for sx, sy ∈ R. Note that this mapping is not conformal for sx 6= sy but adapts to the
elongated structure of finger ridges: we already mentioned that they are rather elliptical
around the finger tip – this in a way reflects the fact that fingers are longer than they are
wide. Secondly, we allow for rotations of the finger by setting

(2.25) z′′ = Rθ(z′) = eiθ z′,

with θ ∈ [0, 2π), and finally we incorporate translations with

(2.26) w = Tm(z′′) = z′′ +m

for m ∈ C. Thus we consider the orientation fields generated by the quadratic differentials
σbasic,k and σcirc under the transformation

(2.27) w = Fsx,sy ,θ,m(z) = (Tm ◦Rθ ◦ Ssx,sy)(z).

The transformed quadratic differentials are easily computed, cf. Equation (2.4); we omit the
technical details. In the following we will, for ease of notation, denote the transformed models
again by σbasic,k and σcirc ; it will be clear from the context whether they are considered in
the z- or w-plane.

Remark 2.18. Note that Tm ◦ Rθ directly models a Euclidean motion whereas one could
say that Ssx,sy adapts to the size and thickness of the finger. If we fix a model σbasic,k or
σcirc, we thus have five real parameters describing our model: sx, sy, θ, Rem and Imm; here,
we do not count the locations of the singular points as parameters since they are given and
hence fixed. As any reasonable model should take the size and thickness of the finger, as well
as possible translations and rotations, into account, one could argue that this parameter set
contains a minimal number of parameters.
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2.4. Review of existing models

We already discussed the model introduced by Sherlock and Monro (1993) in the previous
section, see Equation (2.10) and Figure 2.2, where we have concluded that it is too simple
to fit a given ridge pattern reasonably well. Note that it has only one free parameter, the
orientation α at ∞. Several other authors built on this model though, trying to improve its
accuracy. In the following we describe three such models we know of.

Recall that one can write the model of Sherlock and Monro (1993) for the orientation
field φ as

(2.28) arg φ(z) = arg(α−1) +
2∑

i=1

(
arg(z − ci)− arg(z − di)

)
mod 2π,

cf. Equation (2.9). Vizcaya and Gerhardt (1996) generalise this model by allowing for non-
linear dependencies on the angles, i.e. they consider

(2.29) arg φ(z) = arg(α−1) +
2∑

i=1

(
gci(arg(z − ci))− gdi

(arg(z − di))
)

mod 2π,

where the continuous functions gci , gdi
: [0, 2π] → R with gci(0) = gci(2π), gdi

(0) = gdi
(2π)

have to be chosen such that no point’s Poincaré index changes. In particular, Vizcaya and
Gerhardt (1996) suggest to use piecewise linear functions with 8 evenly distributed knots. We
summarise some of the properties of this model:

• In general, it cannot be represented by a quadratic differential.

• It is only applicable for loops and whorls; Vizcaya and Gerhardt (1996) do not discuss
arches at all, although these constitute the fingerprint class for which the model of
Sherlock and Monro (1993) performs worst.

• Their model uses 20 real parameters for a loop, and 40 for a whorl.

• The parameters are not invariant under rotations or translations.

• If a singular point is close to the border of the observed fingerprint area, some of its
parameters will be difficult to estimate.

A different approach has been taken by Gu et al. (2004) who model the real and imaginary
parts of an orientation field φ separately. Their idea is to add flexibility by allowing the
influence of a singular point to vary through the addition of weights depending on the distance
from the singular point, and by modelling a background field by polynomials. In particular,
they set

Reφ(z) = wp(z) pRe(Re z, Im z) +
2∑

i=1

Re
(
wci(z)

|z−ci|
z−ci

Qci − wdi
(z) z−di

|z−di| Qdi

)
(2.30)

Imφ(z) = wp(z) pIm(Re z, Im z) +
2∑

i=1

Im
(
wci(z)

|z−ci|
z−ci

Qci − wdi
(z) z−di

|z−di| Qdi

)
where Qci , Qdi

∈ R model the “charge” of the singular points with weights

wci(z) = max
{
1− |z−ci|

Rci
, 0
}
,(2.31)

wdi
(z) = max

{
1− |z−di|

Rdi
, 0
}
, and

wp(z) = 1−
2∑

i=1

(wci(z) + wdi
(z)),
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limiting the influence of each singular point to a circle of radius Rci or Rdi
, respectively;

here, pRe and pIm are real, bivariate polynomials of degree n in each variable modelling the
background field; Gu et al. (2004) suggest n = 4. The properties of this model can be
summarised as follows:

• There will in general be no quadratic differential representing this model.
• The model uses 50 parameters for an arch, 52 for a loop and 54 for a whorl.
• The parameters of the background field are not invariant under rotations or trans-

lations though the weights and radii of influence are.

To our knowledge, the only other model which is generated by a quadratic differential has
been proposed by Zhou and Gu (2004): they actually consider (in our terminology)

(2.32)
g(z)
f(z)

Qc1,c2,d1,d2(z) dz
2

with complex polynomials f , g of degree 6. For computational reasons they simplify this
model to

(2.33) σZG(z, dz) =
1

f(z)
Qc1,c2,d1,d2(z) dz

2.

Note that σbasic,2 is contained in Equation (2.32) with the appropriate choices of f and g if
model σbasic,2 is rescaled isotropically, i.e. if sx = sy, cf. Section 2.3. For arches, σbasic,2

is also a special case of σZG (when isotropically rescaled), but not for loops and whorls as
the mirrored deltas cannot be represented. Recalling the diminishing influence of singular
points (Corollary 2.16) and taking the added flexibility into account, however, we see that in
principal σZG might be similar to σbasic,2 – even for loops and deltas. The particular choice of
f will play a large rôle, though, as we shall see in Section 3.5. We note some more properties
of σZG:

• It uses 13 real parameters, the coefficients of the complex polynomial f . (Observe
that the modulus of f(z) does not affect the corresponding orientation field; we can
thus assume the lowest order coefficient to have modulus 1, say.)

• Its parameters are not invariant under rotations or translations.
• For σZG to be reasonable, the zeros of f need to lie outside the fingerprint region;

the model is thus ill-suited for extrapolation in its generality.
• The model does not allow for non-conformity of the field, whence it can only incor-

porate isotropic rescalings.

We conclude that the models described in this section all add flexibility to the model
by Sherlock and Monro (1993), thus increasing its accuracy. But they do so by sacrificing
the other goals we set ourselves in Section 1.2: invariance under Euclidean motions, low
dimension, interpretability, and predictive power; note that none of them can be expected to
be very accurate when used for extrapolation. For practical reasons and since they are the
only other models based on quadratic differentials, we will, on an empirical basis, compare
our newly proposed models σbasic,k and σcirc only with models σSM and σZG, cf. Section 3.5.



Chapter 3

Algorithms

For any of the models discussed so far to be applicable, its parameters must be estimated
from a given orientation field. As it turns out, this is not a trivial task – except for the model
of Sherlock and Monro (1993). The general idea is to minimise a cost-functional over the
fingerprint domain, i.e. given an observed orientation field φ on a bounded domain D and a
model ψp for an orientation field depending on some parameters p ∈ P ⊂ Rd, we consider
that parameter p̂ which minimises the functional measuring the fit,

(3.1) Jd(p) =
∫

D
d
(
φ(z), ψp(z)

)
dz,

for some distance1 d on S1; examples are the arc-length

(3.2) darc(z1, z2) = min
{
|arg z1 − arg z2|, 2π − |arg z1 − arg z2|

}
,

or the Euclidean distance on S1, leading to least-squares minimisation,

(3.3) dLS(z1, z2) = (z1 − z2)2.

