Copyright Notice

Huckemann, S.; Hotz, T.; Munk, A.: Global Models for the Ori-
entation Field of Fingerprints: An Approach Based on Quadratic
Differentials, IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 30(9), pp. 1507-1519, Sept. 2008.

Digital Object Identifier: doi://10.1109/TPAMI.2007.70826

URL: http://ieeexplore.ieee.org/stamp/stamp. jsp?arnumber=
4407717&1snumber=4567786

(©2008 IEEE. Personal use of this material is permitted. However, permission
to reprint /republish this material for advertising or promotional purposes or
for creating new collective works for resale or redistribution to servers or lists,
or to reuse any copyrighted component of this work in other works must be
obtained from the IEEE.

This material is presented to ensure timely dissemination of scholarly and
technical work. Copyright and all rights therein are retained by authors or
by other copyright holders. All persons copying this information are expected
to adhere to the terms and constraints invoked by each authors copyright. In
most cases, these works may not be reposted without the explicit permission
of the copyright holder.


doi://10.1109/TPAMI.2007.70826
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4407717&isnumber=4567786
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4407717&isnumber=4567786

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 30, NO.9, SEPTEMBER 2008

1507

Global Models for the Orientation
Field of Fingerprints: An Approach
Based on Quadratic Differentials

Stephan Huckemann, Thomas Hotz, and Axel Munk

Abstract—Quadratic differentials naturally define analytic orientation fields on planar surfaces. We propose to model orientation fields
of fingerprints by specifying quadratic differentials. Models for all fingerprint classes such as arches, loops, and whorls are laid out.
These models are parameterized by a few geometrically interpretable parameters that are invariant under euclidean motions. We
demonstrate their ability in adapting to given observed orientation fields, and we compare them to existing models using the fingerprint
images of the NIST Special Database 4. We also illustrate that these models allow for extrapolation into unobserved regions. This
goes beyond the scope of earlier models for the orientation field as those are restricted to the observed planar fingerprint region.
Within the framework of quadratic differentials, we are able to analytically verify Penrose’s formula for the singularities on a palm [19].
Potential applications of these models are the use of their parameters as indexes of large fingerprint databases, as well as the

definition of intrinsic coordinates for single fingerprint images.

Index Terms—Fingerprint recognition, orientation field, fingerprint modeling, quadratic differentials, rational functions.

1 INTRODUCTION

INGERPRINTS are used in a variety of biometric applica-

tions today; see [1] for an overview. Different features of
a fingerprint are exploited for identification. Most com-
monly, local features like minutiae, ie., endings and
bifurcations of ridges, are used for matching; see [2], [3],
[4], [5], [6], [7], and [8] for recent advances in this direction.
Additionally, global features contain valuable information.
They are generally based on the orientation field of the
fingerprint, ie., the undirected field tangential to the
fingerprint ridges. Most prominently, the singular points
of the orientation fields have been used for classifying
fingerprints since the end of the 19th century [9]. Thus,
global features not only aid the matching of two finger-
prints but are also of great value for finding a fingerprint in
a database: They are used to create indexes that make it
possible to narrow the search down to fewer candidates, cf.
[3], [10], [11], [12], and [13]. The search for such indexes
leads to the problem of mathematically modeling those
orientation fields. The work of Smith [14], later refined by
Mardia et al. [15], was among the first taking on this task.
They proposed solutions of algebraic equations that
generate different types of fingerprint patterns: whorls,
loops, etc. A different class of models based on simple
rational complex functions was presented by Sherlock and
Monro [16], inspiring the present work. We add to their
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models global features present across all classes of
fingerprints, such as parallel ridges near the joint and
circular ridges at the fingertip. These can be modeled
naturally using quadratic differentials (QDs). In fact, the
models of Sherlock and Monro [16] can be viewed as the
simplest QDs respecting the observed singularities. Later,
extensions of these models have been proposed; see [17]
and [18]. Although adding substantial flexibility, these
models do not explicitly take more of the geometrical
structure of fingerprints into account. Led by the analytic
properties of QDs, we present models honoring the special
geometry of fingerprints while keeping the model as simple
as possible. Much of the existing work can be understood
naturally in the light of QDs. In particular, we show that the
famous Penrose formula, cf. [19]

number of deltas + 1

= number of fingers + number of loops

for the ridge structure on an entire palm or sole, translates
into a topological assertion about the order of a QD on the
respective surface.

Additionally, mathematical models can be used to
define intrinsic coordinate systems, i.e., coordinate systems
that are defined through the characteristics of the finger
and thus do not depend on the specific imprint: They are
invariant under euclidean motions. These coordinate
systems can in turn be used to intrinsically specify the
locations of local features, therefore removing the need to
account for euclidean motions when matching two finger-
prints. See [20] for a different approach for defining
intrinsic coordinates.

With these future applications in mind, we desire
several properties for a model of the orientation field to
be useful:
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1. Accuracy. The model should describe the true
orientation field as much as possible.

