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INTRINSIC SHAPE ANALYSIS:

GEODESIC PCA FOR RIEMANNIAN MANIFOLDS

MODULO ISOMETRIC LIE GROUP ACTIONS

Stephan Huckemann† , Thomas Hotz∗ and Axel Munk

Institute for Mathematical Stochastics, Georgia Augusta Universiät Göttingen

Abstract: A general framework is laid out for principal component analysis (PCA)

on quotient spaces that result from an isometric Lie group action on a complete

Riemannian manifold. If the quotient is a manifold, geodesics on the quotient can

be lifted to horizontal geodesics on the original manifold. Thus, PCA on a mani-

fold quotient can be pulled back to the original manifold. In general, however, the

quotient space may no longer carry a manifold structure. Still, horizontal geodesics

can be well-defined in the general case. This allows for the concept of generalized

geodesics and orthogonal projection on the quotient space as the key ingredients

for PCA. Generalizing a result of Bhattacharya and Patrangenaru (2003), geodesic

scores can be defined outside a null set. Building on that, an algorithmic method to

perform PCA on quotient spaces based on generalized geodesics is developed. As

a typical example where non-manifold quotients appear, this framework is applied

to Kendall’s shape spaces. In fact, this work has been motivated by an application

occurring in forest biometry where the current method of Euclidean linear approx-

imation is unsuitable for performing PCA. This is illustrated by a data example of

individual tree stems whose Kendall shapes fall into regions of high curvature of

shape space: PCs obtained by Euclidean approximation fail to reflect between-data

distances and thus cannot correctly explain data variation. Similarly, for a classical

archeological data set with a large spread in shape space, geodesic PCA allows new

insights that have not been available under PCA by Euclidean approximation. We

conclude by reporting challenges, outlooks, and possible perspectives of intrinsic

shape analysis.
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1 Introduction

In this paper, we illustrate a new approach for applying classical statistical methods to multi-

variate non-linear data. In two examples occurring in the statistical study of shape of three

dimensional geometrical objects, we illustrate that the current methods of PCA by linear Eu-

clidean approximation are unsuitable if such data in non-linear spaces fall into regions of high

curvature, or if they have a large spread. In the following we give an overview of the background

of relevant previous work, and an introduction to the building blocks of our work.

Euclidean and Non-Euclidean Data. Over the last century, multivariate statistics for

Euclidean data structures has been the target of intensive research, leading mainly to linear

statistical methods of analysis. More recently, a growing demand can be observed for methods

treating multivariate data on spaces with a natural non-Euclidean structure. We mention

statistical estimation problems of and on manifolds as they arise in various applications, e.g.

Kim and Koo (2005), estimation of manifolds, e.g. de Silva and Carlsson (2004) and Bubenik

and Kim (2007), or statistical inference in shape analysis, e.g. Munk et al. (2007), which often

require a generalization of the underlying space to a quotient of a manifold, e.g. Kendall et al.

(1999), or even more general structures such as semimetrical spaces, e.g. Schmidt et al. (2007).

Mostly, such data have been dealt with by linear approximations and quite some advances have

been achieved. The aim of this paper is to explore the limitations of such linearizations, and to

provide a methodology that may be applied when those linear approximations fail to capture

the non-Euclidean nature of the data. We emphasize that we do not claim to solve these issues

in full generality, rather that we would like to direct the interest of the readers to this ambitious

research program while we restrict our presentation to quotients of manifolds under a Lie group

action.

Extrinsic, Euclidean and Intrinsic Methods. A very powerful tool of traditional Euclidian

multivariate statistical analysis is principal component analysis (PCA). It aims to reduce the

dimensionality of the data, and yields a hierarchy of major directions explaining the main

sources of data variation. This raises the question of designing a similar tool for data on non-

Euclidean spaces. In Table 1 we give an overview of various methods developed in the past and

proposed in this paper to tackle that question. Following the idea of linearization this can be

done by performing PCA in a Euclidean tangent space (whenever it exists) of an underlying

space. Usually, the tangent space at an extrinsic mean (EM) is chosen, the latter in the manifold

case being an orthogonal projection of the Euclidean mean onto the manifold in an ambient

space, e.g. Hendriks, Landsman, and Ruymgaart (1996), as well as Hendriks and Landsman

(1998) or, in a more general case, being a Procrustes mean, cf. Gower (1975). Often it seems

more natural to define an intrinsic mean (IM), i.e. a minimizer of the squared intrinsic distance

to the data (Kobayashi and Nomizu ((1969), p.109), and Karcher (1977)), where the intrinsic

distance is usually determined by the Riemannian struture induced either by the subject matter
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or by the specific construction as it is the case for shape spaces (e.g. Le (2001), Bhattacharya

and Patrangenaru (2003, 2005), as well as Klassen et al. (2004)). The relationship between EM

and IM is not obvious, and not well understood. We mention that in our applications the EM

is a fairly good approximation to the IM. Currently, PCA in the tangent space of either mean

is performed in a Euclidean manner, either by some projection of the data to the tangent space

at the EM, or by mapping the data under the inverse Riemann exponential map to the tangent

space at the IM. The mapped data serve as the basis for computing the empirical covariance

matrix, and hence for PCA. The well known general Procrustes analysis (GPA) for quotients,

such as Kendall’s shape spaces, is based on this procedure by orthogonally projecting the data

to the tangent space at an EM, see Gower (1975), Goodall (1991), Cootes et al. (1992) and

Kent (1994). Alternatively in principal geodesic analysis (PGA), the data is mapped under the

inverse Riemann exponential at the IM, see Fletcher et al. (2004). In fact, intrinsic distances

between data and mean are equal (under the inverse exponential) or approximately equal (in

case of orthogonal projection) to the respective distances in the tangent space. When curvature

is present this is not the case for between-data distances, which carry the additional information

extracted by PCA. Therefore extrinsic and Euclidean methods, as developed so far, are well

suited for statistical analysis focussing on the mean, but may fail to capture the additional

information required for PCA. A meaningful PCA has to take into account potential high

curvature; obviously, any method relying on a Euclidean linearization of tangent space will not

perform well in such cases. In this paper we develop the notion of geodesic principal components

(GPCs) based on the intrinsic distance of data to geodesics that reflect the manifold curvature.

For quotient spaces this requires the notion of generalized geodesics.

Shape Spaces. In many statistical applications, data on a sub-manifold of Euclidean or Hilbert

space are considered up to an isometric smooth Lie group action. Very prominently, this is the

situation in the field of statistical shape analysis: similarity shapes are defined modulo the group

of similarity transformations, e.g. Bookstein (1978) and Kendall (1984), affine shapes modulo

the affine group, e.g. Ambartzumian ((1990), Chapter 4), and projective shapes modulo the

general projective group, e.g. Goodall and Mardia (1999), as well as Mardia and Patrangenaru

(2001). More precisely, in order to study the shape of a geometrical object, either a finite

number of landmarks at specific locations or a bounding contour or surface is extracted and

mapped to a point in a suitable Euclidean or Hilbert space. When considering similarity shapes,

usually size and location information is removed by mapping onto a unit-sphere called pre-shape-

space. Then, rotation information is removed by further mapping to elements of the quotient

of the pre-shape space modulo an orthogonal group action, cf. Section 5.1. An overview of

many newly developed shape space models can be found in Krim and Yezzi (2006). Earlier,

finite dimensional, landmark-based shape spaces have been extensively studied; we mention the

monographs of Small (1996), Dryden and Mardia (1998), as well as Kendall et al. (1999).

GPCA in Shape Analysis. One main field of application of statistical shape analysis is the

study of shapes of biological entities. Methods for Kendall’s landmark-based similarity shape

spaces have led Le and Kume (2000) to the belief that
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“biological shapes evolve mainly along geodesics”.

In joint research with the Institute for Forest Biometry and Informatics at the University of

Göttingen studying the growth of individual tree stems, the biological geodesic-hypothesis is of

high interest. As we will see in Section 6.1, Euclidean PCA is not applicable since the shapes

in question come to lie in a region of Kendall’s shape space with unbounded curvature. This is

due to the fact that shapes of tree stems are roughly degenerate long straight line segments that

are invariant under rotations orthogonal to the stem, and thus correspond to singularities of

the space. Clearly, many more objects in biological research such as protein structures and cell

filaments are nearly one-dimensional, whereas their shape change extends into all three spatial

directions. All such shapes fall into high curvature regions of shape space rendering the current

methods of Euclidean PCA unsuitable.

In addition to high curvature effects, oscillation of geodesics may cause Euclidean approxi-

mations to deviate considerably from the respective intrinsic quantities. This effect is illustrated

by an example in Section 6.2 of less concentrated data in regions of lesser curvature.

It is the objective of this work to propose geodesic principal component analysis (GPCA)

that is dependent on the intrinsic structure only, and independent of a specific linearization due

to an embedding into or projection onto Euclidean space. This can then be used in general on

quotient spaces

1. to carry out PCA in high curvature regions and near locations where the quotient space

ceases to carry a natural manifold structure,

2. to include the effects of oscillation of geodesics for less concentrated data in PCA, and

3. as a tool for detection of curvature within a data sample.

This task faces several challenges from differential geometry, statistical theory, and numer-

ical optimization. In this work, we introduce some key concepts and major results. Many issues

are beyond the scope of this paper and leave room for further research and for discussion in

Section 7. This extends in particular to numerical performance and convergence issues of the al-

gorithms employed. In our implementation, we have used standard numerical methods to locate

minima. Further research is certainly necessary to derive specific fast-converging algorithms.

Throughout this paper we assume that a random variable is given on a quotient space

Q = M/G that arises from the isometric action of a Lie group G on a complete Riemannian

manifold M . Since we know not of any application involving non-Hausdorff quotients due to

non-proper actions of groups, we assume that G is compact (which is in fact somewhat more

restrictive than a proper action, cf. Section 2.2). Then the quotient carries a natural metric

structure, it is even locally a manifold away from singular locations.

The outline of this paper is as follows. In the next section we provide some background

from differential geometry: at every p ∈ M the tangent space decomposes into a horizontal

and a vertical subspace. In fact, for geodesics on M , horizontality at one point is equivalent

to horizontality at all points. Calling projections of horizontal geodesics on M generalized
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Term Description

extrinsic mean (EM) Procrustes mean or,

projection of the Euclidean mean for manifolds

intrinsic mean (IM) minimizer of expected squared intrinsic distance

Euclidean PCA (EPCA) based on the empirical covariance matrix

in a tangent space

general Procrustes analysis (GPA) EPCA of data projected to the

tangent space at an EM

principal geodesic analysis (PGA) EPCA of data mapped under the inverse

Riemann exponential to the tangent space

at the IM

geodesic PCA (GPCA) PCA based on minimization of intrinsic

residual distances to geodesics

geodesic principal components (GPCs) minimizing geodesics of GPCA

principal component mean (PM) intersection point of first and second GPC

restricted GPCA GPCA while requiring that all GPCs pass

through the IM

manifold PCA (MPCA) PCA based on non-nested submanifolds

totally geodesic (at a point) of increasing

dimension, determined by minimizing

intrinsic residual distances

Table 1: Terminology and description of various approaches of PCA for non-Euclidean

data. For the Euclidean methods on quotients such as Procrustes analysis, usually the

tangent space of the original space with data optimally positioned w.r.t. the mean is used.

For the intrinsic methods on quotients, we use generalized geodesics and submanifolds.

geodesics on Q (as in Kendall et al. ((1999), pp.109–113) for Kendall’s shape spaces) we obtain

a family of curves qualifying for principal components. Orthogonal projection - the corner

stone of GPCA - will be defined by lifting to the manifold. In Appendix A we show that focal

points, these are points with multivalent projection, and foci form a null set on the quotient.

Hastie and Stuetzle ((1989), p.515) had proved this fact for one-dimensional, and Bhattacharya

and Patrangenaru ((2003), p.12) for arbitrary submanifolds of Euclidean space. Thus, geodesic

projections on generalized geodesics are uniquely determined up to a set of measure zero. We

note that medial axes, introduced early to shape analysis by Blum and Nagel (1978), and

currently of high interest in computer vision and in shape representation, e.g. Pizer et al.

(2003), as well as Fuchs and Scherzer (2007), are taken from foci and focal points. This section

is concluded by pointing to the possible oscillating and not-everywhere minimizing nature of

geodesics.

In Section 3 we elaborate on basic statistical quantities on quotients as above. Unlike for

Euclidean geometry in which means, variance and principal components have several equivalent
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characterizations that allow for an explicit computation, in general each characterization leads

to an essentially different generalization on the quotient, which in turn leads to an optimization

problem that can only be solved numerically. We motivate our definition based on the minimiza-

tion of residual distances. Close inspection shows that the first geodesic principal component

(GPC), defined as the geodesic approximating the data best, may no longer pass through the

IM, cf. Huckemann and Ziezold (2006). This fact leads to a third generalization of a mean

which we call a principal component mean (PM); it will play a crucial role in the sections to

come.

In Section 4 we lay out how to obtain sample GPCs for general quotients by pulling the

numerical computation back to the manifold M . The algorithmic ansatz based on Lagrange-

minimization is twofold: first computing the quotient-space distance to horizontal geodesics,

thus determining optimally positioned data points, and second, finding all horizontal directions

at a given data point and choosing a suitable iterate.

In Section 5 an implementable algorithm for Kendall’s shape spaces is provided. Along

the way we give a new and constructive proof for the fact that every singular shape can be

approached by a geodesic along which some sectional curvatures are unbounded. Also, we

further discuss oscillating and not-everywhere minimizing geodesics.