To ease its interpretation, we will subsequently measure the accuracy of the fit of an orienta-
tion field ψ obtained from some model to a given orientation field φ on the bounded domain
D by their average deviation in degrees2

(3.4) ad(ψ, φ) =
180

2π|D|

∫
D
darc

(
φ(z), ψ(z)

)
dz

where |D| denotes the Lebesgue measure of D.
For models σbasic,k and σcirc it has been found empirically that Jd usually features many

local minima, rendering standard minimisation techniques like steepest descent or similar
methods unusable. Upon closer inspection, the main problem was found to be the Euclidean
motion, more precisely the determination of the rotation. Once the parameter θ specifying the
rotation had been fixed, all other parameters could be determined rather well using standard
techniques, see Section 3.4. The rotation therefore ought to be determined differently; we
propose algorithms tackling this problem in Sections 3.2 and 3.3. We also discuss how the
models from the literature described in Section 2.4 can be fitted, see Section 3.5. We begin by
describing the algorithms used to obtain the orientation field and singular points of a given
fingerprint.

1Note that d need not be a metric, e.g. dLS is the square of the Euclidean distance.
2Observe that we have 180 degrees in the numerator instead of 360 since we need to halve orientations to obtain

geometrically valid measures of angles.

20
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Figure 3.1. Orientation field and singular point extraction in the foreground of an arch,
loop and whorl, respectively.

3.1. Extracting orientation fields and singular points

Given a fingerprint, we perform the following preparatory steps:

(1) segmentation of the image into the foreground containing the fingerprint pattern and
the uninformative background,

(2) estimation of its orientation field in the foreground, and
(3) extraction of the singular points in the orientation field.

The segmentation step has been implemented using ideas proposed by Bazen and Gerez
(2001) as well as Chen et al. (2004): few fingerprint images are segmented manually and
used to train a linear classifier based on mean and variance of grey values of pixels in some
window. Subsequently, this classifier is used to automatically segment the remaining images
in the database. In a post-processing step, the boundary between fore- and background is
smoothed by morphological operations (opening and closing).

The orientation field is most easily extracted by computing the gradients of the grey-scale
image – which are vertical to the ridge boundaries –, square them (as complex values) to obtain
orientations and rotate them by multiplication with −1. As these orientations are very noisy,
they need to be smoothed which we have done by convolving with an isotropic Gaussian
kernel, using FFT for efficiency. This is a variant of the widely-used method suggested by
Bazen and Gerez (2002). Note that strong smoothing is necessary to avoid artificial singular
points caused by noise, which may result in the translation of singular points. The latter is
not a problem for our purposes, however, as we will not relate any orientation field back to
the original image. In our empirical study, all models will be fit to the extracted, smoothed
orientation field with its corresponding singular points, thus receiving equal data. Since their
accuracy is evaluated against this smoothed orientation field, one might argue that the results
obtained depend on the smoothing applied. Note however, that there is no such thing as the
orientation field of a fingerprint, i.e. there is no “ground truth” to compare with: smoothing
always is necessary and its amount reflects the scale at which we look at the orientation field.
Figure 3.1, though, shows that we do not oversmooth but arrive at field reasonably reflecting
the ridges’ flow, which can well be accepted for our purposes. Further note that due to the
rigidity of the models we are going to consider, the amount of smoothing plays only a minor
rôle when comparing these models one to another. Finally, observe that we only retain values
having a certain distance from the boundary to make sure that the smoothed orientation field
is based only on the foreground.
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(a) (b) (c)

Figure 3.2. Lifted (except for the arch) orientation fields (blue), orientations of their gradi-
ents (orange), and resulting symmetry axes (green) using algorithm small for an arch, loop
and whorl, respectively.

Bazen and Gerez (2002) also proposed an elegant method for determining the singular
points based on the Poincaré index, see Definition 2.3. Instead of calculating the curve
integral, they use Green’s Theorem to turn it into an integral over a small area, which can
again be computed very efficiently.

Figure 3.1 shows three sample images for which these steps have been taken. Note that
the singular points have been moved slightly, and that despite the strong smoothing the
orientation field in the lower left of the loop could not be well estimated. To the left of the
whorl, the removal of the background is visible. Nonetheless, the flow of the fingerprint ridges
has been captured rather well throughout the foreground of the images.

3.2. Determining the symmetry axis locally

We start by observing that the global or background field generated by σk is symmetric to the
imaginary axis, see Equation (2.17) and Figure 2.3. As this is the field for an arch of models
σbasic,k or σcirc, we aim to find such a symmetry axis in the orientation field of an arch, cf.
Figure 3.1.

Clearly, the orientation field is orthogonal to such a symmetry axis, meaning it is constant
along this axis. Thus any change of the orientation field close to the symmetry axis can only
occur orthogonal to the axis, or parallel to the orientation field itself. To measure the change
of the orientation field φ, we first unwrap φ, i.e. we write

(3.5) φ(z) = eiu(z)

for some smooth u : D → R. Note that such a function u does exist iff the orientation field
φ on D has no singular points (in D). Identifying D ⊂ C with a subset of R2 we can define
a differential operator L which measures the change of φ at some point z ∈ D by

(3.6) Lφ(z) = −i ∇ log φ(z) = ∇u(z) ∈ C.

Note that Lφ does not depend on the particular choice of u as two such functions differ only
by a constant. We now may say that φ is first-order symmetric at z if Lφ(z) is parallel to
φ(z), i.e. if there is some c ≥ 0 such that

(
Lφ(z)

)2 = c φ(z).
Figure 3.2(a) shows the orientation field φ of an arch overlaid by the orientation field of its

change,
(
Lφ(·)

)2
/
∣∣(Lφ(·)

)2∣∣. The parallelism of the orientations along the symmetry axis is
clearly visible. To determine the orientation of the symmetry axis, recall that it is orthogonal
to the orientation field there. We therefore simply take the mode of −φ(z) at all points z for
which φ is first-order symmetric as the orientation of the axis. We then choose among all lines
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Figure 3.3. Strongly smoothed and lifted (except for the arch) orientation fields (blue),
orientations of their gradients (orange), and resulting symmetry axes (red) using algorithm
large for an arch, loop and whorl, respectively.

with that orientation the one along which most such points z lie. The resulting symmetry
axis is again visualised in Figure 3.2(a).

Although this approach works reasonably well for arches, its application to loops and
whorls is hampered by the fact that their “symmetry axis” is not visible in the central area of
the fingerprint which usually constitutes the main part of the finger we observe, but “hidden”
under the field created by the singular points, cf. Figure 3.1. However, we expect the outer
or background field to be symmetric. Recall that in Section 2.3 we started by modelling the
background field and then added the singular points by multiplying the corresponding qua-
dratic differential with Qc1,c2,d1,d2 , cf. Equation (2.18). We thus can uncover the background
field by reversing this step, i.e. by considering

(3.7) ψ(z) =
Qc1,c2,d1,d2

|Qc1,c2,d1,d2 |
φ(z).

Note that ψ no longer has any singular points: we lifted the singular points from φ. This
operation was already used by Sherlock and Monro (1993) to obtain an orientation field free
of singular points which can be unwrapped, cf. Equation (3.5); they then used this in order
to interpolate orientation fields.

After lifting the singular points and obtaining the background field ψ, we can continue
as before, unwrap the field using Equation (3.5), compute its change Lψ, check where it is
parallel to ψ and determine the symmetry axis, see Figure 3.2(b) and (c). This is the method
used in Huckemann et al. (2006).

Remark 3.1. This approach does not lead to the background field we envisaged, though:
the mirrored singular points introduced in Equation (2.19) have not been lifted as this would
have required knowledge about the horizontal axis – the information we were looking for in
the first place. In practice, we can ignore this problem, however, as Corollary 2.16, further
supported by empirical observations, shows.