2. Invariance under euclidean motions. Only parameters
that are invariant under rotations and translations of
the fingerprint image can serve as database indexes.

3. Robustness against partial observation. As repeatedly
taken fingerprint images do not show the exact same
regions, model parameters should be fairly robust
against changes of the fingerprint region being
observed.

4. Low dimension. The number of parameters translates
linearly into the amount of memory needed to store
each orientation field in a database. Moreover,
increasing the number of parameters will most
likely decrease the reliability of estimates of single
parameters. For both reasons, we want to use as few
parameters as possible.

5. Interpretability. Parameters should have a geometri-
cal meaning, i.e., they should be identifiable and
serve to explain the features of the model.

6. Predictive power. It should be possible to predict bad
quality, noisy, or unobserved regions, i.e., to inter-
polate or even extrapolate.

Clearly, reducing the number of parameters will also
reduce the accuracy of the model so a good trade-off has
to be found. Thus, the main task is to find a simple model
that is well adapted to the problem at hand. This work
therefore aims at constructing such models, as well as
demonstrating their ability to adapt to a given orientation
field. Further research is needed to exploit their potential in
the applications described above.

As a minimal requirement, the model must encompass
the overall ridge flow observed in a fingerprint image. We
follow a longstanding biological belief that the dermato-
glyphic line structure can be interpreted as lines of tension
or, alternatively, as lines of greatest curvature on the
embryonic epidermis, cf. [19], [22], [23], and [24]. Hence, in
our model, we view the ridge line structure as a family of
curves of shortest length in an underlying metrical context.
Thus, a model is sought that most simply generates a non-
euclidean planar metrical structure whose curves of
minimal length correspond to the ridge lines as found in
fingerprint images on an observation window and beyond.
Obviously, it suffices to consider smooth structures with
isolated singularities. Even more simplicity is obtained
when considering analytical structures only. As we are
dealing with planar images, we can then profit by
embedding those into the complex plane and by subse-
quently employing complex calculus. Generating analytical
planar metrics can be taken as the defining property of
QDs. For a little more flexibility, we will allow some
nonconformal distortion as well. Hence, in our approach,
we model the orientation field of a fingerprint image as the
field of a “simple” QD under a suitable “not-too-compli-
cated” quasiconformal mapping.

In the following, we will derive such simple QDs, which
give rise to geometrically interpretable models for the
orientation fields of fingerprints, depending on five real
parameters only. Viewing existing models in the light of
QDs will help to clarify their mutual relationships. We will
then present numerical results for the NIST Special
Database 4 [21], demonstrating the accuracy of the
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proposed models and comparing them to some existing
models. This will allow us to argue that we have come up
with models for the orientation field using a minimal set of
parameters while still giving high fidelity.

The outline of this paper is as follows: in Section 2, we
introduce QDs and discuss their basic properties. We show
in Section 3 that they indeed represent a flexible tool to
model relevant features of orientation fields, such as
various types of whorls and loops. Quasiconformal map-
pings adding some flexibility are discussed in Section 4.
Existing models for orientation fields can be viewed in the
light of QDs as shown in Section 5. Numerical results
validating the described models are given in Section 6. We
end with a discussion of how well we were able to meet
goals 1-6 above.

2 QUADRATIC DIFFERENTIALS

QDs originated as a tool for extremal problems for mappings
and moduli of complex domains. The ideas were introduced
in the 1930s by Grotzsch [25] and by Teichmiiller [26]. Today,
QDs are an active field of research with various applications
mainly in physical sciences. Examples are the study of defects
and textures of crystals and 2 + 1 gravity [27] and the study of
dynamical systems [28]. Among many other contributions,
we refer to recent work [29] in the latter area. Reference [30]
may serve as a short introduction to the subject, and [31]
provides more detail.

On a surface (e.g., a finger), a QD induces a metric, the
geodesics of which are given as solutions to a first-order
differential equation and are thus easy to compute. As we
shall see, QDs can model a wide class of geodesic flows, in
particular, the typical flow structures that can be observed
in fingerprint images. In our context, the original surface
will be a subset of the complex plane on which we observe
a planar fingerprint image. The observed ridge flow
structure defines a metrical structure that in turn defines
a QD. By extending the structures to the entire complex
plane and, even more, by assuming that they will have a
removable singularity at complex infinity, the surface for
our model will be the extended complex plane
C=CuU {o0}, which can be thought of as a two-sphere,
called the Riemann sphere. Then, the functions defining the
QDs are meromorphic on C and, thus, rational.

In this section, along with the investigation of the typical
field structures in fingerprint images, we give an introduc-
tion to QDs specifically tailored to our purposes. In the
Appendix, we provide the fundamental Normal-Form
Theorem.

2.1 Global and Local Fields in a Fingerprint Image
Fingerprint images are usually classified into four main
categories: right loop (31.7 percent in the population [32])
and left loop (33.8 percent), whorl (27.9 percent), arch
(3.7 percent), and tented arch (2.9 percent), cf. Fig. 1.