In the penultimate section we illustrate the effects of unbounded curvature and oscillating,

not-everywhere minimizing geodesics with some exemplary 3D datasets. High curvature is

encountered in the previously introduced dataset of tree stems. We find near singular shapes

where

1. approximating the IM by the EM is fairly accurate; however,

2. Euclidean PCA fails to catch essential features of the shape distribution that appear

under GPCA.

A classical dataset of iron age fibulae from Hodson, Sneath, and Doran (1966) serves as an

example for oscillating and not-everywhere minimizing geodesics in lower curvature regions. As

above, for this dataset the EM and the IM are rather close to one another. Due to oscillation,

however, Euclidean PCA again fails to recognize essential features only found by geodesic PCA.

This gives new results characterizing the temporal evolution of shape of these iron age brooches.

Only when both ambient curvature is low and data concentration is high, as is demon-

strated by a third data set of macaque skulls, is the Euclidean approximation valid.

We note that Fletcher et al. (2004) have also proposed principal component analysis for

manifolds based on geodesics. However, they require GPCs to pass through the IM and compute

them by Euclidean approximation only. With our method of GPCA, the restricted GPCs

through the IM can be computed as well. For applications in high curvature regions this

constraint makes the restricted method as unsuitable as the Euclidean approximation. It is the

additional effort to determine the location of the PM that is considerably far from the EM and

IM that is crucial to the success of our method of GPCA in such cases.
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2 Lie Group Action, Horizontal Geodesics and Opti-

mal Positioning

In this section we collect well-known facts from Riemannian geometry, (e.g. Abraham and Mars-

den (1978), Bredon (1972), Helgason (1962), and Lang (1999)) and simple consequences thereof

that are necessary to introduce notation, formulate and build up our method of GPCA. We give

a comprehensive introduction not found elsewhere, as these results are not easily accessable for

statisticians.

Throughout this paper we consider a connected Riemannian manifold M and a Lie group

G, with Lie algebra g and unit element e, acting smoothly on M . The action will be denoted by

p
g7→ gp for p ∈ M, g ∈ G. We also assume for the entire paper that the action is effective, i.e.,

that for every g 6= e there is a p = pg ∈M with gp 6= p. As usual dM (·, ·) denotes the distance

on M induced by the Riemannian metric.

We remark in advance that in many recent shape space models (e.g. Krim and Yezzi (2006))

infinite-dimensional Hilbert manifolds are considered. These are limits of finite-dimensional

manifolds on which numerical computations are carried out. Even though many of the following

results are also true in the general case of an infinite-dimensional Banach Lie group acting on

an infinite-dimensional Riemannian Hilbert manifold, we note that a cornerstone of our efforts,

the existence of geodesics of minimal length, Section 2.1 below, is false in general; a counter-

example can be found in Lang ((1999), pp.226–227). In the following we mention explictly if a

result holds only for finite-dimensional manifolds.

2.1 Riemannian Metric and Projection to the Quotient

Denote by Γ(M) the space of all maximal (w.r.t. inclusion) geodesics on M . The Hopf-Rinow

Theorem asserts that on a complete Riemannian manifold geodesics t → γ(t) are defined for

all t ∈ R. Also, if M is finite-dimensional, any two points p1, p2 can be joined by a geodesic of

length d(p1, p2).

The Riemannian metric is denoted as usual by p 7→ 〈Zp,Wp〉, p ∈ M for Z,W ∈ T (M).

Here T (M) is the module of smooth vector fields on M , and Zp ∈ TpM is the value of Z in the

tangent space TpM of M at p ∈M . dg : TpM → TgpM , which denotes the differential induced

by the action, is an isomorphism. The action of G is called isometric if

〈Zp,Wp〉 = 〈(dgZ)gp, (dgW )gp〉 ∀p ∈M, g ∈ G, Z,W ∈ T (M).

Then,

γ geodesic ⇔ gγ geodesic ∀g ∈ G.

For p ∈ M let [p] = {gp : g ∈ G} be the fiber (or orbit) of p, and let Ip = {g ∈ G: gp = p}
the isotropy group at p. Then [p] is a sub-manifold of M (locally an embedding, but in general

not globally) that is diffeomorphic to G/Ip. G is said to be acting freely on M if all isotropy

groups consist of the unit element only, i.e. [p] ∼= G ∀p ∈M .
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The tangent space TpM of M at p decomposes into a vertical subspace Tp[p], that is the

tangent space of the fiber, and an orthogonal horizontal subspace HpM ,

TpM = Tp[p] ⊕HpM.

A curve t 7→ γ(t) on M is called horizontal (vertical) at t0 if its derivative there is horizontal

(vertical), i.e., γ̇(t0) ∈ Hγ(t0)M (γ̇(t0) ∈ Tγ(t0)[γ(t0)]). Denote by ΓH(M) the space of all

geodesics that are horizontal everywhere.

The Riemann exponential expp maps a sufficiently small tangent vector v ∈ TpM to the

point γp,v(1) ∈M when γp,v is the geodesic through p = γp,v(0) with initial velocity v = γ̇p,v(0),

i.e.,

expp(tv) := γp,v(t) .

Every point p0 on a Riemannian manifold has a normal neighborhood U , i.e., for all p ∈ U

∃rp > 0 such that the inverse exponential logp := (expp)
−1 is well defined on the geodesic ball

Brp(p) := expp

“
{v ∈ TpM : ‖v‖ < rp}

”
and U ⊂ Brp(x). The Gauss Lemma asserts that

expp-images of spheres in TpM are orthogonal to geodesics through p.

Let

π:M →M/G := {[p] : p ∈M} (1)

be the canonical projection to the quotient space equipped with the quotient topology. Note

that π is both open and continuous. Then

dM/G([p1], [p2]) := inf
g,h∈G

dM (gp1, hp2) ∀[p1], [p2] ∈M/G

is a quasi-metric on M/G. In case of an isometric action we have that any geodesic segment γ

joining p1 and p2 has the same length as the geodesic segment gγ joining gp1 and gp2. Hence

in case of an isometric action, dM (gp1, gp2) = dM (p1, p2) ∀p1, p2 ∈M, g ∈ G, and thus

inf
g∈G

dM (gp1, p2) = dM/G([p1], [p2]) ∀p1, p2 ∈M .

2.2 The Slice Theorem and Killing Vector Fields

In all applications we know of, M/G is a Hausdorff space which means that all fibers [p] are

closed in M . This is the case if G acts properly on M , i.e., if for all pn, p, p
′ ∈M, gn ∈ G, n ∈ N

with gnpn → p′, pn → p:

gn has a point of accumulation g ∈ G with gp = p′ .

A sufficient condition for a proper action is that G is compact. Even if M/G is Hausdorff the

dimensions of the fibers may vary along M . Then, M/G will fail to have a natural manifold

structure. This is the case for Kendall’s shape spaces of three and higher-dimensional config-

urations. In case of a Lie group G acting isometrically and properly on a finite-dimensional

manifold M , Mostov’s Slice Theorem, cf. Palais ((1960), p.108) and Palais (1961), asserts that
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for an open disk D about the origin in Hp, the twisted product G×Ip D is diffeomorphic to a

tubular neighborhood of [p] in M . As a consequence,

Ip′ is a subgroup of Ip for p′ ∈ expp(D) . (2)

Hence in case of a free action, HpM is locally diffeomorphic to M/G at [p]. Then, M/G

has a unique manifold structure compatible with its quotient topology (Abraham and Mars-

den ((1978), p.266)), making the projection (1) a Riemannian submersion. Moreover then, any

vector field Z ∈ T (M/G) has a unique horizontal lift eZ ∈ T (M), i.e., eZp ∈ HpM ∀p ∈ M .

Also, every smooth curve t → γ(t) on M/G through γ(t0) = [p] has a unique horizontal lift

t→ eγ(t) through p.

If G is compact, then any inner product on g can be extended to a bi-invariant Riemannian

metric on G making all the curves t 7→ Exp(tv) geodesics on G that are defined for all t ∈ R.

Here v ∈ g is arbitrary and Exp : g → G denotes the Lie-exponential. In most applications G

is a transformation group and g is equipped with the standard Euclidean inner product. The

Lie-exponential is then the exponential function for matrices. Note that t→ Exp(tv) p is usually

not geodesic on M .

The action of G on M gives rise to a natural mapping α : g → T (M) defined by the

homomorphism:

αp : g → Tp[p]

v 7→ d
dt

˛̨
˛
t=0

„
Exp(tv) p

«
.

In case of an isometric action, every α(v) is a Killing vector field on M . Since the local flow of

a Killing vector field X is isometric, one can show

d

dt

˙
Xγ(t), γ̇(t)

¸
= 0 (3)

for all geodesics t 7→ γ(t).

2.3 Generalized Geodesics and Optimal Positioning

As an immediate consequence of (3) we have

Theorem 2.1. Let M be a Riemannian manifold and G be a Lie group acting isometrically on

M . Then a geodesic on M that is horizontal at one point is horizontal at all points.

Due to the fact that Killing vector fields are in general not of constant modulus, a similar

statement for vertical geodesics is not true. In fact, for Kendall’s shape spaces of configurations

of dimension m ≥ 3, there are geodesics that are vertical at isolated points only (cf. Example

5.1).

As done in Kendall et al. ((1999), pp.109–113) for Kendall’s shape spaces, the concept of

geodesics can thus be pushed forward also to non-manifold quotients:
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Definition 2.2. Given a quotient π : M → M/G =: Q, where M is a Riemannian manifold

and G a Lie group acting isometrically on M , call a curve δ on Q a generalized geodesic on Q

if it is the projection of a horizontal geodesic on M .

Γ(Q) := {δ = π ◦ γ : γ ∈ ΓH(M)}

is the space of generalized geodesics on Q. For π ◦ γ we also write [γ].

Generalized geodesics can be lifted to horizontal geodesics just as in the submersion case:

for δ ∈ Γ(Q) with δ(0) = q there is, given p ∈ q, a unique lift γ ∈ ΓH(M) such that π ◦ γ = δ

and γ(0) = p. If η ∈ ΓH(M) is any other lift of δ, then ∃g ∈ G such that η(·) = g γ(·). Two

generalized geodesics through a common point are orthogonal there if their lifts through one

(and thus any) common point are orthogonal there.

Definition 2.3 (Ziezold (1977)). Given a manifold M and a Lie group G acting isometrically

on M , points p1, p2 ∈M , and g ∈ G, call the point gp1 in optimal position to p2 if

dM (gp1, p2) = dM/G([p1], [p2]).

Also, gp is said to be in optimal position to a curve γ on M if

dM (gp, γ) = dM/G([p], π ◦ γ).

If G is compact then any point can be brought into optimal position to a given point and

a curve, respectively. Moreover, if gp1 is in optimal position to p2 then g−1p2 is in optimal

position to p1, and gp1 and p2 are called registered. Note that in general, optimally positioned

points will not be uniquely determined. Moreover, the relation being in optimal position may

not be transitive, see Ziezold ((1977), p.602).

Theorem 2.4. Let M be a Riemannian manifold and G a Lie group acting isometrically on

M . Then any geodesic joining two points in optimal position is horizontal.

Proof. Suppose that there is a geodesic t 7→ γ(t) joining p = γ(0) and p′ = γ(1) in optimal

position to each other. Then, logp can be defined in a neighborhood U containing {γ(t) : 0 ≤
t ≤ 1}. Moreover, let s→ δ(s) be any smooth curve in [p′] through p′ = δ(0). Then, the image

of δ under logp is a curve outside logp(U)∩{v ∈ TpM : ‖v‖ < d(p, p′)} touching at logp(p
′). By

the Gauss Lemma, cf. Section 2.1, the image curve of δ is hence orthogonal to the straight line

through 0 and logp(p
′) which is the image of γ. As δ was arbitrary, γ is thus horizontal at p′,

and by Theorem 2.1 it is a horizontal geodesic.

The converse, that any two points on a horizontal geodesic segment are in optimal position,

is not even true in general for arbitrarily close points, cf. Theorem 5.4 (b).

As a consequence of the Hopf-Rinow Theorem (Section 2.1) and Theorem 2.4 we have the

following.

Corollary 2.5. Let M be a finite dimensional complete Riemannian manifold, and G a compact

Lie group acting isometrically on M and Q = M/G. Then any two q1, q2 ∈ Q are joined by a

generalized geodesic of length dQ(q1, q2).
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2.4 Orthogonal Projection and Principal Orbit Theorem

On the quotient Q = M/G of a complete Riemannian manifold we can thus define orthogonal

projection: an orthogonal projection qδ of q ∈ Q onto δ ∈ Γ(Q) is the fiber [p′γ ] of an orthogonal

projection p′γ of p′ onto γ. Here γ ∈ ΓH(M) is an arbitrary lift of δ, p ∈ q, and p′ = gp is

p put into optimal position with respect to γ. The orthogonal projection may be multivalued

at some points (e.g. on a sphere, when projecting a pole to the equator); these form a set of

measure zero as we shall see. Recall that a subset A ⊂ M of a finite dimensional manifold has

zero measure in M if for every local chart (u, U) of M the set u(U ∩ A) has Lebesgue measure

zero. A set B ⊂ Q has measure zero in Q if its lift π−1(B) ⊂M has measure zero in M .

The following theorem is a consequence of Lemma A.2 and Theorem A.5 which is stated

and proven in the Appendix.

Theorem 2.6. Let G be a compact Lie group acting isometrically on a finite-dimensional

Riemannian manifold M . Given a generalized geodesic δ on Q then the orthogonal projection

qδ is unique for all q ∈ Q up to a set of measure zero.

Call M∗ :=
n
p ∈ M : Ip = {id}

o
the regular space (w.r.t. the quotient M/G = Q) and

Mo :=
n
p ∈ M : Ip 6= {id}

o
the singular space. Since we assume an effective action, M∗ 6= ∅.