The described approach has one drawback: it aims to find a globally valid symmetry axis
based only on local information, namely orientations and their changes, in a small neigh-
bourhood; we hence call this algorithm small. A simple way to improve this is by further
smoothing the (lifted) orientation field ψ prior to the computation of its changes. This way
the notion ‘first-order symmetric’ is based on a larger area, and we call the resulting algo-
rithm large. Figure 3.3 shows the corresponding results when it is applied to three sample
fingerprints.
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Figure 3.4. Orientation fields (blue) and corresponding symmetry axes extracted using
algorithms small (green) large (red) and energy (black) for an arch, loop and whorl, re-

spectively.

3.3. Determining the symmetry axis globally

Instead of a local characterisation of the symmetry axis as in Section 3.2 we now strive for
a global one. We start by observing that an orientation field ψ on a domain D is symmetric
w.r.t. the real axis iff

(3.8) ψ(z̄) = ψ(z)

for all z ∈ D∩D̄ where D̄ = {z̄ | z ∈ D}. If we describe the symmetry axis by {sα+iaα | s ∈ R}
through its orientation α2 ∈ S1 and its (signed) distance a ∈ R to the origin, then ψ is
symmetric to this axis iff

(3.9) ψ
(
α(α−1z − ia+ ia)

)
= αα−1ψ(z)

or equivalently

(3.10) ψ
(
α(α−1z + 2ia)

)
α−2

/
ψ(z) = 1

for all z ∈ D ∩ D̄α,a where D̄α,a = {α(α−1z − ia + ia) | z ∈ D}. We can now determine an
optimal symmetry axis in the sense that it is the maximiser of the functional

(3.11) A(α, a) =
∫

D∩D̄α,a

Re
(
ψ
(
α(α−1z + 2ia)

)
α−2

/
ψ(z)

)
dz.

Note that we do not normalise by the area of D ∩ D̄α,a to ensure that the optimal symmetry
axis is based on a large part of D; otherwise one would obtain optimal results by placing the
axis in a corner (e.g. the upper-right corner in Figure 3.4(a)) such that D ∩ D̄α,a is a very
small homogeneous area close to the axis.

To efficiently compute the maximiser of A we fix α and subsample D ∩ D̄α,a on a regular
grid rotated by iα. The integral in Equation (3.11) along horizontal lines then conveniently
becomes a convolution in dependence of a. It thus can be evaluated efficiently using FFT for
all admissible values a leaving D∩ D̄α,a non-empty. This allows to quickly obtain the optimal
value â for a given α. Note that subsampling barely reduces the accuracy of the method since
the orientation field ψ is smooth.

To obtain the optimal α̂ we numerically optimise A(α, â(α)) over argα ∈ [−π
3 ,

π
3 ] (larger

rotations do not occur in practice). We chose procedure optimise implemented in R (R De-
velopment Core Team 2006), a combination of golden section search and successive parabolic
interpolation based on algorithm localmin by Brent (1973). We call the resulting algorithm
for globally determining the symmetry axis energy as it is based on maximising the “energy”
functional A.
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Symmetry axes as determined by all three algorithms small, large and energy are shown
in Figure 3.4 for three sample fingerprints. Note that the symmetry axis of the arch could
easily be extracted as its orientation field showed a clear symmetry; this task was more difficult
for loop and whorl where the axes differ considerably. The best axes arguably have been found
by algorithm energy as they are well centred and seem to best reflect the behaviour of the
outer field, especially for the whorl. Note that this algorithm has another advantage over
algorithms small and large based on the local behaviour of the field: it does not require the
symmetry axis to be observed as long as D ∩ D̄α,a is not empty. This property will prove
vital for prediction of areas covering the symmetry axis, see Section 4.2.

3.4. Fitting the newly proposed models

Once the symmetry axis has been found using any of the methods described in Sections 3.2
and 3.3, fitting models σbasic,k and σcirc proposed in Section 2.3 is straightforward. Recall
that they depend on 5 real parameters, 3 of which describe the Euclidean motion and 2
the rescaling along the axes. The symmetry axis then leaves only one parameter free for
the Euclidean motion, namely the position of the horizontal axis. We are therefore left
with determining this as well as both rescaling parameters. Empirically it has been found
that optimal values for these three parameters can efficiently be obtained using standard
numerical optimisation techniques for the minimisation of the functional measuring the fit in
Equation (3.4). We decided to use method Nelder-Mead of procedure optim implemented
in R (R Development Core Team 2006) which is based on the simplex-method described by
Nelder and Mead (1965), cf. also (Jarre and Stoer 2004, Section 17.1). Although we cannot
guarantee a global minimum, our results obtained for a large amount of fingerprints show that
the algorithm in the vast majority of cases converges to a sensible minimum, independent from
the (reasonably chosen) starting values, see Chapter 4.

Results obtained when using the symmetry axes found by algorithm energy from Sec-
tion 3.3 are shown for three sample fingerprints in Figure 3.5 which should be compared to
the orientation fields obtained using models σSM and σZG, see Figure 3.6. Note how well the
newly proposed models fit the outer field, especially of the arch. Furthermore, all these mod-
els extrapolate reasonably well beyond the observed fingerprint domain. Table 3.1 reports
the corresponding average deviations, cf. Equation (3.4). As expected, the fit improves if
singular points are present since the field in the centre can then quite accurately be modelled
by Qc1,c2,d1,d2 , while the background field constituting an arch is more difficult to model.

3.5. Fitting existing models

To find the optimal value of α, the orientation at ∞ in the model of Sherlock and Monro
(1993), cf. Equation (2.10), we first observe that for any translation invariant distance d

(3.12) Jd(α) =
∫

D
d
(
ψ(z), α

)
dz

where ψ is the orientation field where the singular points have been lifted, cf. Equation (3.7).
For d = dLS the optimal α is thus the mean angle known from directional statistics, see e.g.
(Mardia and Jupp 2000), which can efficiently be computed by projecting the ordinary mean
of ψ over D (as a value in C) and projecting it back onto S1.

The models by Vizcaya and Gerhardt (1996) and Gu et al. (2004) both require numerical
optimisation to be fit as the respective authors note. Since these models’ aims and derivations
differ strongly from our own considerations, we have not taken up the task to provide for
efficient implementations of these models ourselves but excluded them from our numerical
studies since no other implementations of these models were available to us, cf. Section 2.4.
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Figure 3.5. Orientation fields (orange) of models σbasic,2 (top row), σbasic,4 (second row),
σbasic,6 (third row), and σcirc (bottom row), fit to an orientation field (blue) of an arch (left
column), loop (middle column) and whorl (right column) where the symmetry axes (black)
have been obtained using algorithm energy.

fingerprint σbasic,2 σbasic,4 σbasic,6 σcirc σSM σZG

arch 11.9 11.2 10.9 11.9 32.1 19.1
loop 7.9 7.3 7.3 8.9 21.3 11.9
whorl 8.6 8.4 8.3 7.8 15.0 9.0

Table 3.1. Average deviations for the orientation fields shown in Figures 3.5 and 3.6.
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Figure 3.6. Orientation fields (orange) of models σSM (top row), and σZG (bottom row), fit
to an orientation field (blue) of an arch (left column), loop (middle column) and whorl (right

column).