In the corresponding orientation fields, one observes two
structures (see Fig. 2): The global field is visible in
fingerprints of all classes; it can be viewed as the field of
an arch. Near the joint of the third and second phalanx, the
global field is parallel to the line along the joint, whereas
this field is “hat”-like in the middle, turning into large arcs
when proceeding further up to the fingertip.
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Fig. 1. Fingerprint classes: Top row: arch, left loop, and right loop. Bottom row: tented arch, whorl, and twin-loop. Triangles mark deltas; diamonds
mark cores and whorls. Note that there is an invisible delta further to the bottom left of the last image, which actually shows a tented-arch-and-loop
rather than a twin-loop. These are based on images from the FVC 2000, Database 2a [34].

The local field is generated by the singular points of the
field: a delta occurs at the junction of three lines, a core is the
endpoint of a single line, and a whorl is the center of closed
lines, cf. Figs. 1 and 2. As arches feature no singular points,
they also bear no local field.

In the first step, we model the field near a singular point.
Consider for smooth a(t) >0, te R, and z, € C the
differential equation

2(t) 2(6) = at),  2(to) = 2.

This has, up to reparameterization, the solution z(t) =

3\3 . . .
(t + zg) '. For varying z, € C, solution curves are depicted

in Fig. 3a: a field with a single delta at the origin (z = 0).
Similarly, the differential equations
(1)’
(1)
generate fields with a core and a whorl, respectively, at the
origin, as depicted in Figs. 3b and 3c. Since reparameter-

izations do not change the shape of the solution curves, we
abbreviate

=oat) and —

2

dz? d
zd2* >0, i>0 and —iQ>0,
z z

O e e
\ T L % e, .

LS P e e

/

Fig. 2. Orientation fields and singular points extracted from the arch, loop, and whorl (from left to right) in Fig. 1; deltas have been marked by
triangles; cores have been marked by diamonds. These are based on images from the FVC 2000, Database 2a [34].
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Fig. 3. Fields of QDs generating singular points. (a) zdz*> > 0.

characterizing the three types of local fields near singular
points (delta, core, and whorl, respectively). Here, (z,dz)
can be considered a line element of arbitrary length parallel
to the trajectory through z; Fig. 2 shows such unit-length
line elements on a grid. Specific features may be super-
imposed by multiplying with a corresponding factor, e.g.,

(zfl)d?ZZ>0 (2)

models a delta at z =1 and a core at z = 0.
More generally, with a rational function Q(z), the
condition

Q(2)d* >0 (3)

defines a unique orientation field

0= {(z,%) 1 Q(z) #£ 0700}

on C except for isolated singular values. The left-hand side
of (3) is called a QD and denoted by a Greek letter, say, o.
The squared velocities dz® correspond to double angles
since orientation fields are not directed. In our model, we
assume that the ridge structure of an original fingerprint
image is given by an underlying orientation field

F = {(z,¢(z)2) 1z € G}

defined by a smooth mapping ¢*:G — S' over an
observation window G C C well defined apart from at
most isolated singular values. Here, S' = {z € C: |z| = 1}
denotes the unit circle.

In Section 4, we shall combine suitable mappings of
original fingerprint images with locally isotropic and
locally anisotropic distortion. In the language of Complex
Analysis, these are conformal (angle preserving) and
quasiconformal (of bounded anisotropy) mappings. Every
smooth mapping f: z— w = f(z) induces a natural trans-
formation of line elements (z,dz) — (w,dw). The trans-
formed field will be generated by the QD P(w) dw? > 0 if
we have the equality

Q(z) d* = P(w) duw?. (4)

(Note that positive factors do not change the field.) We
illustrate the conformal case here and treat the general case
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in Section 4, cf. (14). For a conformal f, we have a complex
derivative f', i.e., (w,dw) = (f(2), f'(2)dz). Thus, the trans-
formation rule simply is

Qo f)(w)
e g (5)
((f70 f1)(w)
Accordingly, under the mapping z— 1 =w, a QD has a
continuation to the Riemann sphere C given by

Q=) d = Q (3) . (6)

w/) w

P(w) =

In particular, this yields the global features of an orientation
field “far outside.” As an example, consider o = —(dz/2)?
with a whorl at the origin, which also has a whorl at co.

2.2 Local Structure of Trajectories

In the preceding section, we illustrated that, for a QD
o = Q(z) dz*, the condition o > 0 is equivalent to a first-
order differential equation

) a(t)

()’
with arbitrary smooth «(t) > 0. «(t) only affects the
parameterization of the solution curves. Their geometry,
however, and, thus, the orientation field O defined by
o >0, is independent of «(t). Thus, we generated typical
local features in fingerprint images by QDs with suitable
singularities. In fact, the last example of the preceding
section demonstrated how local features influence the
global field, which is the local field near oco. In this section,
we investigate the geometry of solution curves more closely
in order to simultaneously and more broadly model the
global field of fingerprint images in Section 3. This
geometry is determined by the singular points and some
leading coefficients only. In particular, singularities of
negative even order will go into our global models. Also,
the residues, as discussed below, will shed further light on
the local field of a whorl.