Below, we see that M∗ is a manifold, hence by Section 2.2 the projection to the regular quotient

π|M∗ : M∗ → Q∗ := M∗/G

is a Riemannian submersion. Some sectional curvatures of Q∗ may tend to infinity when ap-

proaching a singular point, cf. Theorem 5.2. The assertion (a) of the following theorem is

part of the Principal Orbit Theorem, cf. Bredon ((1972), p.179); the assertion (b) follows from

Lemma A.2 in the Appendix.

Theorem 2.7. Let G be a compact Lie group acting isometrically and effectively on a finite-

dimensional Riemannian manifold M . Then

(a) M∗ and Q∗ are open and dense in M , Q, respectively, and

(b) any geodesic on M that meets M∗ has at most isolated points in Mo.

2.5 Not-Everywhere Minimizing and Oscillating Geodesics

We call a generalized geodesic δ ∈ Γ(Q)

(a) everywhere-minimizing if for all two points q1, q2 on δ the generalized geodesic segment

of minimal length between q1 and q2 exists and is contained in δ,

(b) oscillating if there is a point q ∈ Q such that t 7→ dQ(q, δ(t)) has more than one strict

local minimum,

(c) recurrent if there is a period τ > 0 such that δ(t+ τ ) = δ(t) for all t ∈ R,
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(d) asymptotic if there is another generalized geodesic in Γ(Q) which is approached asymp-

totically by δ.

Examples of Riemannian manifolds embedded in Euclidean space.

1. On a sphere, all geodesics are recurrent, non-oscillating and everywhere-minimizing.

2. On a proper ellipsoid, every meridional geodesic (from pole to pole) is not everywhere-

minimizing, as two equatorial points on it are joined by the shorter equatorial geodesic.

3. In general, geodesics on a torus are oscillating and not-everywhere minimizing. Infinitely

many oscillating geodesics are recurrent and infinitely many are dense.

4. On more complicated manifolds, say surfaces of revolution generated by a function with

zero curvature at a critical point, there are non-recurrent asymptotic geodesics approaching

equatorial geodesics, cf. e.g. Borzellino et al. (2007).

If geodesics on M are not too ill-behaved then so are generalized geodesics on the quotient.

Remark 2.8. If all geodesics on M are recurrent, then all generalized geodesics on Q = M/G

are recurrent.

Projections of everywhere-minimizing geodesics, however, may lose this property near sin-

gularities, cf. Theorem 5.4.

3 PCA Based on Generalized Geodesics for Quotients

Arising from Isometric Lie Group Actions

We first ponder different approaches to principal components on a quotient space. Then, having

motivated our selection, detailed specific definitions follow.

3.1 Generalizations of PCs to Non-Euclidean Spaces

In a Euclidean space, principal components can be equivalently defined by minimizing the

variance of the residuals or by maximizing the variance of the projections. Also, PCs are

nested in the following sense: given a distribution in R
m, the s-dimensional linear subspace

approximating the distribution best (by minimizing sum of squared distances) is the linear

space spanned by the first s principal components. We note that the mean, which is the zero-

dimensional subspace approximating best, can only be found by minimizing residuals.

In a non-Euclidean space, parametric submanifolds qualify naturally as candidates for

principal components. For one-dimensional components, geodesics come into mind. Higher

dimensional components would then be sub-manifolds spanned by geodesics, totally geodesic at

a point, as proposed by Fletcher and Joshi (2007) and computed in approximation: eigenspaces

of the respective covariance matrix in the tangent space at the IM are mapped to geodesics and

submanifolds totally geodesic at the IM under the Riemann exponential.

Let us now inspect which building blocks of Euclidean PCA generalize to non-Euclidean

spaces in a numerically feasible manner.
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Since the straight line minimizing residual variance (the sum of squared distances) is

uniquely determined in Euclidean geometry, save for special cases, we expect in a non-Euclidean

geometry, also “some” uniqueness of (generalized) geodesics defined by minimizing residual vari-

ance. Nestedness of PCs based on residuals, however, cannot be expected, as the IM will in

general no longer come to lie on a first (generalized) principal component geodesic, cf. Hucke-

mann and Ziezold (2006).

Alternatively, let us consider straight lines and geodesics, respectively, maximizing the sum

of squared distances of projections to a variable offset. In Euclidean geometry, save for special

cases, such PCs and their offsets (the projection of the mean) are uniquely determined only

up to a common translation orthogonal to the respective PC. In a non-Euclidean geometry,

save for special cases due to curvature, we again expect uniqueness. In case of small curvature,

however, we expect poor convergence properties for numerical algorithms. Indeed, experiments

with data on unit-spheres, using algorithms based on maximizing projected variance derived

along the lines of the algorithms developed below, often feature slow or no convergence at all.

Even worse, on manifolds or quotients with recurrent geodesics (e.g. a great circle on a sphere

or generalized geodesics on Kendall’s shape spaces), the desired maximum is usually local and

not global. Algorithms, moreover, may converge to the global maximum attained at an offset

near the antipode of the mean. To overcome this difficulty, nestedness can be required again,

cf. Fletcher and Joshi (2007). To our knowledge, it is unknown whether geodesics obtained

by maximizing projection variance are nested in general. Numerical experiments on spheres

hint to the contrary, that the intrinsic mean does not lie on the geodesic maximizing projected

variance. It would be interesting to search for an explicit example asserting this phenomenon

analytically as well.

For these reasons, we consider the minimization of the residual variance to be the natural

approach for a non-Euclidean concept of PCA. We note that in the manifold case, our approach

locally gives manifold PCs totally geodesic at a point, even though we minimize residual variance

w.r.t. each single spanning GPC individually and not to the whole manifold PC. The higher-

order (≥ 2) manifold PCs are then nested again.

Since the concept of generalized geodesics for quotients extends naturally to generalized

sub-manifolds (one possible definition is in Appendix A), it would be an interesting task to

develop methods for non-nested residual higher-order manifold PCA as well.

3.2 Geodesic PCA Based on Residuals

Throughout this section, let π : M → M/G =: Q be the canonical projection of a complete

Riemannian manifold M on which a Lie group G acts isometrically. With the induced quasi-

metric dQ(·, ·) = d(·, ·). on Q consider, if finite,

E
“
d(X, q)2

”
and (4)

E
“
d(X, δ)2

”
(5)
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for q ∈ Q, a generalized geodesic δ ∈ Γ(Q), and a Q-valued random variable X. For Kendall’s

shape spaces, cf. Section 5, these quantities are finite; we assume this in the following.

In applications, it is often desirable to assume that X is continuously distributed on Q with

respect to the projection of Riemannian volume. If M is of finite dimension m then from any

non-vanishing m-form, a Riemannian volume can be constructed. By definition, such a non-

vanishing m-form exists if and only if M is orientable. If M is non-orientable, a Riemannian

volume can be defined locally only. If possible then, in order to have continuity, one would

assume that the support of X is contained in the projection of a subset of M which supports a

non-vanishing m-form.

A point µI ∈ Q minimizing (4) is called an intrinsic mean (IM) of X with total intrinsic

variance

VintX := E
“
d(X,µI)

2
”
.

Due to positive sectional curvatures, the IM may not be uniquely determined. E.g. this is the

case for a uniform distribution on a sphere. For this reason, Kendall shapes of two-dimensional

triangles with i.i. standard multi-normally distributed landmarks have no mean, cf. Dryden and

Mardia ((1998), p.126). In general on manifolds, non-positive sectional curvature or sufficient

concentration ensure the uniqueness of the IM. In particular, on a positive sectional curvature

manifold M , if the support of a distribution of a random variable Y is contained in a geodesic

ball Br(p) for some p ∈ M , and if B4r(p) is contained in a normal neighborhood U on which

positive sectional curvatures are bounded by κ > 0, then the condition r < π
2κ

ensures that Y

has a unique IM, see Karcher (1977) and Le (2001).

Now again, let us consider a random variable X on Q. In view of Theorem 2.7, one might

be tempted to neglect the part of the distribution of X near the singularity set Q \ Q∗, in

applications. However, since sectional curvatures may be unbounded when approaching the

singularity set (Section 5.2), uniqueness of intrinsic means on Q cannot be expected in general,

not even for concentrated distributions.

Definition 3.1. A generalized geodesic δ1 ∈ Γ(Q) minimizing (5) is called a first generalized

geodesic principal component (GPC) of X. A generalized geodesic δ2 ∈ Γ(Q) that minimizes

(5) over all generalized geodesics δ ∈ Γ(Q) that have at least one point in common with δ1 and

that are orthogonal to δ1 at all points in common with δ1 is called a second GPC of X .

Every point µP that minimizes (4) over all common points q of δ1 and δ2 is called a

principal component mean (PM). Given a first and a second GPC δ1 and δ2 with PM µP , a

generalized geodesic δ3 is a third GPC if it minimizes (5) over all generalized geodesics that meet

δ1 and δ2 orthogonally at µP . Analogously, GPCs of higher order are minimizing generalized

geodesics through the PM, passing orthogonally to all lower order GPCs .

One main feature of non-Euclidean geometry is the fact that in general, due to curvature,

the IM will differ from the PM, cf. Huckemann and Ziezold (2006) for a detailed discussion.

Given a generalized geodesic δ of X, denote by X(δ) the orthogonal projection of X onto

δ. We call it the marginal or the geodesic score of X on δ. By virtue of Theorem 2.6, geodesic
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scores are uniquely defined up to a null set on Q. A minimizer µ
(δ)
I on δ of the function

q 7→ E(d(X(δ), q)2) on the GPC δ will be called an intrinsic mean of X on the generalized

geodesic δ.

In order to define variance, recall that variance in Euclidean space can be obtained equiv-

alently by considering projections or by considering residuals each of which, in non-Euclidean

geometry, yield different results, however. Suppose we are given GPCs δ1, δ2, . . . with PM µP .

Let m ∈ N ∪ {∞} be the dimension of M . Then, define the geodesic variance explained by the

s-th GPC, 1 ≤ s ≤ m, s <∞, as obtained by projection

V
(s)

projX := E(d(X(δs), µP )2) , (6)

with total variance

VprojX :=

mX

s=1

V
(s)

projX ,

if finite. In the finite-dimensional case m <∞, we also have the geodesic variance explained by

the s-th GPC as obtained by residuals

V (s)
resX := E

„
1

m− 1

mX

j=1

d(X, δj)
2 − d(X, δs)

2

«
,

with the respective total variance

VresX :=

mX

s=1

V (s)
resX .

Mixing both approaches yields (again for any m ∈ N∪{∞}) the definition of mixed geodesic

variance

VmixX := E(d(X(δ1), µ
(δ1)
I )2) + E(d(X, δ1)

2)

= E(d(X(δ1), µ
(δ1)
I )2) + E(d(X,X(δ1))2) .

Finally, for m <∞,

CX :=
VprojX − VresX

Vint
(7)

can be taken for a measure of curvature present in X. In a Euclidean space we have CX = 0.

On a positive sectional curvature manifold (which tends to pull geodesics together) we expect

CX ≥ 0, whereas on a negative sectional curvature manifold (which tends to push geodesics

apart) we would have CX ≤ 0. For a distribution that mainly follows a generalized geodesic we

expect CX to be small even with high absolute sectional curvatures of the surrounding space.

4 Finding Sample GPCs: Computational Issues

In this section an algorithmic method to compute sample GPCs on a quotient Q = M/G is

proposed. We assume that the manifold M of finite or infinite dimension is implicitly defined
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by

M = {x ∈ H : φ(x) = 0} ,
TxM = {v ∈ H : dφ(x) v = 0}, x ∈M ,

for a suitable smooth function φ : H → R
n with dφ(x) : H → R

n having full rank for all x ∈M .

Here H denotes a suitable Euclidean or Hilbert space of dimension > n.

In landmark-based shape analysis, for example, usually H is a finite-dimensional matrix

space, n = 1, and φ defines a unit-hypersphere, cf. Section 5.1. For the shape space of closed

planar curves of Klassen et al. (2004) using direction functions θ, H is the space of Fourier

series, n = 3, and

φ(θ) =

„Z 2π

0

cos θ(s) ds,

Z 2π

0

sin θ(s) ds,

Z 2π

0

θ(s) ds

«

defines a subspace of codimension 3. Here, M itself contains only shape information, the action

of G = SO(2) on M allows for different choices of initial points. In view of landmark-based

shape analysis, this corresponds to additionally filter out cyclic relabelling of landmarks on each

curve separately. For numerical feasibility, only finitely many Fourier coefficients are used.

In general, we assume that only a finite-dimensional subspace H = R
d is considered and

that φ : R
d → R

d−m, d > m, yields an m-dimensional manifold M .

Further, let G be a Lie group of finite dimension l acting isometrically on M . We assume

that a similar representation is possible as well:

G = {g ∈ R
f : χ(g) = 0}

for a suitable smooth function χ : R
f → R

f−l, f − l > 0, and dχ of full rank on G. In all

applications, G will be a compact transformation group.

In shape analysis, H is usually the configuration space (e.g. centered configurations) and M

the pre-shape space. The function φ is responsible for removing size information. Sometimes,

as noted above in Klassen et al. (2004), the configuration space and more aspects of shape

invariance are also defined implicitly.

In our setup M is closed and thus complete. Therefore, cf. Section 2.1, maximal geodesics

t 7→ γ(t) are defined for all t ∈ R. Denote by 〈·, ·〉 the Riemannian metric on TxM which is, in

the case of an isometric embedding, the standard Euclidean inner product. By γx,v denote the

unique geodesic on M determined by γx,v(0) = x, γ̇x,v(0) = v. Here (x, v) is an element of the

tangent bundle TM := ∪x∈M{x} × TxM .