Zhou and Gu (2004) suggest to fit their model σZG by ordinary least squares, i.e. instead
of minimising Jd they suggest to minimise

(3.13)
∫

D
|f(z)− ψ(z)|2dz

over all complex polynomials f of degree 6, cf. Equation (2.33); here, ψ is again the orientation
field after lifting the singular points. Although being computationally efficient, this will in
general not be equivalent to minimising JdLS

(f). Comparing to the optimisation for model
σSM above, where α can be viewed as a complex polynomial of degree 0, here the projection
step is missing. Thus f(z) will be forced to be close to ψ(z) not only in its argument but also
in its modulus. Hence f(z) will be close to 1 throughout D, strongly restricting the choices
for f in the class of complex polynomials f of degree 6. We have nonetheless implemented
model σZG this way but note that there is no longer any reason to assume that it is close
to or even better than any of the models we proposed in Section 2.3, cf. the discussion in
Section 2.4.

Results of models σSM and σZG fitted to three sample fingerprints are shown in Figure 3.6.
The overly simple nature of model σSM, especially for arches is well visible as is the introduc-
tion of spurious poles of model σZG close to the observed fingerprint region. Note that σZG is
not able to capture the flow of the arches or the local distortions of the loop, possibly due to
the artificial rigidity caused by the optimisation based on ordinary least squares. The corre-
sponding average deviations can be found in Table 3.1, documenting again that an increase
in the number of singular points improves the accuracy of the models. Note however the poor
performance of both models for the arch.



Chapter 4

Applications

Although the models proposed in Section 2.3 seem very promising when applied to some
sample fingerprints as in Figure 3.5, their quality and usability can only be fairly judged based
on analyses using a large number of automatically processed fingerprints. To measure the
precision of our newly proposed models and to explore their potential for future applications
we thus conducted a comparative field study where we used the NIST Special Database 4
(Watson and Wilson 1992) comprising a total number of 4000 images, 2 imprints each of 2000
distinct fingers equally distributed between the fingerprint classes arch, tented arch, left loop,
right loop, and whorl (i.e. 400 fingers each). The original images were 512 pixels wide and
480 pixels high. We chose this database since: it is publicly available, thus allowing for future
comparisons with our present results; its size allows to draw reasonable conclusions from our
analyses; all fingerprint classes are well represented; and its images show a realistic variation
of image quality. We initially also tried to use database 2a from (Maio et al. 2002) but found
it inappropriate since its fingerprints rarely showed all singular points, cf. the discussion in
Section 4.1; qualitatively the results obtained using that database were very similar. The
computations were finally carried out on four personal computers of different configurations,
in total lasting for about four days on each machine.

The images were initially segmented, and their background marked, by our colleague
Krzysztof Mieloch using the methods described in Section 3.1. From these grey-scale images,
orientation fields were extracted in the foreground and their singular points detected using
the methods of Bazen and Gerez (2002), see Section 3.1. These orientation fields and singular
points then served as the input for subsequent modelling and analyses.

The following questions guided our study:

(1) How accurate are our newly proposed models, in comparison to models from the
literature?

(2) How robustly can these models be fitted?

(3) How well can they be used for inter- or extrapolation?

(4) How much information about the individual finger do the models’ parameters con-
tain?

The first two questions will be considered in Section 4.1, the third one in Section 4.2, whereas
Sections 4.3 and 4.4 try to shed some light on the last question, each from a different per-
spective and with a different application in mind.

28
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A word of caution before we proceed: the NIST Special Database 4 (Watson and Wilson
1992) has not been compiled to accurately resemble the distribution of fingerprints in the
population, in particular it is unclear to which extent its fingerprints have been randomly
sampled from a population, and whether different fingerprints belong to the same person.
As mentioned above, all five fingerprint classes occur with equal frequencies in the database
though their prevalences in the population vary strongly, arches e.g. are quite rare. Accord-
ingly, we will report most results broken down into the different fingerprint classes. One then
could combine the results from those classes with the according weights to obtain an overall
measure of performance for the whole population, cf. (Maltoni et al. 2003, p. 191). Since the
results can nonetheless not simply be generalised to a larger population due to the unknown
sampling mechanism, and even more so since this particular database uses only one specific
technique for acquiring fingerprints (namely digital scans of rolled ink-prints), we have re-
frained from computing such population level results. We will however use this database as
a benchmark set of fingerprints, probably the best one publicly available, and interpret the
results accordingly. We believe this is justified since we only look at global features at a
coarse level – namely smoothed orientation fields and their singular points – whose essential
variations within individual fingerprint classes might reasonably well be represented by such
a large dataset. Results for the entire database will also be reported to allow for comparisons
with other studies – but we caution once more against generalising such figures to infer about
the population.

Before we state any results, we note that to the best of our knowledge this is the first
comprehensive and openly verifiable study of models for orientation fields of fingerprints in
the literature: Penrose (1969) gives no numerical results at all; Smith (1979) and Mardia et al.
(1992) only show solutions for their differential equations for selected exemplary parameters;
Kücken and Newell (2004) similarly show only results of some few simulations; Sherlock and
Monro (1993) again give no numerical results; Vizcaya and Gerhardt (1996) use a total of 380
imprints stemming from 38 distinct loops and tented arches only which are not available for
comparison; Gu et al. (2004) took a sample of 40 imprints from the NIST Special Database
14, and 60 imprints from an undisclosed source, without mentioning the distribution of images
over fingerprint classes or the number of distinct fingers in either sample; and finally Zhou
and Gu (2004) report results using 100 fingerprints of differing undisclosed sources including
loops, whorls, twin loops and arches in unspecified frequencies stemming from an unstated
number of distinct fingers. We thus deem it unreasonable to compare at face-value any of our
results to any figures reported in the literature.

4.1. Accuracy

Arguably the first question, that needs to be answered when introducing a new model for
some data, asks for the model’s accuracy. To this end we fitted models σSM, σZG, σbasic,2,
σbasic,4, σbasic,6, and σcirc to the extracted orientation fields, while using the obtained locations
of their singular points. These models have been fitted as described in Chapter 3; algorithms
small, large and energy were used to obtain a symmetry axis for the latter models, resulting
in three different fits for each of these models.

Since all mentioned models require that the locations of all singular points be specified,
we first checked for every orientation field whether the orders of its singular points summed to
0, cf. Remark 2.14, otherwise discarding that fingerprint. We also discarded the fingerprint
if the foreground of the image constituted less than one third of the whole image’s area. This
left us with a total of 3357 images. Out of these, algorithm small failed to find a symmetry
axis in 3, algorithm large in 6 cases when the orientation field was first-order symmetric at
too few points; algorithm energy never failed. To ensure that all models were compared on
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σbasic,2+opt σbasic,4+opt σbasic,6+opt σcirc+opt σSM σZG

all classes 9.7 8.9 8.8 8.9 22.3 13.6
arches 10.2 9.7 9.6 10.2 26.3 16.4
loops 9.8 8.9 8.8 8.8 22.2 13.4
whorls 7.0 6.8 7.0 6.9 14.0 8.5

Table 4.1. Average deviation for models σbasic,2, σbasic,4, σbasic,6, σcirc, σSM, and σZG re-
ported as median over all fingerprints, as well as over arches, loops and whorls, respectively;
models σbasic,k and σcirc have been fitted using algorithm opt.

the same set of fingerprints in this section, we report results only for the 3349 images for
which all algorithms succeeded. Out of these, 757 were arches, 2146 loops (including tented
arches), and 446 were whorls, according to the database’s documentation. Unsurprisingly,
the more singular points a fingerprint had the more difficult it was to find all of them, leaving
us with just 55% of the whorls, still enough to draw reasonable conclusions though.

Recall that we aimed at finding the parameters of models σbasic,k and σcirc as global
minimisers of the average deviation, cf. Equation (3.4), devising three algorithms for fixing
the vertical axis as (sub-optimal) substitutes out of numerical necessities. If we were only
interested in these models’ capabilities we thus might want for each fingerprint to look at the
optimal parameter sets obtained with any of these three algorithms, i.e. out of the three fits
obtained for such a model we would choose the one with the lowest average deviation; the
resulting algorithm will be called opt.