Every (maximal) solution curve of the orientation field
defined by o >0 is called a trajectory of o. Apart from
reparameterization, every trajectory can be obtained
through the integration and inversion of

)
VQ(2) dz. (7)

According to the Normal-Form Theorem (see the Appen-
dix), the local structure of trajectories near z, is determined
by the order n = n(z) of Q at z, and the square of the residue
(the coefficient a_, if present) from a Laurent power series
expansion:

Q((1)

2(t

t =
2(0)

Qz) = iak(z — zo)k.
k=n

Points of nonzero order are called singular points, points of
negative order are called poles of order |n|, and points of
positive order are zeros of order n.



HUCKEMANN ET AL.: GLOBAL MODELS FOR THE ORIENTATION FIELD OF FINGERPRINTS: AN APPROACH BASED ON QUADRATIC...

regular point simple zero

double pole, real residue double pole, general case

1511

.\

simple pole double pole, imaginary residue

4th order pole 6th order pole

Fig. 4. Local trajectory structure near a point z, of order n € Z Going from left to right and from top to bottom, the different cases for n = 0,1, —1,

-2 (a2 < 0), =2 (a2 > 0), =2 (a3 ¢ R),—4, and — 6 are illustrated.

Thus, as a consequence of the Normal-Form Theorem
and (7), we have the following local trajectory structure
around a point z of order n, cf. Fig. 4:

e In case of n=0, there is exactly one trajectory
through 2.
e In case of n > 0, there are exactly n + 2 trajectories

emanating from z at angles of 2.

e In case of n = —1, there is exactly one trajectory
emanating from z.

e In case of n= -2, all trajectories are conformal
images of

—  concentric circles about z if (a_)* <0,
— radial rays emanating from z if (OL,Q)2 > 0, and
— logarithmic spirals ending at z for any other
a_9.
e Incase of n < —2, all trajectories end at z; coming in
from |n| — 2 limit directions at angles of ;.

If existent, the sum over the orders of all singular points
is called the order of the QD. This corresponds to the
topological genus of the Riemann surface. As is clear from
(6), all QDs on the Riemann sphere have order —4, whereas
on a torus, their order is 0.

3 QUADRATIC DIFFERENTIALS FOR FINGERPRINT-
LiKe RIDGE FLows

In view of the behavior of a QD near co and the above
classification of the local trajectory structure of QDs, we

model the global field of a fingerprint image by a QD
of type
dz?

O2p = ma (8)
with suitable n € N, R > 0. This QD has poles at £R of
order 2n, and z = oo is a point of order 2n — 4. The real axis
with the poles removed is a trajectory. Fig. 5 depicts the flow
generated by oy and 4. Note that o4 accurately simulates

e e
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Fig. 5. (a) o2 has double poles at the two lower corners with positive
residue and is regular at co. (b) o4 has fourth-order poles at the two
lower corners and a double zero at co.
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Fig. 6. (a) Model oy, for a single core. (b) Model ¢, for a whorl. The
residue is not purely imaginary.

the varying curvature of the ridge lines of “towering hats”
found as the “outer field” in most fingerprints.

Since the local field is generated by the singular points,
in the terminology of QDs, deltas correspond to simple
zeros, cores correspond to simple poles, and whorls to
second-order poles with (almost) purely imaginary residue,
cf. Figs. 1, 2, 3, and 4.

In order to model the local structure of the orientation
field, we generalize (2) and introduce

_ (2= Rqi)(z — Rgy)
Ql’l:[’zs(IWZ%R(Z) T (Z _ Rpl)(Z_ Rp2)7 (9)

again for R > 0 and p;, ¢; € C, with 0 < |p;|, |¢;| < 1, Re(p;),
Re(g) >0, and i=1,2. Then, the QD Q1.4 .0.0(2)d2>
generates deltas at Rg; and Rg», as well as cores at Rp; and
Rp,. If there is only one delta and one core present, we have
P2 = ¢, for example. In case of two deltas and a whorl, we
would have p; =p.. This QD, however, is no longer
necessarily positive along the real axis. In order to ensure
positivity, we include the complex conjugate. Merging the
local with the global field, call

Obasic,2n =

(10)
O2n Qpl P2.41,¢2, 1R (Z) Qﬁl P2,01:02,.R (Z)

the basic model. Indeed, the trajectory structure of this QD is
symmetric to the real axis, so the real axis (with the poles
removed) itself is a trajectory. Note that oyic,2, inherits the
global properties of 0y, as the orders of its other factors sum
to zero. Thus, there is a singularity of order 4n —4 at
complex infinity defining the global field (cf. (6)).