Furthermore, suppose that N data points x1, . . . , xN ∈ M are given that project to

[x1], . . . , [xN ] ∈ Q = M/G. With the knowledge of the preceeding sections, finding generalized

geodesics on M/G that minimize the squared distances to [x1], . . . , [xN ] as in (5) is equivalent

to finding horizontal geodesics on M that minimize squared distances to optimally positioned

data points.

Thus, we have to develop two separate sets of algorithms: the first puts points into op-

timal position to points and horizontal geodesics; the second computes minimizing horizontal
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geodesics. Therefore, our goal is the minimization of an objective function under certain con-

straints. In this section we derive the corresponding Lagrange equations from which fixed point

equations can be obtained. Algorithms for concrete situations can be naturally derived from

the latter, as illustrated in Section 5.

4.1 Optimally Positioning

Optimally Positioning with Respect to a Point. In order to bring x ∈ M into optimal

position g∗x to a given data point y ∈M , we have to find

g∗ = argming∈G dM (gx, y)2 .

Letting H : G→ [0,∞) : g → d(gx, y)2, we have hence to

find g∗ ∈ R
f such that

H(g∗) = inf{H(g): g ∈ R
f with χ(g) = 0} .

(8)

A standard method to solve this non-linear extremal problem under constraints consists in

employing Lagrange multipliers. Every solution g ∈ R
f of (8) also solves

dH + λT dχ = 0

for suitable λ ∈ R
f−l. In some cases, such as for Kendall’s similarity shape spaces, (8) can be

solved explicitly, cf. Section 5.3.

Optimally Positioning with Respect to a Geodesic. Here we are given a data point

x ∈M and a geodesic γ on M . In order to find g∗ ∈ G placing g∗x into optimal position to γ,

minimize the objective function

H1(g) := dM (gx, γ)2

for g ∈ R
f under the constraint χ(g) = 0. This will again be achieved using the method of

Lagrange multipliers by solving

dH1 + λTdχ = 0

for g ∈ R
f and λ ∈ R

f−l. Alternatively, by solving (8), a two-stage minimization is possible:

for every t find

g(t) := argming∈G dM (gx, γ(t))2 ;

minimize

H2(t) := dM

“
g(t)x,γ(t)

”

over t in a suitable interval such that the geodesic t→ γ(t) is traversed once.
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4.2 The Vertical Space at a Given Offset

In order to determine all horizontal geodesics it is necessary to find all horizontal directions at

a given offset, i.e., all directions that are orthogonal to the vertical subspace there. To this end,

we explicitly determine an orthogonal base for the vertical space Tx[x] at a given point x ∈M .

Recall the homomorphism αx : g → Tx[x] from Section 2.2, suppose that lx = dim(G/Ix), and

that e1, . . . , el is an arbitrary but fixed base for g. In general, even in case of a free action,

the image of an orthogonal base in g will no longer be orthogonal for Tx[x]. Hence determine

an independent system w1 := α−1
x (v1), . . . , wlx := α−1

x (vlx ) in g where v1, . . . , vlx are obtained

from αx(e1), . . . , αx(elx) by a Gram-Schmidt ortho-normalization:

v1 :=
αx(ek1

)

‖αx(ek1
)‖
, where k1 is the smallest index s.t.

αx(ek1) 6= 0
...

vlx :=
αx(eklx

)−
Plx−1

j=1 〈αx(eklx
),vj〉 vj

‖αx(eklx
)−

Plx−1
j=1

〈αx(eklx
),vj〉 vj‖

where klx is the smallest index s.t.

αx(eklx
) 6∈ span{v1, . . . , vlx−1}

The result will be denoted by the homomorphism βx : g → Tx[x] defined by

βx(ekj
) = vj = αx(wj) j = 1, . . . , lx . (9)

Furthermore, define the mapping ψ : TM = ∪x∈M{x} × TxM → R
lx by

ψ(x, v) :=

0
BB@

〈βx(ek1), v〉
...

〈βx(eklx
), v〉

1
CCA . (10)

Then we have that a geodesic γx,v is horizontal if and only if ψ(x, v) = 0.

4.3 Minimizing Horizontal Geodesics

We derive three different types of Lagrange equations, one for the first, one for the second, and

one for all subsequent geodesics. In passing, we also give an equation for the intrinsic mean not

involving the Riemann exponential function, as opposed to the algorithm of Le (2001). In order

to compute the variance by projection (6) we also compute the intrinsic mean on a geodesic.

First Sample GPC. Define the objective function by parameterizing (5) with

F (x, v) :=

NX

i=1

dM/G(π ◦ γx,v, [pi])
2 =

NX

i=1

dM (γx,v, g
∗
i pi)

for suitable g∗i ∈ G, i = 1, . . . , N , placing pi into optimal position w. r. t. γx,v.

Every unit speed horizontal geodesic γx,v on M is uniquely determined by an offset x ∈M ,

an initial direction v ∈ TxM of unit length, i.e., 〈v, v〉 = 1, and the horizontality condition
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ψ(x, v) = 0. Hence, define the constraining function

Φ1 : R
d × R

d → R
2d−2m+lx+1

(x, v) 7→

0
BBBB@

φ(x)

dφ(x)v

〈v, v〉 − 1

ψ(x, v)

1
CCCCA

. (11)

Finding a first GPC on M/G is thus equivalent to solving the extremal problem

find (x∗, v∗) ∈ R
d × R

d such that

F (x∗, v∗) = inf{F (x, v):x, v ∈ R
d with Φ1(x, v) = 0} .

Again, employ a Lagrange multiplier λ ∈ R
2d−2m+lx+1 and obtain from

dF + λT dΦ1 = 0 (12)

two fixed point equations which naturally yield an algorithm to determine the solution (x∗, v∗),

cf. Section 5.4.

Second Sample GPC and Sample PM. Given a horizontal lift t 7→ γx,v(t) of a first GPC,

a suitable horizontal lift of a second GPC must pass through a point y = γx,v(τ ) with an initial

direction w ∈ HyM orthogonal to γ̇x,v(τ ). Hence, with

Φ2 : R × R
d → R

d−m+lx+2

(τ, w) 7→

0
BBBB@

dφ
“
γx,v(τ )

”
w

〈γ̇x,v(τ ), w〉
〈w,w〉 − 1

ψ(γx,v(τ ), w)

1
CCCCA

and F2(τ, w) := F
“
γx,v(τ ), w

”
, finding a second GPC is equivalent to solving the extremal

problem

find (τ̂ , ŵ) ∈ R × R
d such that

F2(τ̂ , ŵ) = inf{F2(τ, w): τ ∈ R, w ∈ R
d with Φ2(τ, w) = 0} .

This will again be achieved by the method of Lagrange multipliers by solving

dF2 + λT dΦ2 = 0 (13)

for τ ∈ R, w ∈ R
d, and λ ∈ R

d−m+lx+2. For convenience, having found τ̂ and ŵ, let v2 := ŵ

and rewrite γx,v as γx̂,v1 where x̂ := γx,v(τ̂) and v1 := γ̇x,v(τ̂). Note that [x̂] is a sample PM

on Q.

Higher Order Sample GPCs. All GPCs on Q of order r, 3 ≤ r ≤ m, pass through the

sample PM [x̂] ∈ Q, i.e., each is determined only by a horizontal initial direction vr ∈ R
d at

offset x̂. In particular, vr is perpendicular to the horizontal lifts of all lower order GPCs at x̂.
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Suppose now that we have already found suitable r−1 ≥ 2 horizontal lifts γx̂,v1 , . . . , γx̂,vr−1

through x̂ of GPCs on Q. Then, defining

Φr : R
d → R

d−m+lx+r

v 7→

0
BBBBBBBBBB@

dφ(x̂) v

〈v, v1〉
...

〈v, vr−1〉
〈v, v〉 − 1

ψ(x̂, v)

1
CCCCCCCCCCA

and F3(v) := F (x̂, v), finding a suitable horizontal lift of a j-th GPC is equivalent to solving

the extremal problem

find vr ∈ R
d such that

F3(vr) = inf{F3(v): v ∈ R
d with Φr(v) = 0} .

As before, this leads to the task of solving the equation

dF3 + λT dΦr = 0 (14)

for v ∈ R
d and λ ∈ R

d−m+lx+r.

Sample IM. In a similar fashion, a representative x of an IM can be found. For this purpose

consider

T (x) :=
NX

i=1

dQ([x], [pi])
2 =

NX

i=1

dM (x, h∗
i pi)

2

with suitable h∗
i ∈ G for i = 1, . . . , n, putting h∗

i pi into optimal position to x. Then, finding a

representative of an IM is equivalent to solving the extremal problem

find x ∈ R
d such that

T (x) = inf{T (x):x ∈ R
d with φ(x) = 0} .

The method of Lagrange multipliers yields

dT + λT dφ = 0

for x ∈ R
d and λ ∈ R

d−m.

Sample IM on a GPC. Here, given a horizontal lift t 7→ γ(t) := γx,v(t) of a GPC π ◦ γ on

Q , we want to find a representative xγ = γ(t) of a point [xγ ] on π ◦ γ best approximating the

orthogonal projections [qi] of the data points [pi] onto π ◦ γ (i = 1, . . . , N). Bringing pi into

optimal position g∗i pi with respect to γx,v, observe that the orthogonal projections q∗i of g∗i pi

onto γx,v are representatives of [qi], i = 1, . . . , N . Their intrinsic mean xγ on γx,v is obviously a

representative for the intrinsic mean of [qi] (i = 1, . . . , N) on [γ]. This leads to an unconstrained

extremal problem for

T1(t) :=
NX

i=1

dM (γx,v(t), q∗i )2

in one variable t ∈ R.



INTRINSIC SHAPE ANALYSIS: GEODESIC PCA 21

5 Application: Kendall’s Shape Spaces

We will now illustrate the generic method developed by explicitly determining functions H,H1,

etc., and suitable χ, φ and ψ for Kendall’s shape spaces; those are defined in the beginning.

Then we apply the method of PCA based on generalized geodesics and give explicit algorithms.

5.1 Kendall’s Shape Space

Kendall’s shape spaces are spheres in a matrix space modulo similarity transformations; in some

ways they are generalizations of complex projective spaces. Denote by

M(m,k) all real matrices having m rows and k columns with the Euclidean

structure of R
mk, i.e., the inner product 〈a, b〉 := trace(abT ), ‖a‖ :=p

〈a, a〉,
gl(m) := M(m,m), the Lie algebra of the general linear group GL(m); the

Lie exponential is then simply the matrix exponential Exp(A) = eA

for A ∈ gl(m),

O(m) the orthogonal group in GL(m),

o(m) the Lie algebra of O(m), i.e., the skew symmetric matrices in gl(m),

SM(m) the orthogonal complement of o(m), i.e., the symmetric matrices in

gl(m),

SO(m) := Exp
“
o(m)

”
, the special orthogonal group in GL(m) of dimension

m(m−1)
2

,

im := diag(1, . . . , 1) ∈ SO(m), the identity matrix (the unit element).

Labelled landmark-based shape analysis is based on configurations consisting of k ≥ m + 1

labelled vertices in R
m called landmarks that do not all coincide. A configuration is thus a

matrix with k columns, each an m-dimensional landmark vector. Disregarding center and size,

these configurations are mapped to the pre-shape space sphere

Sk
m := {x ∈M(m,k − 1): ‖x‖ = 1}.

This can be done by, say, multiplying by a sub-Helmert matrix, cf. Dryden and Mardia (1998)

for a detailed discussion of this and other normalization methods. The pre-shape sphere will

be equipped with the natural spherical Riemannian metric, i.e., TxS
k
m is identified with the

Euclidean space {v ∈M(m,k − 1) : 〈x, v〉 = 0}.
In order to filter out rotation information, define on Sk

m a smooth action of SO(m) by

the usual matrix multiplication Sk
m

g→ Sk
m : x 7→ gx for g ∈ SO(m). The orbit [x] = {gx: g ∈

SO(m)} is the shape of x ∈ Sk
m. The quotient

π : Sk
m → Σk

m := Sk
m/SO(m)

is called Kendall’s similarity shape space. Since SO(m) is compact, this is a Hausdorff space,

cf. Section 2.2. Horizontal and vertical subspace can be explicitly determined: v ∈ HxS
k
m if
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and only if trace(vxThT ) = 0 ∀h ∈ o(m), i.e.,

v ∈ Hx ⇔ vxT ∈ SM(m),

cf. Kendall et al. ((1999), p.109). The complete situation is given by

gl(m) = o(m) ⊕ SM(m)

↓ ·x ↑ ·xT

TxS
k
m ⊕NxS

k
m = Tx[x] ⊕

z }| {
HxS

k
m ⊕NxS

k
m

(15)

Here, NxS
k
m := {λx : λ ∈ R} is the normal space of the pre-shape sphere. The first map is

surjective, and for rank(x) ≥ m− 1, i.e., Ix = {im}, the second map is also surjective.

Note that the differential mapping of tangent spaces dg : TsS
k
m → TgsS

k
m is given by

dg v = gv, v ∈ TxM, g ∈ SO(m) . (16)

Unit speed geodesics on the pre-shape sphere are precisely the great circles

γx,v(t) := x cos t+ v sin t (17)

through an offset x = γx,v(0) ∈ Sk
m with initial velocity v = γ̇x,v(0) ∈ Sk

m, 〈x, v〉 = 0. For any

p, q ∈ Sk
m, the spherical distance is given by

0 ≤ dSm
k

(p, q) = 2 · arcsin
 p

〈p− q, p− q〉
2

!

= arccos〈p, q〉 = arccos
“
trace(pqT )

”
≤ π .