Figure 4.1 shows cumulative distribution functions for the resulting average deviations
for all fingerprints and for the respective classes (arches, loops and whorls); corresponding
medians1 are reported in Table 4.1. Note that an increase in the number of singular points
results in improved fits, especially so for models σSM and σZG, as conjectured in Section 3.5.
Clearly, the new models proposed in Section 2.3 outperform the other two models in terms
of accuracy of the fit: the median average deviation is halved when compared to σSM and it
is even an improvement of roughly 1.5 degrees for whorls over σZG, up to over 6 degrees for
arches; this is a remarkable achievement taking the much smaller number of parameters – 5
as opposed to 13 – into account.

The comparisons so far used algorithm opt which chooses the best fit from the three
algorithms small, large, and energy. A natural question to ask is which of these algorithms
actually gives the best fits and whether there is a single best algorithm. To this end we
computed for each individual fingerprint the difference in fit between each pair of algorithms.
The results differ only very slightly between different models and different fingerprint classes
so we only present them for model σcirc and for all fingerprints, see Table 4.2. Apparently,
algorithm energy improves upon the other algorithms in about two-thirds of the fingerprints,
although the median improvement is small. Possibly more importantly, it is also the most
robust of the algorithms considered, leading to misfits with large average deviations only in
very few cases, see Table 4.3. Another useful way to compare algorithms is by their run-
time: algorithm small took an average of 0.045 seconds to find a symmetry axis, algorithm
large needed 5.7s and algorithm energy 6.1s. Note that none of these algorithms has been
optimised for speed though. Algorithm small is much quicker as it does not require the
computation of any further convolutions, algorithm energy is however only slightly slower
than large. Taking all this into account and observing its wider applicability, cf. Section 3.3,
algorithm energy appears to be our best choice, and we will mainly consider this algorithm

1Note that we report medians instead of means since the distributions of the average deviation over the fingerprints
are skewed as is visible in Figure 4.1.
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difference q0.05 q0.25 median q0.75 q0.95 prop. > 0

small − large -1.5 -0.2 0.1 0.5 4.2 57.8%
small − energy -1.4 -0.2 0.5 1.7 7.1 68.2%
large − energy -1.4 -0.2 0.3 1.3 5.6 65.3%

Table 4.2. Distribution (5%, 25%, 75%, 95%-quantiles, median and proportion above 0)
over all fingerprints of pairwise differences in average deviation between algorithms small,
large and energy, for model σcirc.

tail of av. dev. σbasic,6+small σbasic,6+large σbasic,6+energy σcirc+energy σSM σZG

prop. > 15 deg. 13.7% 9.6% 2.1% 3.2% 89.6% 38.3%
prop. > 20 deg. 5.8% 3.8% 0.5% 0.5% 65.6% 7.6%
prop. > 25 deg. 2.9% 2.1% 0.2% 0.3% 34.9% 0.3%

Table 4.3. Proportions out of all fingerprints which resulted in large (> 15, 20, or 25
degrees) average deviations for different models and algorithms.

for the remainder of our study; cf. also to the discussion on the stability of the extracted axis
in Section 4.4.

Now that we have singled out an algorithm to find the symmetry axis, subsequently
allowing to fit models σbasic,k and σcirc, we repeat our analyses of comparing the fits obtained
by the various models for the different fingerprint classes from the beginning of this section.
The results when using algorithm energy instead of algorithm opt can be found in Figure 4.2
and Table 4.4 which should be compared to Figure 4.1 and Table 4.1. Although we see
the expected slight decline in accuracy, the qualitative picture has not changed: the newly
proposed models still outperform the others by a clear margin with σZG only for whorls getting
close. Note that they are even “uniformly” better than the others, in the sense that their
cumulative distribution functions are uniformly larger. This is not to say that they are better
for each individual fingerprint but that their best as well as their worst fits are more accurate
than the ones of the others.

It also appears that although model σbasic,6 is best for modelling arches, model σcirc is
better for modelling loops and whorls, see Table 4.1. We can examine this more thoroughly by
looking at the differences between the average deviations of these two models for individual
fingerprints of the different fingerprint classes. Details of the corresponding distributions
are given in Table 4.5, supporting the claim for arches and possibly whorls but showing no
superiority of either model over the other for loops; both models also seem to be equally
robust, cf. also Table 4.3. Since the only clear difference is for arches where σbasic,6 gives the
best results, we will subsequently focus on this model.

We conclude this section by looking at some of the cases where model σbasic,6 based
on algorithm energy failed: the average deviation of just 7 fingerprints was larger than
25 degrees, cf. Table 4.3. Out of these, 6 fingerprints had their singular points wrongly
detected. Figure 4.3 exemplarily shows two such cases: the left figure has a core missed in
the low-contrast background in the centre of the image, and a delta is outside the observed
region further to the lower-right. Since both a core and a delta were missed their orders still
summed to zero and the image was not excluded; note how model σbasic,6 tries to “recreate”
the curvature around the missing core by placing its artificial poles close to the lower-left
corner, producing steep hats at the upper right. The middle figure shows the more common
case of one delta being missed (visible at the right border) and instead a spurious one being
introduced due to noise (in the upper-left corner). In both cases, the lifted orientation fields
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Figure 4.1. Cumulative distribution functions (empirical) of average deviation (in degrees)
for models σSM, σZG, σbasic,2, σbasic,4, σbasic,6, and σcirc over all fingerprint classes, as well
as restricted to arches, loops and whorls, respectively; models σbasic,k and σcirc have been
fitted using algorithm opt.

σbasic,2+energy σbasic,4+energy σbasic,6+energy σcirc+energy σSM σZG

all classes 10.3 9.7 9.5 9.2 22.3 13.6
arches 10.4 10.0 9.8 10.4 26.3 16.4
loops 10.6 9.8 9.7 9.1 22.2 13.4
whorls 8.0 7.9 7.9 7.4 14.0 8.5

Table 4.4. Average deviation for models σbasic,2, σbasic,4, σbasic,6, σcirc, σSM, and σZG re-
ported as median over all fingerprints, as well as over arches, loops and whorls, respectively;
models σbasic,k and σcirc have been fitted using algorithm energy.
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Figure 4.2. Cumulative distribution functions (empirical) of average deviation (in degrees)
for models σSM, σZG, σbasic,2, σbasic,4, σbasic,6, and σcirc over all fingerprint classes, as well
as restricted to arches, loops and whorls, respectively; models σbasic,k and σcirc have been
fitted using algorithm energy.

fingerprint class q0.05 q0.25 median q0.75 q0.95 prop. > 0

all classes -1.8 -0.9 -0.2 0.7 3.4 42.2%
arches -1.7 -1.1 -0.6 0.0 0.6 24.3%
loops -1.9 -0.9 -0.2 1.1 3.7 44.7%
whorls -1.9 -0.3 0.2 1.1 3.5 60.8%

Table 4.5. Distribution (5%, 25%, 75%, 95%-quantiles, median and proportion above 0)
over all fingerprints and for different fingerprint classes of pairwise differences in average de-
viation between models σbasic,6 and σcirc, the average deviations of the latter being subtracted
from those of the former.
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Figure 4.3. Orientation fields of model σbasic,6 (orange) fitted using the vertical axis found
by algorithm energy (black) to some originally extracted orientation fields (blue) and singular
points (MMM marks a delta, ♦♦♦ a core); left and middle figure show wrongly detected singular
points, the right figure shows a misplaced axis; see page 31 for details.

do not show the required symmetry and the axes are misplaced. Note that none of the models
considered could accurately model these fields. The right figure shows the only fingerprint
with such an average deviation larger than 25 degrees where the problem was not caused
by missed singular points: algorithm energy wrongly placed the symmetry axis too far to
the left, essentially taking the curvature there to resemble the arch; note that the actual
symmetry axis of that arch is supported only by a small region since it is so close to the
border. Subsequently, model σbasic,6 averages between the opposing curvatures to the right of
the chosen axis. Potentially, using a more sophisticated functional in Equation (3.11) might
help to avoid such cases.