In case of n=1, the QD o, is also symmetric with
respect to the R-circle taken about the origin. With this in
mind, call

Teire = Obasic2 Q1/py1/po1 Jar.1 Jan1/R(Z)

(11)
’ Ql/ﬁ]:1/52«,1/‘711«,1/(712:1/3(2)

the circular model. The trajectory structure of this QD is
then also symmetric with respect to the R-circle about the
origin. Fig. 6 shows typical QDs for the basic model and
the circular model. The symmetry condition for the
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Fig. 7. Pole and zero at the same position. (a) opsic2, i-€., NO symmetry
with respect to the unit circle. (b) Including symmetry, o.;..

circular model yields nearly circular ridge lines as are
typical around the fingertip. Fig. 7 illustrates the subtle
difference between the circular and basic model for
2n =2, 1.e, n=1.

The QDs defined so far model the orientation field of a
fingerprint by imposing a symmetry with respect to the real
line. Although this results in realistic models for such a
field above the real axis (on the upper half-plane), they are
unrealistic and invalid below the real axis (on the lower
half-plane). Since the real axis models the field close to and
parallel to the joint, we therefore extend our models to
predict orientations parallel to the real axis on the lower
half-plane (i.e., Q(z) =1 for Im(z) < 0). This extension is
continuous since the real axis itself is a trajectory of the QD
due to the symmetry condition. As the most interesting part
of the fingerprint is above the real axis, we will not
elaborate further on this point.

We are now in a position to verify Penrose’s formula (1).
Penrose arrived at it using topological arguments: He
mapped the entire palm to the interior of a circle such that
all lines exiting are perpendicular to the boundary,
whereas fingernails and the wrist of the hand are parallel
to the boundary. He then determined the necessary
relationship between cores and deltas for such a mapping
to be possible; see [19].

We will deduce Penrose’s formula by induction over the
number of fingers F. Recall that the order of a QD on the
sphere is —4, cf. Section 2. As a finger is represented only by
a half-sphere (with a field parallel to the equator), the
corresponding QD’s order is —2. Hence, for a single finger,
we have

D—L—-2=-2 (12)

where D denotes the number of deltas observed, L is the
number of loops (whorls count as two loops), and the term
—2 on the left represents an unobserved whorl that results
from continuing the field around the nail of the finger. This
is precisely the Penrose formula for a single finger (i.e., for
F=1):

D+1=L+F. (13)
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Fig. 8. Models o4 (first row) and o446 (Second row). (a) and (d) Applied to an arch. (b) and (e) Applied to a loop. (c) and (f) Applied to a whorl.
Deltas have been marked by triangles, cores have been marked by diamonds, violet lines show corresponding coordinate axes, and orange lines
give the trajectories through cRi. These are based on images from the FVC 2000, Database 2a [34].

It is easily seen that adding another finger results in
observing one more delta than loop, proving Penrose’s
formula.

4 NMAPPING FROM A FINGERPRINT IMAGE TO THE
DomAIN OF A QUADRATIC DIFFERENTIAL

In this section, we assume that
H={w=u+iw:u=1,...,Mv=1,..., N},

HcCC, is a given original fingerprint image being
M pixels wide and N pixels high. We assume the original
orientation field

O = {(w,dw®) :w e H\ D,dw € S* c C},

to be known (see Section 6 for extracting it from a
fingerprint image), where D C H denotes the set of
singular values (i.e., cores, deltas, and whorls) of the
observed finger.

Clearly, this orientation field first needs to be trans-
formed before it can reasonably be described by the QDs
specified above, e.g., a change of coordinates is inevitable,
cf. Figs. 8 and 9 showing such transformed coordinate
systems. A suitable smooth mapping f:G — H, G C C,
will thus map from the zplane into the observation
window, in which the observed orientation field is
approximated by the image under f of an orientation field
defined by a QD o = Q(2)dz? > 0 in G as described above.
The line element dz = dx +idy is mapped to the line
element dw = du + idv via

ORe(f) ORe(f)\ /.
oz oy T\ du
(alm(f) 6Im(f)><dy> = (dv)’
ox dy
cf. (5) for the special case of conformal f.
We assume that the mapping f is the composition of

several mappings as follows: By necessity, a (conformal)
euclidean motion has to be included:

(14)
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Fig. 9. Model 0., applied to an arch, a loop, and a whorl (from left to right). Deltas have been marked by triangles, cores have been marked by
diamonds, violet lines show the corresponding coordinate axes, and orange lines give the preimages of the “circles of symmetry.” These are based

on images from the FVC 2000, Database 2a [34].
Epp:w—w' = e (w—m),

where 6 € [0,27) and m € C correspond to the inclination
of the proposed “symmetry axis,” the preimage of the real
axis in the z-plane (roughly the joint of the third and second
phalanxes), and the preimage of the origin (roughly the
center of the joint), respectively, cf. Figs. 8 and 9. Also, in
particular, in view of the circular model, we will use an
affine mapping (the most simple nontrivial quasiconformal

mapping)
Lo:w =u +i — 2= +ict,

for some suitable ¢ > 0, turning the circle into an ellipse, cf.
Fig. 9. In fact, ¢ can be viewed as a measure of thickness of
the particular finger: the ratio of its length and width. More
mappings could be included, e.g., an affine map compen-
sating for a distortion stemming from a specific scanning
device.