The distance of a point p ∈ Sk
m to the great circle γx,v is given by

0 ≤ d(p, γx,v) = arccos
p

〈p, x〉2 + 〈p, v〉2 ≤ π

2
, (18)

and the orthogonal projection of p onto γx,v by

〈x, p〉x+ 〈v, p〉vp
〈x, p〉2 + 〈v, p〉2

.

Let us now return to the action of SO(m) on Sm
k , cf. Kendall et al. (1999) for a detailed

discussion.

In case of m = 1 the action is trivial, i.e., Σk
1
∼= Sk

1 .

In case of m = 2 the action of SO(m) on Sk
2 is just the scalar action of SO(2) ∼= S1 ⊂ C on the

(2k − 3) - dimensional pre-shape sphere naturally embedded in complex vector space

Sk
2
∼= S2k−3 ⊂ C

k−1.

The quotient map is then the well known Hopf fibration, leading to complex projective space of

dimension k − 2:

Σk
2
∼= S2k−3/S1 = PC

k−2.
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In case of m ≥ 3 a pre-shape s ∈ Sk
m with 0 < rank(s) = r < m − 1 will be invariant under

some rotation group, a non-trivial isotropy group of dimension r −m − 1. For this reason, cf.

Section 2.2, the shape spaces Σk
m(m ≥ 3) have no natural manifold structure.

Rotating a pre-shape p′ ∈ Sk
m into optimal position to a given pre-shape p ∈ Sk

m can be

accomplished via pseudo singular value decomposition

p′pT = uµvT

where u, v ∈ SO(m) and µ = diag(µ1, . . . , µn) with µ1 ≥ . . . µm−1 ≥ |µm| ≥ 0. Then

g∗ := vuT

puts p′ into optimal position g∗p′ to p (e.g. Kendall et al. ((1999), p.114)). We note that the

rotation g∗, and thus g∗p′, is uniquely determined up to a set of measure zero. More precisely:

only in case of p′, p regular and µn+1 + µn > 0 is the rotation g∗ uniquely determined (cf.

Kendall et al. ((1999), p.121)).

5.2 The Generalized Geodesics of Kendall’s Shape Spaces

Recall Theorem 2.7 to note that SO(m) acts freely on the open regular pre-shape sphere

S∗k
m := {x ∈ Sk

m : rank(x) ≥ m− 1} ,

which is open and dense in Sk
m, making the projection to regular shape space

S∗k
m → Σ∗k

m := S∗k
m/SO(m) ⊂ Σk

m

a Riemannian submersion. Generalized geodesics in shape space restricted to regular shape

space are geodesics in the usual sense. In shape space, a generalized geodesic through a regular

shape [x] ∈ Σ∗k
m is either a single geodesic in Σ∗k

m, or the union of geodesics in Σ∗k
m and isolated

singular shapes in Σk
m \ Σ∗k

m (cf. Lemma A.2. in the Appendix). For planar shape spaces Σk
2 ,

the fibers of Sk
2 are spanned by single vertical geodesics. In general this is not the case.

Example 5.1. For 3 ≤ m < k, a geodesic may be vertical only at an isolated point. Consider

x =
1√
m

(im|0), v =
1√
2

(w|0) ∈ Sk
m with w =

0
B@

0 −1

1 0
0

0 0

1
CA ∈ o(m) ,

and the geodesic t 7→ γx,v(t) = x cos t+v sin t. By (15), this is vertical if and only if ∃wt ∈ o(m)

with v cos t − x sin t = wt(x cos t + v sin t). w0 = w yields verticality at t = 0. For 0 < t < π

however, verticality would imply −
√

2 im =
√
mwtw, and this is impossible.

As [x] ∈ Σ∗k
m tends to [y] ∈ Σk

m \Σ∗k
m, some sectional curvatures at [x] tend to infinity, see

Kendall et al. ((1999), pp.149–156). We give a new, short, and constructive proof for this fact.
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Theorem 5.2. In shape space Σk
m, k > m > 2, every singular shape can be approached from

regular shape space Σ∗k
m by a generalized geodesic along which some sectional curvatures are

unbounded.

Proof. In the situation of a Riemannian submersion S∗k
m → Σ∗k

m we have O’Neill’s formula

(Lang ((1999), p.393)) for the respective curvatures and, in particular, in case of sectional

curvatures at [x] ∈ Σ∗k
m of any two orthonormal vector fields X,Y ∈ T (Σ∗k

m),

curvΣ∗ (X,Y )[x] = curvS∗( eX, eY )x +
3

4

X

1≤r<l≤m

〈Vrl, [ eX, eY ]〉2x

= 1 +
3

4

X

1≤r<l≤m

〈Vrl, [ eX, eY ]〉2x . (19)

Here eX and eY denote the horizontal lifts as in Section 2.2, [·, ·] denotes the Lie bracket and the

Vrl (1 ≤ r < l ≤ m) constitute a base system for T ([x]) orthonormal at x. For any vector fields

V,G,H we have the well-known (Lang ((1999), p.126/7))

〈V, [G,H ]〉 = ω[G,H ]

= G〈V,H〉 −H〈V,G〉 − 2dω(G,H),

where ω is the one-form dual (w.r.t. the Riemannian structure) to V , and dω denotes its exterior

derivative. The above reduces to

〈V, [G,H ]〉 = −2dω(G,H)

if V is vertical and G, H are horizontal. In view of (19), in order to prove the theorem it suffices

thus to provide on S∗m
k for

(a) a horizontal geodesic x(t) = p cos t+ v sin t, x(t) ∈ S∗m
k for 0 < t < π, p ∈ Sm

k \S∗m
k , and

(b) unit length vector fields V,G,H such that V is vertical and G,H are horizontal along

x(t) such that

(c) limt→0 dω(G,H) → ∞ for the dual ω of V .

In fact it suffices to give an example for Σ∗4
3, as this can be embedded isometrically in all higher

dimensional shape spaces, cf. Kendall et al. ((1999), p.29). For any singular shape [p] ∈ Σ4
3 \Σ∗4

3

all landmarks are on a single line segment, hence we pick w.l.o.g. a pre-shape representative of

the form

p =

0
B@

0 0 0

0 0 0

α β γ

1
CA ,

with 0 6= γ, α2 + β2 + γ2 = 1. In the following, in order to verify the respective properties

“horizontal” and “vertical” we make repeated use of the decomposition (15). First note that

v =
1p

α2 + γ2

0
B@

γ 0 −α
0 0 0

0 0 0

1
CA
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is a unit length horizontal vector at p, hence x(t) = p cos t+ v sin t satisfies the requirement (a).

Requirement (b) is met by the unit length vertical field

V =
1qPk−1

j=1 (x2
1j + x2

2j)

k−1X

r=1

(x1r∂2r − x2r∂1r)

and the two constant vector fields

G = a∂11 + ∂12 + b∂13, H = a∂21 + ∂22 + b∂23, a = − βα

α2 + γ2
, b = − βγ

α2 + γ2
,

horizontal along x(t). In order to verify (c), consider the exterior derivative of the dual to V :

dω = −
Pk−1

j=1 (x1jd
1j + x2jd

2j)
qPk−1

j=1 (x2
1j + x2

2j)
3 ∧

k−1X

r=1

(x1rd
2r − x2rd

1r)

+
2
Pk−1

r=1(d1r ∧ d2r)qPk−1
j=1 (x2

1j + x2
2j)

.

Along x(t) we have

dω =
1

(α2 + γ2)3/2 sin t

„
(2α2 + γ2)d11 ∧ d21 + αγ(d11 ∧ d23 + d13 ∧ d21)

+ 2(α2 + γ2)d12 ∧ d22 + (2γ2 + α2)d13 ∧ d23

«
,

yielding, as required,

dω(G,H) =
1

(α2 + γ2)3/2 sin t
→ ∞ .

We note that V as introduced above is, in case of dimension m = 2, the only (up to the

sign) vertical unit length vector field. The exterior derivative of its dual is then simply

dω = 2

k−1X

j=1

d1j ∧ d2j ,

and hence 0 ≤ |dω(G,H)| ≤ 1 for any unit length horizontal fields G,H . Then (19) yields

the sectional curvature of the complex projective spaces: Σk
2 has for k = 3 constant sectional

curvature 4, whereas for k ≥ 4, the sectional curvatures assume all values between 1 and 4.

Observe that only the complex curvature of Σk
2 is constantly 4 also for k ≥ 4.

In order to determine the space of (generalized) geodesics Γ(Σk
m), introduce for any m,k ∈

N, k > m,

O2(m,k) := {(e1, e2) ∈ M(m,k) × M(m,k): 〈ei, ej〉 = δij , 1 ≤ i, j ≤ 2}, an

orthonormal Stiefel manifold of dimension 2mk − 3,

OH
2 (m,k) := {(e1, e2) ∈ O2(m,k): e2e

T
1 ∈ SM(m)} a sub-manifold of dimension

2mk − 3 − m(m−1)
2

.
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We thus have surjective mappings O2(m,k − 1) → Γ(Sk
m), OH

2 (m,k − 1) → ΓH(Sk
m) : (x, v) 7→

γx,v. Under the action of O(2) from the right, given by

(e1, e2)

 
a −b
εb εa

!
= (ae1 + εbe2,−be1 + εae2), a2 + b2 = 1 = ε2 ,

pairs defining the same great circle are mapped onto each other. This action is free on both

O2(m,k−1) and OH
2 (m,k−1), hence we can identify Γ(Sk

m) with the Grassmannian G2(m,k−
1) := O2(m,k − 1)/O(2), and ΓH(Sk

m) with the sub-manifold

GH(m,k − 1) := OH
2 (m,k − 1)/O(2)

of dimension 2m(k−1)−4−m(m−1)/2. On OH
2 (m,k−1) there is also a free action of SO(m)

from the left, defined component-wise,

g(e1, e2) = (ge1, ge2) ,

that commutes with the right action of O(2). (16) and (17) imply that if (x, v) ∈ OH
2 (m,k− 1)

determines a horizontal geodesic γx,v on Sk
m projecting to a generalized geodesic δ on Σk

m,

then the horizontal geodesic determined by (gz, gv) ∈ OH
2 (m,k − 1) for given g ∈ SO(m)

projects to the same δ. For even dimensions m, {id,−id} is contained in every isotropy group

on GH(m,k − 1). Choosing suitably a regular pre-shape e1 and a singular pre-shape e2, we

see that on GH(m,k − 1) we have an effective action, of SO(m)/{id,−id} for m even, and of

SO(m) for m odd, respectively. Furthermore, the action is free for m = 2. Hence by Sections

2.2 and 2.4, we have the following.

Theorem 5.3. The space of all (generalized) geodesics on Kendall’s shape space Σk
m can be

given the structure of the canonical quotient

Γ(Σk
m) ∼= GH

2 (m,k − 1)/SO(m) ,

with manifold part of dimension 2m(k − 1) − 4 −m(m− 1). For m = 2, Γ(Σk
2) is a manifold.

We now turn to the properties of (generalized) geodesics described in Section 2.5. Not all

the pathological cases may occur on Kendall’s shape spaces.

Theorem 5.4. The following hold:

(a) for m < k, all (generalized) geodesics on Kendall’s shape spaces Σk
m are recurrent;

(b) any generalized geodesic t → δ(t) on Σk
m, 2 < m < k, with horizontal lift of the form

γ : t→ x cos t+ v sin t with x ∈ Sk
m \ S∗k

m, v ∈ S∗k
m, and δ(t) = [γ(t)] 6= [γ(−t)] = δ(−t),

is not everywhere-minimizing in any neighborhood of [x];

(c) on Kendall’s planar shape spaces Σk
2 (k ≥ 3), all geodesics are everywhere-minimizing as

well as non-oscillating.
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Proof. The first assertion (a) is a consequence of the fact that (generalized) geodesics on Σk
m

are projections of horizontal great circles which are recurrent on the pre-shape sphere, cf. Re-

mark 2.8.

For the second assertion (b), consider y = x cos t+ v sin t and z = x cos t− v sin t, [y] 6= [z], for

t 6= 0 arbitrary small. Then it suffices to show that z is not in optimal position w.r.t. y, since

then dΣk
m

([y], [z]) < 2t and δ is not everywhere-minimizing. W.l.o.g. we may assume that

x =

0
BB@

αT
1

...

αT
m

1
CCA , v =

0
BB@

βT
1

...

βT
m

1
CCA ,

with αi 6= 0 and αT
i βj = αT

j βi for 1 ≤ i, j ≤ r ≤ m − 2, αi = 0 for i = r + 1, . . . ,m, and with

β1, . . . , βm−1 non-vanishing. Then yzT is symmetric with diagonal vector
0
BBBBBBBBBBB@

‖α1‖2 cos2 t− ‖β1‖2 sin2 t
...

‖αr‖2 cos2 t− ‖βr‖2 sin2 t

−‖βr+1‖2 sin2 t
...

−‖βm‖2 sin2 t

1
CCCCCCCCCCCA

.

By hypothesis, for all 0 < |t| < π, at least one of the entries is negative, hence y and z cannot

be in optimal position w.r.t. one another.

To prove assertion (c), let t 7→ γ(t) = x cos t + v sin t be a horizontal great circle on the pre-

shape sphere Sk
2 ∋ x, v. In order to see that [γ] is everywhere-minimizing, it suffices to show

that dΣk
2
([x], [p]) = t for p = xc+ vs, c = cos t, s = sin t, and t ∈ (0, π/2). With the notation of

Huckemann and Hotz (2007), the fiber [x] of x is given by the points αx+βix ∈ Sk
2 , α2 +β2 = 1

(ix denotes a distinct unit vector spanning the vertical space at x). Then,

dΣk
2
([x], [p]) = min

α2+β2=1
dSk

2
(αx+ βix, cx+ sv) = min

α2+β2=1
arccos(αc) = t .