4.2. Prediction

One of the areas where orientation fields are applied in fingerprint analyses is for enhancing
low-quality regions, cf. Section 1.2. However, it is also difficult to reliably extract an orien-
tation field in those regions. Parametric models for orientation fields can be used to solve
this problem by extrapolating the field fitted to the orientation field in high-quality regions
into regions of lower quality. This might also be useful for matching as it allows to compare
orientation fields even in low-quality regions. We have simulated this scenario by setting the
contrast in some arbitrary region of the fingerprint to zero.

Starting from the 3357 images of Section 4.1 showing equally many cores and deltas,
we randomly removed a 101 × 101 square from each image under the constraint that at
least 70% of the square’s area was in the foreground and no singular point was removed.
We then filled the squares by mean grey, marked them as background and recomputed the
corresponding orientation fields and their singular points, proceeding if there were as many
cores and deltas as before. This left us with 3035 images. We then fitted models σSM,
σZG, σbasic,2, σbasic,4, σbasic,6, and σcirc to those orientation fields, using algorithm energy
for the latter models. Finally we extrapolated these fits into the squares and compared
them to the originally extracted orientation fields by computing their average deviation there
(over the corresponding squares). Let us note that out of those images considered, 745 were
arches, 1931 loops (including tented arches), and 359 were whorls, according to the database’s
documentation.

Figure 4.4 exemplarily shows three orientation fields of fingerprints where the square that
has been cut out is marked; there, only the extrapolated orientation field (obtained using
model σbasic,6) is available. Table 4.6 and Figure 4.5 summarise the average deviations for
models σSM, σZG, σbasic,2, σbasic,4, σbasic,6, and σcirc for all fingerprints and broken down into
the different fingerprint classes; these results should be compared to Table 4.4 and Figure 4.2.
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Figure 4.4. Orientation fields of model σbasic,6 (orange) fitted to the orientation fields (blue)
extracted from fingerprints where a 101× 101 pixel square (black) has been cut out.

Note that prediction gets more difficult when there are more singular points – which seems
counter-intuitive as the opposite behaviour was observed for the accuracy of the fit. A possible
explanation lies in the increased difficulty to detect all singular points correctly, especially
since they are allowed to be arbitrarily close to the removed region. An example of this effect
can be seen in Figure 4.4 where the square was cut out so close to the cores of the whorl that
they have been misplaced afterwards. Still, the newly proposed models achieve much better
predictions than models σSM and σZG.

4.3. Variation of the parameters

There are several reasons why one might be interested in measuring how much parameters
vary between different imprints of the same finger:

Stability: it allows us to measure how stable the extracted parameters remain under
Euclidean motions, partial observations, etc., cf. Section 1.1.

Information content: the amount of information the parameters contain about in-
dividual fingers can be quantified as the variation of the parameters for different
imprints of a single finger relative to the variation of the parameters in the whole
population.

Indexing: the less parameters vary between different imprints of the same finger when
compared to their variation in the population the greater the savings can be if they
are used as database indices.

Recall that the only parameters that can be expected to be invariant under Euclidean motions
are the scaling parameters sx and sy of models σbasic,k and σcirc whilst none of the parameters
of models σSM and σZG has this property. For simplicity, we will report results only for model
σbasic,6, cf. the discussion in Section 4.1.

One could argue from their definition that sx measures the width of a finger whereas sy

measures its height. We can thus derive measures of the size as well as of the thickness (or
rather “thinness”) of the finger, namely

(4.1) sp = sxsy and sr = sy/sx,

respectively. Note that sr also measures the non-conformity of the model’s quadratic differ-
ential, cf. Section 2.3.

Since all parameters in question are scaling parameters it is natural to take their loga-
rithms prior to analysis, we thus consider

(4.2) lx = log10 sx ly = log10 sy lp = log10 sp and lr = log10 sr.
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Figure 4.5. Cumulative distribution functions (empirical) of average deviation (in degrees)
of the extrapolated orientation fields of models σSM, σZG, σbasic,2, σbasic,4, σbasic,6, and σcirc

from the originally extracted orientation fields on the predicted squares, over all fingerprint
classes, as well as restricted to arches, loops and whorls, respectively; models σbasic,k and
σcirc have been fitted using algorithm energy.

σbasic,2 σbasic,4 σbasic,6 σcirc σSM σZG

all classes 13.5 12.9 12.6 12.5 28.3 23.3
arches 11.9 11.6 11.3 11.9 28.2 22.8
loops 14.1 13.2 12.9 12.4 28.9 24.0
whorls 18.4 18.1 18.7 16.3 25.2 20.4

Table 4.6. Average deviations of the extrapolated orientation fields of models σbasic,2,
σbasic,4, σbasic,6, σcirc, σSM, and σZG from the originally extracted orientation fields on the
predicted squares, reported as median over all fingerprints, as well as over arches, loops and
whorls, respectively; models σbasic,k and σcirc have been fitted using algorithm energy.
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To obtain a justifiable quantification of the parameters’ variation, we need a probabilistic
model for the observed parameter values. It appears most reasonable to employ a so-called
random-effects model in our situation, i.e. we assume that there is a “mean” parameter value
ζi for finger i around which the observed parameter value Zi,j of imprint j of this finger will
be distributed. To be more precise, assume we are interested in some parameter which we
observed (e.g. lx), denoting the observed values by Zi,j where i denotes the number of the
finger and j the number of its imprint for which we observed this particular value; we then
assume that there are i.i.d. random variables ζi with mean µ and variance σ2

b < ∞ and,
independent of these, i.i.d. random variables εi,j with mean 0 and variance σ2

w <∞ such that

(4.3) Zi,j = ζi + εi,j .

σb then measures the parameter’s variation between different fingers, σw its variation within
the same finger, i.e. between its different imprints. The ratio σb/σw between these variations
then provides us with a quantification of the parameter’s variation between different fingers
in terms of its variation within a single finger. If this quantity is small (close to 0) the
parameter’s value (on average) contains very little information about the individual finger, if
it is large (larger than 1), however, then the parameter is quite informative.

Since the database we used only contains two imprints per finger, we cannot easily check
the assumptions made, especially the ones about the identical distribution of the random
variables εi,j and their independence from random variables ζi. We will thus use them only
as “working assumptions”, taking care when interpreting the corresponding results, cf. also
the discussion on page 29. As we cannot directly observe σb/σw, we need to estimate it. To
this end we consider for each finger i

(4.4) Bi =
Zi,1 + Zi,2

2
which might be viewed as a predictor for ζi, as well as

(4.5) Wi =
Zi,1 − Zi,2

2
whose distribution is independent of ζi. More precisely we have the following simple

Lemma 4.1. Under the above assumptions,

(4.6) VarWi =
σ2

w

2
and VarBi = σ2

b +
σ2

w

2
identically for all i.

We thus could estimate σb/σw by

(4.7)
√

varB − varW
/√

2 varW

where varB is the empirical variance of the Bi, varW accordingly of the Wi. Since the
parameters we are considering cannot be assumed to be normally distributed but might have
heavy tails, we instead use the more robust

(4.8) ρ =
√

IQR(B)2 − IQR(W )2
/√

2 IQR(W )

as our ratio of variation where IQR(B) denotes the interquartile range of the Bi and IQR(W )
accordingly of the Wi.