In this paper, we use the mapping

RS B .
Feom:=[f =LcoEpm:w—z

determined by four real parameters (recall that m € C). As
all of the QDs proposed above only depend on R (assuming
the singular points to be known), each orientation field is
uniquely determined by just five real parameters. These
parameters can be obtained by numerical optimization
when fitting the model to real data, cf. Section 6.

5 CoMPARISON TO EXISTING MODELS

Possibly the first mathematical model, which aimed at
verifying the biological findings in [23], has been stated by
Smith [14]. When translated into the framework laid out
above, it models the ridge line structure near a singular
point using the nonmeromorphic QD

(z— 20 — ailz — z0|)2adz2 > 0,

with o = 1 for a delta at zy and @ = —1 for a core at zj. This
model has been extended using higher order nonmero-
morphic terms for all local structure elements such as cores,
whorls, etc.,, by Mardia et al. [15], involving a larger
number of parameters not directly interpretable. Sherlock
and Monro [16] were first in proposing a model that in our
framework translates into a meromorphic QD. They
suggest simply to use

. (15)
for a loop with a core at c and a delta at d (and accordingly
for the other classes); 5 € S' is the orientation at oo that
allows for rotations. This model clearly is too simplistic but
has served as an inspiration not only for us but also for
several other authors.

To make the model more adaptive, Vizcaya and
Gerhardt [17] propose (again for a loop)

arg(Q(2)) = ga(arg(z — d)) — ge(arg(z — ),

with piecewise linear functions g, g4 : S' — S'. Similarly,
Zhou and Gu [33] suggest

(16)

1 z—d 9
@ z—e ™

with some (complex) polynomial f of order 6. Gu et al. [18]
propose

o(2) = (17)

o(2) = (wllz = e)(z - ¢)
1

+ p1 (Re(z), Im(z))
+ i p2(Re(z), Im(z))) 71dz2,

with weights w depending on the distance, and p; and p;
being some real-valued polynomials of order 4 in Re(z)
and Im(z). We point out that, in general, only the models of
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TABLE 1
Number of Parameters Used!

model number of (real) parameters
Sherlock & Monro [16] 1
Vizcaya & Gerhardt [17] 10K
Zhou & Gu [33] 13
Gu et al. [18] K+ 32
newly proposed models 5

LK denotes the number of singular points; the locations of the singular
points have not been counted as parameters as they are extracted from
the image.

Sherlock and Monro [16] and of Zhou and Gu [33] define
QDs as introduced in Section 2.

The difference between these generalizations of (15) and
our approach is clear: We aim at modeling the orientation
field on a large scale, i.e., its global features, using
properties of orientation fields that are specific to finger-
prints, leading to just a few geometrically meaningful
parameters. These provide global information about a
fingerprint’s orientation field. Note that since we model
the euclidean motion explicitly, our parameters should not
vary much if a second imprint of the same finger is taken.
In contrast, due to the high number of parameters (see
Table 1 for a comparison of the numbers of parameters
used in the different models), the models (16)-(18) should
be able to adapt to the orientation field almost perfectly.
However, as a consequence of the largely increased
flexibility of those locally adapting models, artifacts may
be created. For example, any zero of the polynomial f in the
model of Zhou and Gu [33] will create a pole for the QD o,
i.e., a singular point in the orientation field. Hence, the
parameters of those existing models may vary strongly
when a second fingerprint image is taken, showing a
different region (cf. requirement 3 in Section 1). Further-
more, those models are only valid for the region observed;
hence, they cannot be used for predicting the orientation
field outside that region, i.e., for interpolation or extrapola-
tion (requirement 6 in Section 1). The QDs proposed above,
on the other hand, completely model a fingerprint using
only a few parameters and thereby can be used for
prediction even outside of the observed region.

6 NumERICAL RESULTS AND VALIDATION ON A
DATABASE

6.1 Illlustrating Examples

We illustrate the models described above by applying them
to three fingerprints: one arch, one loop, and one whorl,
taken with kind permission from Database 2a of the
Fingerprint Verification Competition [34] (as distributed
with [1]). We do not show the results for a tented arch since
it can be viewed as a special case of a loop, as in the original
classification by Galton [9]. For all three fingerprints, the
original orientation field has been computed using the
methods proposed by Bazen and Gerez [35], as well as
smoothed with a Gaussian kernel; see Fig. 2. Approximat-
ing basic models for these fingerprints are shown in Fig. 8,
Opasic,a in Figs. 8a, 8b, and 8c and oy in Figs. 8d, 8e, and
8f, where the preimages of the axes have been drawn as
violet lines. Fig. 9 shows approximating circular models
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where, additionally, the preimages of the “circles of
symmetry” have been drawn in orange. The models’
parameters have been chosen such as to minimize the
deviation of the model from the “true” orientation field (cf.
Section 6.2). Again, the preimages of the coordinate axes
and a sample trajectory starting from the preimage of cRi
have been drawn as violet and orange lines. Note that the
field below the preimage of the real axis is parallel to the
real axis as discussed above; this is most clearly visible for
the whorl.