From this, and the fact that [γx,v(t)] = [−γx,v(t)] = [γx,v(t+ π)], we infer at once that [γ] is of

length π.

To see that the projection of γ to Σk
2 is non-oscillating, consider for arbitrary p ∈ Sk

2 ,
„

cos
“
dΣk

2
([p], [γ(t)])

”«2

= max
α2+β2=1

„
cos
“
dSk

2
(αp+ βip, x cos t+ v sin t)

”«2

= max
α2+β2=1

„
α(〈x, p〉 cos t+ 〈v, p〉 sin t) + β(〈x, ip〉 cos t+ 〈v, ip〉 sin t)

«2

= (〈x, p〉 cos t+ 〈v, p〉 sin t)2 + (〈x, ip〉 cos t+ 〈v, ip〉 sin t)2 ,

which is either constantly zero or a π-periodic function.



28 STEPHAN HUCKEMANN, THOMAS HOTZ AND AXEL MUNK

Remark 5.5. Numerical examples (cf. also Section 6.2) for 3 ≤ m < k show that generalized

geodesics on Σk
m are usually oscillating and not-everywhere minimizing.

As a consequence of Theorem 5.4, intrinsic means feature some similarities to intrinsic

means on a cone.

Corollary 5.6. The intrinsic sample mean µ̂I of two non-degenerate shapes [y] and [z], with

sufficiently close mirrored locations to a degenerate shape [x], is closer to [x] but unequal to [x]:

0 < dΣk
m

(µ̂I , [x]) < dΣk
m

([z], [x]) = dΣk
m

([y], [x]) .

Proof. W.l.o.g we use the notation of y and z as in the proof of (b) in Theorem 5.4. Then for

0 < t = dΣk
m

([z], [x]) = dΣk
m

([y], [x]) sufficiently small,

gz =

0
BBBBBBBBBBBBB@

αT
1 cos t− βT

1 sin t
...

γT
r cos t− βr sin t

βT
r+1 sin t

...

βT
m−1 sin t

ǫβT
m sin t

1
CCCCCCCCCCCCCA

with ǫ = (−1)m−r−1, is z brought into optimal position w.r.t. y. Since, for two configurations

only, the extrinsic sample mean coincides with the intrinsic sample mean, a pre-shape w ∈ µ̂I

is given by

y + gz

‖y + gz‖ =
1p

cos2 t+ β2 sin2 t

0
BBBBBBBBBBBBB@

αT
1 cos t

...

γT
r cos t

βT
r+1 sin t

...

βT
m−1 sin t

1+ǫ
2
βT

m sin t

1
CCCCCCCCCCCCCA

with indeed

0 < dΣk
m

(µ̂I , [x]) = arccos
cos tp

cos2 t+ β2 sin2 t
< t ,

where, by hypothesis,

0 < β2 := ‖βr+1‖2 + . . .+ ‖βm−1‖2 +
1 + ǫ

2
‖βm‖2 < 1 .



INTRINSIC SHAPE ANALYSIS: GEODESIC PCA 29

5.3 Optimally Positioning w.r.t. Horizontal Great Circles

The maximal shape distance of any two shapes [p], [p′] ∈ Σk
m is given by π

2
. Incidentally this is

also the maximal possible distance of a shape to a generalized geodesic as the example

p =

 
1 0 0

0 0 0

!
, x =

 
0 1 0

0 0 0

!
, v =

 
0 0 1

0 0 0

!

teaches: dΣ4
2
([p], [γx,v(t)]) = π

2
is constant.

Now, given a pre-shape p ∈ Sk
m and a unit speed horizontal geodesic γx,v on Sk

m, we adapt

the methods of Section 4.1 to obtain g∗ ∈ SO(m) putting g∗p into optimal position to γx,v.

According to (18), the objective function to be minimized is given by

H1(g) = arccos

r“
trace(gpxT )

”2

+
“
trace(gpvT )

”2

.

Equivalently, the simpler

eH1(g) :=
“
trace(gpxT )

”2

+
“
trace(gpvT )

”2

will be maximized. For odd dimensions m we may equivalently maximize over O(m), since

eH1(g) = eH1(−g) and for g ∈ O(m) either g or −g ∈ SO(m). Alternatively, with g(t) in optimal

position to γx,v(t),

eH2(t) := trace
“
g(t)pxT

”
cos(t) + trace

“
g(t)pvT

”
sin(t)

can be maximized over [0, 2π) for odd m, and over [0, π) for even m. Since

eH2(t) ≤
“

cos dS(g(t)p, γx,v(t)
”2

= eH1

“
g(t)

”
,

we obtain at once that if g∗p is in optimal position to γx,v then it is also in optimal position to

its orthogonal projection onto the geodesic.

Theorem 5.7. Given p ∈ Sk
m and a horizontal geodesic γx,v on Sk

m, let g∗ = g(t∗) ∈ SO(m) put

p in optimal position g∗p to γx,v, as well as in optimal position to γx,v(t
∗) for some t∗ ∈ [0, 2π).

Then

tan(t∗) =
trace(g∗pvT )

trace(g∗pxT )
.

The corresponding algorithm alternates between orthogonal projection and pairwise opti-

mally positioning.

Basic algorithm to put p into optimal position to a horizontal great circle γx,v:

Starting with a suitable t(0) compute, for n ≥ 0,

g(n+1) := uvT ,
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where u and v are from a pseudo singular value decomposition of pγx,v(t
(n))T =

uµvT , and update

t(n+1) := arctan
trace(g(n+1)pvT )

trace(g(n+1)pxT )
.

In general eH2 has several local maxima that can be accessed by choosing different suitable

starting values t(0). As correct optimal positioning is crucial to the validity of the algorithms

for computing GPCs, diligent care has to be taken to obtain a global maximum.

In order to jump out of local maxima we propose to add another optimization step to the

algorithm.

Diagonal-optimization algorithm to put p into optimal position to a horizontal

great circle γx,v:

Starting with a suitable t(0) compute, for n ≥ 0,

g(n+1) := uǫ∗vT

where, as before, u and v are from a pseudo singular value decomposition of

pγx,v(t
(n)) = uµvT and

ǫ∗ ∈ Em = {ǫ = diag(ǫ1, . . . , ǫm) : det(ǫ) = 1, ǫj ∈ {−1, 1} (j = 1, . . . ,m)}

is chosen to minimize dS(uǫvT p, γx,v). Then set

t(n+1) := arctan
trace(g(n+1)pvT )

trace(g(n+1)pxT )
.

Note that there are four elements in E3 and, in general,
P

0≤j<m/2

`
m
2j

´
elements in Em.

Numerical experiments show that the diagonal-optimization algorithm converges to the

global maximum in the majority of cases. Further research is necessary to develop a faster and

more reliable method.

5.4 Algorithms for GPCA and Means for Kendall’s Shape Spaces

In this section we compute sample GPCs and sample means algorithmically from a data sample.

For brevity we omit the prefix “sample” in the following.

Throughout this section suppose we have N m-dimensional configurations, each with k

landmarks. We map these to the pre-shapes p1, . . . , pN ∈ Sk
m. For most experimental situations

we may assume with probability 1 that the isotropy groups in question are trivial, i.e., Ix = {im}
at pre-shapes x where iterations are performed, cf. Theorem 2.7. Hence, the dimension of the

fiber is maximal: lx = l. In the general case of varying lx, the dimension of the vertical space

will have to be computed anew for every iteration step.

Picking an arbitrary but fixed base e1, . . . , el, l = m(m−1)
2

, for o(m) note that αx(v) =

v x for the mapping defined in Section 2.2. Defining βx as in (9), obtain a base w1 :=
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w1(x), . . . , wl := wl(x) for o(m) mapping to an orthogonal base w1x, . . . , wlx for the verti-

cal space Tx[x]. With these, define the function ψ as in (10). For every offset x = x0 the base

w1, . . . , wl will be computed anew. When taking derivatives with respect to x at an offset x0

we assume w1, . . . , wl to be constant (still being a base in an open neighborhood of x0) and

mapping to an orthogonal base at offset x0.

The First GPC. Recall (18) to observe that the objective function from (12) is given by

F (x, v) :=
NX

j=1

dSk
m

(qj , γ(x,v)) =
NX

j=1

arccos2
p

〈x, qj〉2 + 〈v, qj〉2

for x, v ∈M(m,k−1), where qj ∈ [pj ] are in optimal position to γx,v. The constraining function

(11) can be taken as

Φ1(x, v) =

0
BBBBBBBBBB@

〈x, x〉 − 1

2〈x, v〉
〈v, v〉 − 1

2〈w1x, v〉
...

2〈wlx, v〉

1
CCCCCCCCCCA

.

Abbreviate ζj :=
p

〈x, qj〉2 + 〈v, qj〉2, ξj :=
arccos ζj

ζj

q

1−ζ2
j

, and let ξ := 1 for ζ = 1. We assume that

the optimally positioned data qj do not have the maximal distance π
2

to γx,v, which means that

ζi 6= 0. Computing (12) we have, with a Lagrange multiplier λ = (λ1, . . . , λl+3), that

PN
i=1 ξi〈x, qi〉 qi = λ1x+ λ2v +

Pl
j=1 λj+3w

T
j v , and

PN
i=1 ξi〈v, qi〉 qi = λ2x+ λ3v +

Pl
j=1 λj+3wjx ,

where

PN
i=1 ξi 〈x, qi〉2 = λ1 ,PN
i=1 ξi 〈x, qi〉 〈v, qi〉 = λ2 ,PN
i=1 ξi 〈v, qi〉2 = λ3 , and

PN
i=1 ξi 〈v, qi〉 〈wjx, qi〉 = λj+3 for 1 ≤ j ≤ l .

Letting

Ψ1(x, v) :=
PN

i=1 ξi 〈x, qi〉 qi − λ2v −
Pl

j=1 λj+3w
T
j v

Ψ2(x, v) :=
PN

i=1 ξi 〈v, qi〉 qi − λ2x−Pl
j=1 λj+3wjx

we obtain the following.

Algorithm for (x∗, v∗) determining a first GPC:

Starting with initial values, e.g.

x(0) := p1, v(0) := unit horizontal projection of p2 − p1 at x(0) ,
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obtain

x(n+1), v(n+1) from x(n), v(n) for n ≥ 0

by computing qj ∈ [pj ], 1 ≤ j ≤ N , in optimal position with respect to γx(n),v(n)

according to Section 5.3, and by setting

x(n+1) := Ψ1(x(n),v(n))

‖Ψ1(x(n),v(n))‖
,

v(n+1) := unit horizontal projection of Ψ2(x
(n), v(n)) at x(n+1) .

The unit horizontal projection of v at x ∈ Sk
m is, of course, given by

z

‖z‖ where z := v − 〈x, v〉 x−
lX

j=1

D
wj(x)x, v

E
wj(x)x .

The Second GPC and PM. Given a horizontal great circle γ1 = γx,v mapping to a first

GPC determined by x, v ∈ Sk
m, Φ1(x, v) = 0, suppose that γ2(t) = γy,w(t) = y cos t + w sin t,

with

y = y(τ ) = x cos τ + v sin τ = γ1(τ )

for some suitable τ ∈ R, is a horizontal great circle projecting to a second GPC. According to

Section 4.3, the second GPC is then obtained by minimizing the objective function

F (τ, w) :=
NX

j=1

d2(qj , γ(y,w)) =
NX

j=1

arccos2
p

〈y, qj〉2 + 〈w, qj〉2

over (τ, w) ∈ R ×M(m,k − 1), where qj ∈ [pj ], i = 1, . . . , N , are in optimal position to γy,w.

Defining

z = z(τ ) = v cos τ − x sin τ = γ̇1(τ )

and inspecting the first two rows of the constraining condition Φ2(τ, w) = 0, observe that we

may alternatively employ

Φ2(τ, w) =

0
BBBBBBBBBB@

2〈w, x〉
2〈w, v〉

〈w,w〉 − 1

2〈w1y, w〉
...

2〈wly, w〉

1
CCCCCCCCCCA

.

As before, abbreviate ζj :=
p

〈y, qj〉2 + 〈w, qj〉2, ξj :=
arccos ζj

ζj

q

1−ζ2
j

, and compute (13) with a

Lagrange multiplier λ = (λ1, . . . , λl+3):

PN
i=1 ξi〈w, qi〉 qi = λ1x+ λ2v + λ3w +

Pl
j=1 λj+3wjy ,PN

i=1 ξi 〈y, qi〉 〈z, qi〉 =
Pl

j=1 λj+3〈wjz, w〉

)
. (20)
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Also abbreviating

G(a, b) :=

NX

i=1

ξi 〈a, qi〉 〈b, qi〉, and A(a, b) :=

lX

j=1

λj+3〈wja, b〉 ,

we have, for the Lagrange multipliers,

G(w, x) −Pl
j=1 λj+3〈wjy, x〉 = λ1 ,

G(w, v) −Pl
j=1 λj+3〈wjy, v〉 = λ2 ,

G(w,w) −Pl
j=1 λj+3〈wjy, w〉 = λ3 , and

G(w,wjy) − λ1〈x,wjy〉 − λ2〈v, wjy〉 − λ3〈w,wjy〉 = λj+3, 1 ≤ j ≤ l .

It seems convenient to alter the algorithm such that for every step, τ is set to zero, i.e., x and v

are updated for every step to y and z. Then λj+3 = G(w,wjy) and we consider, corresponding

to (20),

Ψ1(x, v, w) :=
PN

i=1 ξi 〈w, qi〉 qi −G(w, x) x−G(w, v) v

−Pd
j=1G(wjx,w) wjx ,

Ψ2(x, v, w) := the τ of smallest absolute value satisfying

G(x, v) cos 2τ + sin 2τ
2

“
G(v, v) −G(x, x)

”

= A(v, w) cos τ − A(x,w) sin τ .