This quantity can easily be computed for the parameters we are interested in, i.e. for
lx, ly, lp and lr, giving us four ratios of variation, ρx, ρy, ρp and ρr, respectively. Table 4.7
summarises them for the parameters obtained using model σbasic,6 with algorithm energy
for all fingerprints and when computed for each class of fingerprints individually. To obtain
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fingerprint class ρx ρy ρr ρp

all classes 1.77 5.83 9.40 4.00
arches 0.90 1.23 1.13 1.11
loops 1.72 2.73 4.06 2.32

left loops 1.68 1.44 1.95 1.37
right loops 1.46 1.50 1.74 1.44
tented arches 1.36 4.00 4.19 3.06

whorls 1.89 2.37 2.36 2.21

Table 4.7. Ratios of variation for different scaling parameters of model σbasic,6 fitted using
algorithm energy.

this table we used 1525 pairs of images for which equally many cores and deltas were found;
according to the database’s documentation these were 360 arches, 984 loops (comprising 315
left loops, 320 right loops, and 349 tented arches) as well as 181 whorls. The figures indicate
that there clearly is information contained in the parameters, most notably in lr – this might
have been expected: the outer orientation field created by model σbasic,6 changes relatively
little when sx and sy are modified simultaneously as compared to the change induced by
modifying their ratio. Note that most of the variation between different fingers seems to be
due to those fingers belonging to different classes (which is why we have additionally broken
the loops down into their classical categories) though still considerable information seems
to be present in the parameters of those fingerprints other than arches, especially of tented
arches. Observe that the high ratios of variation for all fingerprints also allow us to infer
that the parameters sx and sy vary relatively little between different imprints of the same
finger when compared to their variation between different fingers, in other words they remain
relatively stable when another imprint of the same finger is taken.

To explore the potential usefulness of these parameters for database indexing we conducted
the following experiment emulating a scenario in which a given finger is to be identified in the
database: for each finger i we took the parameter value Zi,1 of its first imprint representing the
fingerprint obtained whose match we are trying to find among the second imprints representing
the database. We accordingly sorted the second imprints of all fingers j by |Zj,2 −Zi,1|. The
rank of |Zi,2−Zi,1| in this sequence then tells us how many imprints in the database we would
need to look through until we found the match. Note that on average we would need to look
through half of the images if the sequence was purely random, the corresponding standard
deviation would amount to about 28.9%.

The results of this experiment for our parameters of interest are summarised in Table 4.8.
Again we see that most of the gain obtained when scanning through all images is due to
the parameter values differing considerably between the different classes. Note also the large
standard deviations, indicating that at times large proportions of the database had to be
scanned. Nonetheless quite remarkable speed-ups seem to be possible for loops and whorls
when sorting according to parameter lr.
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fingerprint class lx ly lr lp

all classes 0.31 (0.26) 0.28 (0.26) 0.25 (0.25) 0.29 (0.27)
arches 0.40 (0.28) 0.44 (0.28) 0.43 (0.28) 0.44 (0.28)
loops 0.31 (0.26) 0.32 (0.27) 0.26 (0.26) 0.33 (0.28)

left loops 0.33 (0.27) 0.34 (0.27) 0.28 (0.26) 0.36 (0.28)
right loops 0.33 (0.27) 0.37 (0.29) 0.31 (0.27) 0.37 (0.29)
tented arches 0.37 (0.28) 0.35 (0.28) 0.34 (0.28) 0.35 (0.28)

whorls 0.32 (0.27) 0.28 (0.25) 0.28 (0.22) 0.30 (0.26)

Table 4.8. Average proportion (and corresponding standard deviation) of second imprints
to be scanned until the one corresponding to the first imprint is found, when sorted by
similarity of the specified parameter of model σbasic,6; as appropriate the search has been
restricted to the named fingerprint class. See Section 4.3 for details.

4.4. Intrinsic coordinates

As already mentioned in Section 1.2, a reliable way of defining intrinsic coordinates is very
useful, e.g. for matching minutiae. We are now going to analyse how well the Euclidean
motion determined while fitting model σbasic,6 can be used for this purpose. We start by
examining how stable the orientation of the vertical axis is. In order to measure this, we need
some reference points or axis. We thus restrict ourselves to loops and whorls and use the axis
connecting a loop’s core and delta as the reference axis, for whorls we use the barycentres of
its cores and of its deltas, respectively. We then measure the angle between this reference axis
and the axis obtained from any of the algorithms small, large and energy, and compare
the angles obtained from both imprints of the same finger. For comparison we also interpret
parameter α of model σSM as the orientation of a horizontal axis and compute its angle
with the reference axis analogously. For 845 pairs of images one or two cores and equally
many deltas were found in both images, while all algorithms we are considering succeeded;
these were classified as 688 loops (comprising 273 left loops, 280 right loops, and 135 tented
arches) as well as 157 whorls, according to the database’s documentation. The medians of the
differences in orientation (in degrees) obtained this way are reported in Table 4.9. Clearly,
algorithm energy provides for a much more reliable symmetry axis than the others.

The next step was to compare x-coordinates of the barycentre of all singular points, which
we used as a reference point, in each of the two imprints. Note that the computation of an
x-coordinate only requires to fix a vertical axis whence this comparison does not depend on
the particular model but only on the algorithm chosen; we can however no longer compare
with model σSM as it does not specify an axis. Table 4.9 contains also the results of this step
(reported as median differences in pixels), showing once again the superiority of algorithm
energy.

Once model σbasic,6 is fitted, it also determines a horizontal axis and thus allows to compute
the y-coordinates of the reference point in both imprints. Moreover, one can then compute
the Euclidean distance of the two reference points in the two imprints when mapped in a
single coordinate system; see Table 4.9 for the corresponding figures. To give an idea of how
much coordinates necessarily vary due to distortions, we also computed the Euclidean distance
between core and delta (or the corresponding barycentres for whorls, as above) in each imprint
and also reported their median difference (in pixels). Undoubtedly, while the difference in
the x-coordinates was not too far from this “optimum”, the extraction of y-coordinates is not
quite reliable – let alone the definition of both simultaneously. To get a visual impression
of the size of the pixels go back to Figure 4.4 where squares with a side-length of 101 pixels
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σSM σbasic,6+small σbasic,6+large σbasic,6+energy core-delta

orientations (in degrees) 5.8 5.8 5.8 4.7
x-coordinates (in pixels) 23.4 21.8 15.0
y-coordinates (in pixels) 50.9 46.3 31.9
distances (in pixels) 69.7 60.4 41.1 8.3

Table 4.9. Median difference between orientations of axes, x- and y-coordinates, as well
as median Euclidean distances of reference points extracted from loops and whorls using
the models and algorithms specified; column “core-delta” gives the median difference in the
distance between core and delta. See Section 4.4 for details.

fingerprint class σSM small large energy core-delta

loops and whorls 0.19 (0.25) 0.16 (0.24) 0.16 (0.24) 0.14 (0.22) 0.12 (0.14)
loops 0.19 (0.24) 0.15 (0.22) 0.16 (0.23) 0.14 (0.20) 0.12 (0.13)

left loops 0.30 (0.25) 0.26 (0.22) 0.25 (0.22) 0.25 (0.22) 0.12 (0.12)
right loops 0.28 (0.23) 0.22 (0.21) 0.22 (0.20) 0.22 (0.21) 0.12 (0.14)
tented arches 0.39 (0.30) 0.34 (0.30) 0.36 (0.32) 0.30 (0.29) 0.19 (0.21)

whorls 0.22 (0.28) 0.24 (0.28) 0.21 (0.26) 0.22 (0.27) 0.15 (0.16)

Table 4.10. Average proportion (and corresponding standard deviation) of second imprints
to be scanned until the one corresponding to the first imprint is found, when sorted by
similarity of the angle formed by a reference axis and the specified model’s or algorithm’s
axis, or by the distance between core and delta, respectively; as appropriate the search has
been restricted to the named fingerprint class. See Section 4.4 for details.

are shown. Still, considering the difficulty of the task, one might call the results obtained by
σbasic,6 based on algorithm energy “acceptable”.