The figures clearly demonstrate the ability of the
proposed models to capture the main characteristics of
the fingers’ orientation fields. As expected from the small
number of parameters, they cannot fit the original orienta-
tion field perfectly; however, they differ from it only on a
local scale. Note that the field is especially well adapted
where the influence of the singularities is strong. Thus,
loops and whorls can be fitted with a high degree of
precision. Fitting arches is more difficult; further research
will be necessary to model the distortion created at the
center of an arch. Although each of the three models
defines for each example finger a different coordinate
system, any single model could—at least in principle—be
used to define consistent intrinsic coordinates.

Fig. 10 illustrates the predictive power of these models
for two examples: an arch where a large portion in the
middle has not been observed but predicted using model
Opasic,s and a whorl where the upper left part has not been
observed but predicted using model .. Figs. 10a and 10d
show the fingerprint image without the unobserved part
(this could also be automatically cut out because of poor
quality, e.g., low contrast), together with the original
orientation field in the observed region. Figs. 10b and 10e
show the model fitted to this field and extrapolated into the
unobserved region. Figs. 10c and 10f show the field
predicted by the model in blue on top of the original
orientation field of the whole fingerprint image in orange.
Clearly, the extrapolated fields agree quite well with the
true original orientation field, considering the amount of
data given. As noted earlier, the accuracy is again much
higher where singularities influence the field strongly.

6.2 Validation on the NIST 4 Special Database and
Comparison with Other Models
Using the NIST Special Database 4 [21], we measured the
accuracy of the new models described above when applied
to a large number of fingerprints. We also compared them
with the models in [16] and [33] in their ability to adapt to a
given orientation field. From the 4,000 images in that
database, we analyzed 3,159 images, where all singularities
were visible and could be reliably extracted; recall that all
models considered require knowledge of the locations of all
singularities. For the extraction of the “true” orientation
field and singularities, we again used the algorithm
described in [35]; 1,103 images showed no core (arches),
1,546 showed one core (loops and tented arches), and 510
showed two cores (whorls). We then fitted all mentioned
models automatically to the extracted orientation field. To
measure the quality of the fit, we computed the average
difference between the extracted orientation field and the
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Fig. 10. Prediction of an arch using model oy, (first row) and of a whorl using model o, (second row). (a) and (d) Fingerprint where some part
has not been observed with its orientation field in orange. (b) and (e) Model in blue, fitted to the observed part and extrapolated to the unobserved
part. (c) and (f) Model in blue on top of the original orientation field of the whole fingerprint image in orange. These are based on images from the

FVC 2000, Database 2a [34].

fitted orientation field in degrees, where the average has
been computed in the foreground only. The models in [16]
and [33] were fitted by least squares in the foreground.
Fitting the other models was achieved by numerically
optimizing their accuracy as measured by the average
difference; we used a general-purpose minimizer [36] to
find the optimal parameters.

Table 2 gives some basic statistics over those average
differences collected over all images, as well as for the
images split up into the three classes above; more details
can be gathered from Fig. 11, showing the respective
cumulative distribution functions. Direct comparisons of all
models with the model of Sherlock and Monro [16] are
shown in Table 3, where the percentage of images is
reported for which a model outperformed (in the sense of
having a smaller average difference) the model in [16].
Similarly, Table 4 gives the results of a direct comparison
with the model of Zhou and Gu [33]. Recall that by
definition models, oy4sic,2 and o agree when no singula-
rities are present, i.e., for arches.

These tables show clearly that the proposed models are
very much able to model the orientation fields of fingerprints
in all fingerprint classes. One readily observes that these
models fit better relative to the two existing models the fewer
singularities that are present; for whorls, the fit of the model

TABLE 2
Median of Average Differences!
model all images | no core one  two
Sherlock et al. [16] 228 28.0 221 140
Zhou & Gu [33] 134 17.0  12.8 8.3
Obasic,2 11.3 126 11.0 8.5
Obasic,4 10.4 11.9 100 8.2
Obasic,6 10.5 11.7 9.8 9.0
Ocire 10.5 12.6 9.8 8.0

L For each image in the NIST Special Database 4 [21] and each model
(rows), the average difference in degrees between the “true” orientation
field and the fit of the model has been computed; the columns give the
median of these average differences summarized over all images of the
database, as well as for all images showing no core, one core, or two
cores, respectively, cf. Fig. 11.
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Fig. 11. For each image in the NIST Special Database 4 [21] and each model, the average difference in degrees between the “true” orientation field
and the fit of the model has been computed. The figures give the cumulative distribution functions of these average differences summarized over all
images of the database, as well as for all images showing no core, one core, or two cores, respectively. The median, lower, and upper quartiles have
been marked (recall that models o,;.» and o.;.. are equivalent for arches).

of Zhou and Gu [33] is seen as good as that of the proposed
models. This is not surprising: Our aim was to model the
global field well; the more singularities there are, however,
the more the orientation field is dominated by its local field
generated by those singularities.