By definition, Ψ2(x, v, w) is orthogonal to x and v and it is horizontal. This leads to the

following.

Algorithm for determining a second GPC:

Starting with some initial values, e.g.

x(0) := x, v(0) := v, w(0) :=
z

‖z‖ where w := (p2 − p1) and

z := w − 〈x(0), w〉 x(0) − 〈v(0), w〉 v(0) −
lX

j=1

〈wjx
(0), w〉 wjx

(0) ,

obtain

x(n+1), v(n+1) , w(n+1) from x(n), v(n), w(n) for n ≥ 0

by computing qj ∈ [pj ], 1 ≤ j ≤ N , in optimal position with respect to γx(n),w(n)

according to Section 5.3, and by setting

τ := Ψ2(x
(n), v(n), w(n)) ,

x(n+1) := x(n) cos τ + v(n) sin τ ,

v(n+1) := v(n) cos τ − x(n) sin τ , and

w(n+1) :=
Ψ1(x

(n), v(n), w(n))

‖Ψ1(x(n), v(n), w(n))‖ .
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Having thus found x∗, v∗ and w∗, recall from Section 4.3 that x̂ := x∗ is a representative

of a PM on Σm
k . With v1 := v∗ and v2 := w∗, we have the two horizontal geodesics

γ1 := γx̂,v1 , γ2 := γx̂,v2

projecting to a first and a second GPC on Σm
k . For simplicity set x := x̂.

Higher Order GPCs. Suppose that we have found horizontal great circles γx,v1 , . . . , γx,vr−1 ,

3 ≤ r ≤ m, mapping to GPCs on Σk
m. Then the Lagrange equation (14), for a horizontal great

circle γx,v projecting to a r-th order GPC on Σk
m, is given by

NX

i=1

ξi 〈v, qi〉qi = λ0x+

r−1X

s=1

λsvs + λrv +

lX

j=1

λr+3wjx

with ζi :=
p

〈x, qi〉2 + 〈v, qi〉2, qi in optimal position to γx,v, ξi := arccos ζi

ζi

√
1−ζ2

i

, and suitable La-

grange multipliers λ0, . . . , λr+l+1 ∈ R that are computed as before. We then have the following.

Algorithm for determining an r-th order GPC, r ≥ 3:

Starting with an initial value, e.g.

v(0) :=
z

‖z‖ where w := (p2 − p1) and

z := w − 〈x,w〉 x−
r−1X

s=1

〈vs, w〉 vs −
lX

j=1

〈wjx,w〉 wjx ,

obtain

v(n+1) from v(n) for n ≥ 0

by computing qj ∈ [pj ], 1 ≤ j ≤ N , in optimal position with respect to γx,v(n)

according to Section 5.3, and by setting

z(n+1) :=
PN

i=1 ξ
(n)
i 〈v(n), qi〉 qi ,

λ0 := 〈z(n+1), x〉 ,

λs := 〈z(n+1), vs〉, 1 ≤ s < r ,

λr :=
PN

i=1 ξ
(n)
i 〈v(n), qi〉2,

λj+r+1 := 〈z(n+1), wjx〉, 1 ≤ j ≤ l , and

v(n+1) := sign(λr)
z(n+1)−λ0x−

Pj−1
s=1 λsvs−

Pl
j=1 λj+r+1wjx

‖z(n+1)−λ0x−
Pj−1

s=1 λsvs−
P

l
j=1 λj+r+1wjx‖

.
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The IM and the IM on a GPC. The computation of an IM according to Section

4.3 can be carried out analogously. With ζj := 〈x, qj〉, ξj =
arccos ζj
q

1−ζ2
j

,
PN

j=1 ξj〈qj , x〉 = λ and

Ψ(x) := sign(λ)
PN

j=1 ξjqj , we have the following algorithm:

x(n) 7→ x(n+1)

x(n+1) = Ψ(x(n))

‖Ψ(x(n))‖

)
.

For every iteration, all qj ∈ [pj ] are rotated into optimal position to x(n).

Computing an IM on a GPC is equivalent to computing an IM on a horizontal great circle

on a sphere with respect to projections of optimally positioned points according to Section 4.3.

The corresponding algorithm can be found in Huckemann and Ziezold (2006).

6 Data Examples

In conclusion, we apply our methods to three typical data sets. The first example, from forest

biometry, features concentrated and nearly degenerate shapes. In the second and third examples

we consider classical data sets: regular, less concentrated shapes from an archaeological site,

and regular concentrated shapes of macaque skulls. For all data sets we computed

GPCA as laid out in this paper, and compared it with

restricted GPCA by restricting the GPCs to pass through the sample IM with our algorithms

accordingly simplified,

Euclidean PCA at the IM (PGA) by computing the covariance matrix of the data mapped

under the inverse Riemann exponential to the tangent space at the sample IM, cf. Fletcher

et al. (2004),

Euclidean PCA at the EM (GPA) by computing the covariance matrix of the data orthog-

onally projected to the tangent space of the Procrustes sample mean, cf. Dryden and

Mardia ((1998), Chapter 5).

Again for brevity we omit the prefix “sample” in the following. All GPCs, means and

variances found below are in fact sample GPCs, sample means and sample variances.

6.1 Nearly Degenerate Shapes

In collaboration with the Institute for Forest Biometry and Informatics at the University of

Göttingen, the influence on the shape of tree stems of certain external and internal factors is

studied. Of particular interest is the influence by competition with nearby trees that commences

when the crowns meet. We consider here a dataset of tree stems of five Douglas fir trees collected

at an experimental site in the Netherlands, cf. Gaffrey and Sloboda (2000) and Table 5 in

Appendix B.
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GPCA GPC1 GPC2 GPC3 GPC4 GPC5

by projection 93.58 % 6.38% 0.04193 % 5.309e − 06 % 2.505e − 06 %

rmssd 0.0002818 0.00183 0.002405 0.002420 0.002420

GPCA through the IM GPC1 GPC2 GPC3 GPC4 GPC5

by projection 50.23 % 49.50 % 0.2744 % 2.197e − 05 % 2.390e − 07 %

rmssd 0.0009775 0.001077 0.003392 0.0034 0.0034

Euclidean PCA at IM PC1 PC2 PC3 PC4 PC5

Euclidean projection 67.33 % 32.43 % 0.24% 5.366e − 06 % 4.295e − 15 %

geodesic projection 50.98 % 48.62 % 0.4076 % 6.041e − 05 %

rmssd 0.001046 0.001240 0.003388 0.0034

Euclidean PCA at EM PC1 PC2 PC3 PC4 PC5

Euclidean projection 67.33 % 32.43 % 0.2401 % 5.597e − 06 % 1.494e − 31 %

geodesic projection 50.98 % 48.62 % 0.4073 % 6.157e − 05 %

rmssd 0.001046 0.001240 0.003388 0.0034

Table 2: Displaying for five shapes of Douglas fir trees the percentages of variance

explained by PCA based on generalized geodesics (first box), PCA based on generalized

geodesics while requiring that all GPCs pass through the intrinsic mean (second box),

PCA by computing the covariance matrix in the tangent space of the IM under the inverse

Riemann exponential (third box), and PCA by computing the covariance matrix of the

data orthogonally projected to the tangent space of the EM (bottom box). In the first

two boxes, the line labelled “by projection” gives the percentages of variance obtained

by projection, cf. (6); the line labelled “rmssd” reports the square-root of the mean of

the squared shape-distances of the data to the respective generalized geodesic. In the

lower two boxes the values obtained by “Euclidean projection” are the precentages of

eigenvalues of the respective covariance matrices under the inverse Riemann exponential

at the IM (Euclidean PCA at IM), and under orthogonal projection to the tangent space

at the EM (Euclidean PCA at EM). Under “geodesic projection” the variances obtained

by projection (as above) to the respective generalized geodesics corresponding to the

eigenvectors of the respective covariance matrices are reported. No values are reported

for the ultimate eigenvectors as they point no longer into horizontal space. Similarly

“rmssd” gives again the square-root of the mean of the squared shape-distances of the

data to the respective generalized geodesics.
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Figure 1: Extracting a tetrahe-

dral shape from a Douglas fir

tree stem. Distorted view.

Since crown competition will be less reflected by lower tree

rings, tetrahedral shapes have been extracted by placing

landmarks at the top of the tree, as well as on the center

of the stem-disk at middle height, and at the maximal and

minimal radius of this disk, cf. Figure 1. Since the heights

in questions are about 10 meters and the radii around

10 centimeters, all shapes are close to one-dimensional

line segments. Shape change, however, occurs in all three

spatial directions. As is visible in Table 2, relative data

variation along the respective PCs, and distances of the

data to the first PC differ considerably between GPCA,

restricted GPCA and Euclidean PCA. Thus, with this

data-set we are very close to the situation described in

Theorem 5.2: the shape space is locally spanned by vec-

tor fields (among others) whose sectional curvatures tend

to infinity when approaching the singularity. Moreover,

note that the difference between “variance explained by

projection” and distances to generalized geodesics (cor-

responding to “variance explained by residuals”) can be

taken as a measure for curvature present in the data.

As the data is concentrated on a geodesic (93.58% of the variation is along the first GPC),

the empirical value of CX (2.466) must be generated by a high curvature of the surrounding

space, cf. (7). The overall variance rmiv (the root of the total intrinsic variance divided by

sample size) of the data-set is small. Still, for the same reason, the PM xP is considerably far

away from the EM xE and the IM xI , the latter three being rather close to each other, in fact

the distance between PM and IM is about of the size of rmiv. This means that the PM is well

within the data spread:

rmiv = 0.00342, dΣ4
3
(xP , xI) = 0.002126, dΣ4

3
(xE , xI) = 2.107e − 08, .

Therefore the classical methods of GPA, Euclidean PCA at the EM, and Euclidean PCA at the

IM are practically identical. Also, when considering residuals and projections to generalized

geodesics, Euclidean PCA and GPCA restricted to the IM are almost equivalent. On the other

hand, due to the flexibility of GPCA in choosing the PM, the first GPC approximates the

data far better than the first PCs of the other methods; in fact the approximation of the data

by the first PC of restricted GPCA is worse by a factor larger than 3. Most notably, however,

Euclidean PCA and the almost equivalent GPCA restricted through the IM fail to recognize the

non-trivial fact that shape change for this data set is apparently one-dimensional. This finding

suggests that shape variation of nearby trees of the same kind in interaction, is essentially

one-dimensional, cf. Hotz et al. (2007).



38 STEPHAN HUCKEMANN, THOMAS HOTZ AND AXEL MUNK

GPCA GPC1 GPC2 GPC3 GPC4 GPC5

by projection 29.16% 13.48 % 48.69 % 8.152% 0.5145 %

rmssd 0.1178 0.1270 0.1586 0.1681 0.1720

GPCA through the IM GPC1 GPC2 GPC3 GPC4 GPC5

by projection 28.12% 12.72 % 51.59 % 7.085% 0.4866 %

rmssd 0.1193 0.1266 0.1554 0.1685 0.1709

Euclidean PCA at IM PC1 PC2 PC3 PC4 PC5

Euclidean projection 48.95% 37.96 % 10.11 % 2.236% 0.7397 %

geodesic projection 8.932% 51.29 % 34.14 % 0.4577% 5.173 %

rmssd 0.1228 0.1241 0.1567 0.1703 0.1711

Euclidean PCA at EM PC1 PC2 PC3 PC4 PC5

Euclidean projection 49.53% 37.11 % 10.32 % 2.287% 0.7598 %

geodesic projection 8.95% 50.99 % 34.27 % 0.4671% 5.326 %

rmssd 0.1228 0.1355 0.1631 0.1704 0.1717

Table 3: Displaying for the Münsingen brooch data-set the results of the various methods

of PCA with the notation of Table 2.

6.2 Non-Concentrated Regular Shapes

In a second illustration, consider a data-set of 28 brooches (fibulae) from an Iron Age grave

site in Münsingen, Switzerland, closely studied by Hodson et al. (1966) among others. As the

cemetery grew over a large period of time, it is reasonable to believe that brooches at different

locations originated in different time epochs. Thus, five individual temporal groups have been

proposed. In order to study shape change, at each of the three-dimensional brooches, four

landmarks have been assigned to specific “anatomical” locations. Small ((1996), Section 3.5)
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Figure 2: Shape distance (vertical axis) to shapes of the second (left) and the twenty-

second (right) fibula (the sample has 28 fibulae), to shapes along the generalized geodesic

δ(t),−π ≤ t ≤ π, (horizontal axis) determined by the second Euclidean PC at the EM.

The dashed line marks the global minimum, its horizontal location gives the score.
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has applied principal coordinate analysis to Procrustes innerpoint distances of a planar lateral

view of the landmarks. Table 3 displays the relative variances explained by the respective five

PCs in Kendall’s shape space Σ4
3.
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Figure 3: Scores of the five groups of the Münsingen brooch data on the first two PCs.

Top: Euclidean PCA at the EM, bottom: geodesic method. The oldest group is depicted

by filled circles, the second oldest by stars, the middle group by crosses, the second

youngest by diamonds and the youngest by circles. The scaling on the coordinate axes

is depicted in Euclidean projection (top image) and arclength on shape space (bottom

image, the largest distance in shape space is π/2). Note the different scaling on the axes.
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Figure 4: Residual distances to the first two GPCs for the five groups from Figure 3 of

the Münsingen brooch data-set.

As visible, the results of the two geodesic methods, which are this time very similar, differ

from the results of the two Euclidean approaches, which are again almost identical. Euclidean

PCA leads to the belief that the variation of brooch shape is essentially explained by two PCs.