Another potential use for these axes lies in database indexing: when searching for a
match we could sort by the angle formed between the vertical axis and the reference axis, as
described above. Naturally, this is only possible for loops and whorls but they constitute the
vast majority of fingerprints. Similarly, the distance between core and delta could be used
for sorting. With these “parameters” we replicated the experiment on indexing described
in Section 4.3, the results of which are to be found in Table 4.10. Evidently, although the
angle obtained by algorithm energy allows for good speed-ups, even for individual fingerprint
classes, the much simpler distance of core and delta gives by far the better index, especially
when taking its much lower standard deviations into account. From these figures we can also
infer that the (intrinsic) locations of cores and deltas vary relatively much between the fingers
in this database, which seems to constitute a rather interesting fact in itself.



Chapter 5

Discussion

Now that we have modelled orientation fields of fingerprints, proposed algorithms to fit these
models, and analysed the performance of these models from various perspectives, we ought
to ask ourselves the question Tukey (1977) would have asked: “How far have we come?” Let
us therefore re-examine the goals we had set ourselves in Section 1.2 for the applications we
had in mind.

In Chapter 2 we presented a mathematical framework, namely quadratic differentials, in
which we not only were able to reinterpret existing models and Penrose’s formula (Penrose
1969) but which allowed us to model orientation fields of fingerprints using a minimal set of
5 (real) parameters, each having a clear geometric interpretation. Out of these, 3 parameters
directly modelled the Euclidean motion making the other 2 invariant under such transforma-
tions. Indeed, we saw in Section 4.3 that they vary relatively little between imprints of the
same finger compared to their spread in the whole population. This and the models’ reason-
able predictive power further show the parameters’ robustness against partial observations to
an extent which can justly be expected from such a rigid model. Another way to look at this
is via the stability of intrinsic coordinates as done in Section 4.4. There we saw that although
algorithm energy allows to quite reliably extract a vertical axis, the extraction of a horizontal
axis was less stable between different imprints of the same finger. Last but not least we found
in Section 4.1 that the models we propose were more accurate than the models of Sherlock
and Monro (1993) or Zhou and Gu (2004) although the latter uses much more parameters,
cf. Section 3.5. We could summarise by saying that to a good extent we achieved our aims
of Section 1.2.

We also explored the potential of our models for their use in different applications, see
Chapter 4. The high accuracy of the models within all fingerprint classes would certainly
allow to achieve high compression rates due to the low dimension of the models’ parameter
space; we however did not look further into that issue.

The models’ usefulness for extrapolation on the other hand has been examined in Sec-
tion 4.2 where their predictions were found to be quite accurate for arches and loops but
less so for whorls, possibly due to the study design. This is an issue one might want to look
at more deeply in further studies. Note however that Sherlock and Monro (1993) already
observed their model’s potential for prediction when they use it simply to lift the singular
points in order to obtain an orientation field than can be unwrapped: classical inter- or ex-
trapolation techniques, e.g. thin-plate splines, could then be applied to the unwrapped field.
It would be interesting to see whether this method, combined with one of our newly proposed
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models, allows for a more accurate extrapolation as the outer field would then be modelled
more accurately.

It appeared natural to employ the scaling parameters for indexing, see Section 4.3. In
our identification scenario there, sorting by the non-conformity parameter lr allowed for a
moderate speed-up when searching through the database but for arches the gain was quite
small. For the other fingerprint classes there are simpler and more efficient ways to index a
database as seen in Section 4.4, namely when sorting by the distance of core(s) and delta(s).

The results in Section 4.4 also showed that intrinsic coordinates defined with the help
of the parameters fixing the Euclidean motion will not be precise enough to directly match
e.g. minutiae points in two different imprints of the same finger. Nonetheless they might be
helpful in guiding this process by providing for a rough initial guess from which the correct
alignment will not differ too much. Especially the relatively quick-to-extract vertical axis
provided by algorithm energy might prove useful to this end.

Another potential application of this algorithm lies in the area of biometric crypto-systems
recently attracting much attention: here, one aims to develop crypto-systems in which the
key to unlock some remote secret is a biometric, in our case a fingerprint, cf. (Uludag et
al. 2004). Because of fears about the insecurity of the transmission channel used one does
not want to send the raw fingerprint to the provider of the secret. One idea is to use the
minutiae points as the key. This is problematic, however, for two reasons. Firstly, the set of
minutiae the secret provider stores and the set of the ones the secret seeker knows about will
in general only overlap – none will be a superset of the other. Secondly, due to translations
and rotations, the minutiae sets need to be aligned. The first problem can be overcome by
using a so-called fuzzy vault, cf. (Uludag et al. 2005). To overcome the other difficulty, Uludag
and Jain (2006) suggest to use helper data which the provider sends to the seeker so he can
align his minutiae, in particular the authors suggest to use points of highest curvature as
helper data. Extracting the vertical axis, as can reliably be done using algorithm energy,
however, might be enough to enable the seeker to align his minutiae with the provider’s –
rendering any helper data unnecessary. This is certainly an idea whose applicability should
be studied in detail.

Through the analyses carried out, and backed by further empirical results not presented
here, we have found that our proposed models perform quite similar in all aspects considered.
We then favoured model σbasic,6 although the results for model σcirc differ only negligibly,
while models σbasic,2 and σbasic,4 seemed slightly inferior. Regarding the methods to find
the symmetry axis, however, algorithm energy clearly is to be preferred over the others, cf.
Section 4.1.

All models and algorithms considered share a major drawback, however: they can only
be applied when all singular points have been detected. Unfortunately, more often than
not this does not happen to be the case. Although we could take the liberty to reject a
fingerprint if one of its core points is missing, arguing that it lies in the central and possibly
most informative area of the finger which hence should be observed well, in many applications
we cannot allow ourselves this luxury if a delta goes undetected: since deltas mark the very
borders of the central area, they are likely to be outside the observed fingerprint region,
typically so for sweep sensors which are widely used in mobile devices such as laptops or
in the forensic sciences where for obvious reasons latent fingerprints are rarely complete. It
might be possible to estimate the location of a missing delta, though, at least accurately
enough to allow for extrapolation or for the determination of a vertical axis. This seems to
be a promising direction of further research which we ought to pursue.
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Another open problem concerns the accuracy of our models for arches. We saw at several
stages of our analyses that they performed much less satisfyingly for arches than for loops
and whorls. Although this can partially be explained by the singular points determining the
central field and thus providing e.g. a higher accuracy there, cf. Section 4.1, this seems not
to be a sufficient reason for the models’ parameters to be much less informative for arches, cf.
Section 4.3. This appears even more estranging when considering that we actually aimed at
replicating these “arches” – which we managed better than the other models but apparently
not well enough. When looking back at the field created by an arch, see e.g. Figure 3.1, we
observe that the curvature is the highest right in the centre of the fingerprint, the ridges in
the centre look like they were forced together there. This behaviour cannot be deduced from
the outer field and thus cannot be modelled by a (locally conformal) quadratic differential on
Ĉ. A possible way to obtain better models for arches might be by looking at the bio-physical
process forming them, cf. (Kücken and Newell 2004).

In conclusion, the models we have proposed and analysed provide clear improvements
over prior models, as our extensive study – probably the first of its kind – has shown. Further
research might however be needed to allow for their wide-spread applicability.
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