7 DISCUSSION

Returning to aims 1-6 that we set ourselves in Section 1, we
will now assess what we have achieved:

e Aim 1. Comparing the fit of our models with the fit
of other existing models, we see that they do very
well except for a small number of images for which
the rotation of the field could not be reliably
estimated. Given the small number of parameters

TABLE 3
Comparison! with the model of Sherlock and Monro [16]
model all images no core  one core  two cores
Zhou & Gu 100.0 % 100.0 %  100.0 % 100.0 %
Obasic,2 95.6 % 97.6 % 96.1 % 89.8 %
Opasic,4 95.5 % 97.7 % 96.4 % 88.0 %
Obasic,6 91.7 % 96.2 % 94.6 % 72.9 %
Ocirc 96.6 % 97.6 % 98.3 % 89.4 %

! For each image in the NIST Special Database 4 [21], each model’s fit
(rows) has been compared to the fit of the model of Sherlock and Monro
[16]; the numbers give the percentage of images (second column: of all
images, third column: of those images showing no core, etc.) where the
model mentioned outperformed the model of Sherlock and Monro [16].

our models use, we deem this a remarkable
achievement. Apparently, these models are able to
capture the behavior of the global field. Nonetheless,
further increasing our models’ accuracy while
keeping their attractive properties remains a chal-
lenging task, especially so for arches. We realize
though that some of the existing models might be
more flexible in general, as has been discussed in
Section 5, and hence, their ability to adapt could be
higher. In particular, they may be able to model local
distortions, which may result from differing pres-
sures put on a sensor like an FTIR sensor. However,
this is a feature of the sensor: A touchless sensor
does not give rise to such distortions. Moreover, the
increased flexibility of those models comes at the

TABLE 4
Comparison! with the model of Zhou and Gu [33]
model all images no core one core  two cores
Obasic,2 T % 813 % 67.5 % 50.6 %
Obasic,4 775 %  88.6 % 71.7 % 52.5 %
Obasic,6 77.0 %  88.5 % 79.1 % 45.7 %
Ocire 80.5% 873 % 83.4 % 56.7 %

L For each image in the NIST Special Database 4 [21], each model’s fit
(rows) has been compared to the fit of the model of Zhou and Gu [33];
the numbers give the percentage of images (second column: of all
images, third column: of those images showing no core, etc.) where the
model mentioned outperformed the model of Zhou and Gu [33].
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price of no longer generalizing well, ie., these
models cannot be used for indexing.

o  Aims 2-5. The parameters of our models describing
the orientation field are interpretable, having a clear
geometric meaning. Since accounting for euclidean
motions is inevitable, we only use two real para-
meters, R and ¢, to adapt to the field. If one views
these as the parameters scaling the width and
thickness of the finger, one can say that we arrived
at a minimal set of five (real) parameters to describe
such orientation fields. Given their geometric inter-
pretation, these parameters should also be robust
against partial observation, although this needs to
be verified empirically in future studies.

e Aim 6. The models described can be used for
interpolation and extrapolation. However, the pre-
dictions cannot be more precise than the accuracy of
the fit to the observed field (cf. aim 1 above). In
particular, a substantial part of the fingerprint image
has to be observed in sufficient quality in order to
model noisy or unobserved parts. Further research
is needed to fully exploit the predictive abilities of
these models.

In summary, we can say that we succeeded in finding
simple models for orientation fields of fingerprints that are
able to describe all fingerprint classes reasonably well. It
would be interesting to see how well the parameters thus
obtained can be used as indexes in a fingerprint database.
To this end, an empirical study of the parameters’
robustness and of their discriminatory power would be a
natural next step.

APPENDIX

THE NORMAL-FORM THEOREM

Suppose that a QD o = Q(z)d2? is locally near z = z; given
by the Laurent power series expansion:

Q(z) = iak(z — ).
k=n

Then, the Normal-Form Theorem (cf. e.g., [30, p. 211]) states
that there is always a conformal map f(z) =w, f(z) =0,
from a neighborhood U of z, to neighborhood V' of the
origin such that for z € U and w = f(z) € V

o  Q(2)d2? =w" du? for n # —2m, m=1,2,...,

o  Q(2)d2? = a_sw? duw? for n = —2, and

o Q(2)d2* = (w? —5—@)2 dw? for n = —4, -6, ....

Va—y is called the residue of o at z = zj; it is uniquely
determined up to the sign.
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