Two dominating components (minimizing residual variance) can also be found by the

two geodesic methods; however, the corresponding GPCs point in directions different from the

directions of the Euclidean PCs in the tangent space of the EM (or IM, resp.) and approximate

the data w.r.t. the intrinsic metric better. This fact can be explained by curvature, and even

more by oscillation and the not-everywhere minimizing property of the respective generalized

geodesics corresponding to the Euclidean PC directions, cf. Figure 2. There, for two fibulae,

oscillation of the generalized geodesic corresponding to the second Euclidean PC is visible. The

left image shows a score close to zero, the right image depicts a score close to π though there is a

local (slightly higher) minimum close to zero. For this reason, variance explained by projection

may increase with higher order PCs for all methods, even though higher order PCs have higher

residual variance. This hints again at a smaller explanatory significance of variance obtained

by projection, in particular for the Euclidean approximations. Analysis of residuals will then

add to the significance of the findings.

In the Euclidean approximations a trend of temporal evolution can be identified as the

strongest component, see Figure 3: shapes move in time from right to left along the first PC,

cf. also Small ((1996), p.94). Using the geodesic method, this trend is also visible in the second

component: shapes move in time from top to bottom. As the stronger first principal component,

however, a temporal increase in shape diversification can be identified. This latter observation

is validated by a plot of residual distances in Figure 4.
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GPCA GPC1 GPC2 GPC3 GPC4 GPC5

by projection 31.15% 20.10 % 14.67% 10.57% 6.223 %

rmssd 0.06158 0.06636 0.06858 0.07021 0.0719

GPCA through the IM GPC1 GPC2 GPC3 GPC4 GPC5

by projection 31.15% 20.10 % 14.67% 10.57% 6.223 %

rmssd 0.06158 0.06636 0.06858 0.07021 0.0719

Euclidean PCA at IM PC1 PC2 PC3 PC4 PC5

Euclidean projection 31.18% 20.10 % 14.67% 10.58% 6.216 %

geodesic projection 31.15% 20.10 % 14.67% 10.57% 6.223 %

rmssd 0.06158 0.06636 0.06858 0.07021 0.0719

Euclidean PCA at EM PC1 PC2 PC3 PC4 PC5

Euclidean projection 31.13% 20.11 % 14.68% 10.59% 6.223 %

geodesic projection 31.15% 20.10 % 14.67% 10.57% 6.223 %

rmssd 0.06158 0.06636 0.06858 0.07021 0.0719

Table 4: Displaying for a data set of macaque skulls the results of the various methods

of PCA with the notation of Table 2.

In conclusion of this example, we note that the curvature estimate (7) for this data set is

CX = 0.1217, much smaller than in the previous example. For this reason, as visible in Table 3,

GPCA restricted through the IM approximates unrestricted GPCA rather well. Equivalently,

in relation to the data spread (rmiv) and the again comparatively small distance between EM

and IM, the PM is relatively closer to both IM and EM than in the previous example:

rmiv = 0.1734, dΣ4
3
(xP , xI) = 0.01936, dΣ4

3
(xE , xI) = 0.002291, .

6.3 Concentrated Regular Shapes

In a final example we consider a data set of seven anatomical landmarks chosen on the skulls of

nine male and nine female macaque specimen, cf. Dryden and Mardia (1998). Male specimen

show a greater variance, the difference between mean shapes (EM) of both sexes is not signif-

icant, however, cf. Dryden and Mardia ((1998), p.159). As in the previous examples, Table 4

reports the results of the various methods of PCA. In this example we observe no difference

between the three approaches, rendering the Euclidean approximation valid. In fact, the curva-

ture estimate (7) takes the very small value CX = 0.0001924, and the root of the total intrinsic

variance divided by sample size is also of small size, rmiv = 0.05954 . Due to these facts, all

means are nearly coincident and the various methods of PCA give (almost) identical results, cf.

Table 4.
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7 Discussion

With this paper, we aimed at providing a method that allows one to perform non-linear multi-

variate statistics in cases where the data live on spaces with a non-Euclidean intrinsic structure.

Furthermore, we wanted this method to rely on the given intrinsic structure alone, thereby

avoiding any linear approximation. We were particularly interested in a rather general quo-

tient space occurring from an isometric action of a Lie group on a Riemannian manifold. For

such spaces, we proposed a method as desired, namely a PCA based on the spaces’ intrinsic

structure. A typical application lies in the statistical analysis of shapes which has until now

been performed almost exclusively by linear approximations. An approach respecting the non-

linearity of the intrinsic metric leads to non-linear optimization problems, which pose specific

numerical challenges. The methods derived in this work are applicable to a wide variety of

non-manifold shape spaces which usually occur when studying three- and higher-dimensional

shapes. Taking Kendall’s shape spaces as an example we have illustrated how this methodology

provides for explicit algorithms.

We have presented PCA based solely on the intrinsic structure in contrast to the current

methods of PCA by embedding into and projecting to Euclidean space; our motivation was

threefold. First, the intrinsic approach may be the only method available near singularities

of the quotient. On Kendall’s shape spaces this is the case when mean shapes are nearly

singular. Recall from the remarks following Theorem 5.2 that this cannot happen with planar

shapes, i.e., for Σk
2 . It is, however, the case when samples of three-dimensional objects fall into

high curvature regions of the regular shape space, as happens in biological applications. This

phenomenon which we encountered in the study of shapes of individual tree stems (cf. Section

6.1) was the initial motivation for this research. Second, our approach may serve as a basis

for a larger study to compare the validity of the much simpler linear approximation methods.

Such a study was carried out by Huckemann and Hotz (2007) for Kendall’s planar shape spaces.

Third, we consider our work a preliminary basis for further development of non-linear statistical

analysis working exclusively intrinsically.

At this point let us sum up our results on quotients with singularities such as Kendall’s

shape spaces concerning GPCA, restricted GPCA through the IM, Euclidean PCA at the IM

(PGA), and Euclidean PCA at the EM (general Procrustes analysis), cf. Section 6. We found

the following.

1. Due to the vicinity of IM and EM and the proximity of Euclidean and intrinsic distances,

Euclidean PCA at the IM and Euclidean PCA at the EM are practically equivalent.

2. Due to unbounded curvature and oscillations of generalized geodesics, Euclidean PCA

may fail to recognize data features that occur under GPCA. This is the case for

(a) large data-spread, even with little curvature present: then GPCA may well be ap-

proximated by restricted GPCA; and

(b) data within high curvature regions: then restricted GPCA may also fail to recognize
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data features that occur under GPCA due to the fact that IM and PM may differ

considerably when high curvature is present.

3. Curvature within the data can be estimated by CX from (7).

We view our methods and results as an early contribution to the ambitious task of carrying

over statistical methods from linear Euclidean spaces to manifolds and more general spaces. We

would like to conclude by pointing out open problems and research directions we consider to be

of high importance.

Exploring Effects of Non-Euclidean Geometry. As we have seen, the geometric

structure of generalized geodesics for Kendall’s shape spaces for three-dimensional configurations

is far more complicated than it is for two-dimensional configurations. In particular, the location

and the descriptive nature of the PM deserves to be studied more closely. Also, studying

oscillation effects certainly requires more research. In case of Kendall’s shape spaces, an upper

bound on the number of local minima of the distance of a given shape to shapes along a

generalized geodesic depends linearly on dim(SO(m)/Iγ(t)) with the isotropy group Iγ(t) at

γ(t). Note that by Lemma A.2 this dimension is constant a.e. on t ∈ [0, 2π). In general,

conditions on geodesics and the data support D (the geodesic convex hull of the data, say) can

be found that ensure that geodesics and geodesic segments in D are everywhere minimizing.

Computing Curvature Present in the Data. Even with good numerical algorithms,

GPCA will be computationally more costly than Euclidean PCA. It would be helpful to develop

diagnostic tools for the evaluation of the benefit of GPCA over Euclidean PCA. CX as introduced

in (7) is such an indicator; however, CX is available only after computing the GPCA. An

alternative could be a numerical method to compute intrinsic sectional curvature, say at a

mean of the data sample, using suitable horizontal and vertical vector fields.

Degenerate Means. Sample means of non-degenerate shapes grouping around a degenerate

shape may move closer to the degenerate shape, cf. Corollary 5.6. It would be interesting to

determine under what circumstances (e.g. symmetry conditions on the distribution) the intrinsic

population mean of concentrated non-degenerate shapes may be unique and/or degenerate.

Numerics. Crucial to the success of GPCA is a reliable method for optimal positioning w.r.t.

a horizontal geodesic. The results of this paper have been validated by highly time consuming

brute force methods to ensure that local minima found are in fact global. In order to undertake

larger studies in the future, considerable improvement of the numerical methods is essential.

The numerical problem can be attacked either by travelling along a goedesic i.e., essentially

along S1, or by optimizing over SO(m); both are problems of non-convex optimization, cf.

Section 5.3. The objective function corresponding to the former can be non-differentiable, thus

posssibly leading to very narrow minima; the objective function corresponding to the latter can
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be expressed as a multivariate polynomial. To the knowledge of the authors these problems

encountered have found little attention in numerical analysis in the past.

Extensions to Other Shape Spaces. Obviously, the methods developed here extend

to many other shape spaces as well. If horizontal geodesics and distances to them are given

analytically, then our method can be applied directly. Our approach may be applicable as

well if geodesics and distances to geodesics can only be computed numerically. Such numerical

methods have been proposed, e.g. by Miller et al. (2006) or Schmidt et al. (2006), for general

models, such as e.g. Michor and Mumford (2006) or Klassen et al. (2004), for closed 2D curves,

or closed 2D and 3D contours based on medial axes, e.g. Pizer et al. (2003), Fletcher et al.

(2004), as well as Fuchs and Scherzer (2007).

Manifold PCA. On the conceptual side, as pointed out in Section 3.1, non-nested intrinsic

PCA based on (generalized, cf. Appendix A) manifolds appears as a natural extension of our

methods. One might consider manifolds totally geodesic at a point as well as manifolds totally

geodesic at all points. In particular for Kendall’s shape spaces of three- and higher-dimensional

objects, the former may be numerically hard to compute, and the latter may be available only

for some dimensions. We also note that parametrized spaces obtained thereby may be manifolds

only locally.

Inference. In this paper we did not address the issue of inference. Classical and functional

PCA allows for manifold inferential tools, such as tests and confidence bands on the components

(see e.g. Kneip and Utikal (2001) or Munk et al. (2007)). These approaches are all asymptotic

in nature and a linearization of the underlying estimator typically leads to satisfactory results,

often for quite small samples. This does not seem to be the case anymore in the present context,

rather high curvature effects suggest that (first order) asymptotic considerations will fail. Model

selection, as it is used for the automatic selection of the number of required components (see

e.g. Hsieh (2007) in the context of nonlinear PCA), is another related issue. It would be of

great importance to transfer these ideas to GPCA. Finally, we believe that there is much room

for sharp risk bounds for the geodesic principal components as it has been investigated e.g. by

Zwald et al. (2004) in the context of kernel PCA.

Appendix A: Foci and Focal Points

In this section we use the notation and hypotheses of Section 2: a compact Lie group G acts

isometrically on a complete finite-dimensional and connected Riemannian manifold M giving

rise to the canonical quotient π : M → M/G =: Q. In order to define generalized submanifolds

on Q as well as foci and focal points, we introduce some additional notation and results, cf.

Bredon ((1972), p.182).

A point p ∈ M is of orbit type (G/H) if Igp = H for some g ∈ G. This is equivalent to
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saying that all isotropy groups in the fiber [p] are conjugates of H . The union

M (H) := {p ∈M : Igp = H for some g ∈ G}

of all points of equal orbit type (G/H) - if not void - is a submanifold of M , and M (H) \M (H)

consists of points of smaller orbit type, i.e., H ⊂ Igp′ , H 6= Igp′ for every p′ ∈M (H) \M (H) with

suitable g = gp′ ∈ G. In particular, Q(H) := M (H)/G is a manifold. Recall that Q({id}) = Q∗

is the manifold part of Q.

It is well-known that every point has a neighborhood in which only finitely many orbit

types occur. This can easily be seen by an inductive argument relying on the Slice Theorem

(cf. Section 2.2) and Lemma A.2 below. Since manifolds are separable (i.e., contain a countable

dense set) there are only countably many orbit types on M .

Definition A.1. We call K ⊂ Q a generalized submanifold of Q if K ∩Q(Ip) is a submanifold

of Q(Ip) for every [p] ∈ K.

Since π|
M(Ip) : M (Ip) → Q(Ip) is a Riemannian submersion, L(Ip) := π−1(K ∩ Q(Ip)) ⊂

M (Ip) is a submanifold of M for all [p] ∈ K, for a generalized submanifold K. In particular,

every submanifold K of Q∗ is a generalized manifold. The notion of generalized submanifolds

includes generalized geodesics.

Lemma A.2. The point set L of a horizontal geodesic contains a point p of maximal orbit

type. Then LIp := L ∩M (Ip) = {p′ ∈ L : Ip′ = Ip} is a submanifold, L \ LIp is contained in

M (Ip) \M (Ip), and consists only of isolated points.

Proof. Assume that γ(t) = expp0
(tv) with p0 = γ(0) and suitable v ∈ Hp0M is a parametriza-

tion of the point set L of a horizontal geodesic. Moreover let Ht := Iγ(t). From (2) we obtain

Ht ⊂ H0 for t sufficiently small. Since

g
“

expp0
(tv)

”
= expgp0

(tdg v) ,

we have at once g ∈ Ht for t 6= 0 sufficiently small if and only if dg v = v. Hence Ht = Ht′

for all sufficiently small non-zero t, t′. This yields that the orbit type on L near p0 is constant

and maximal, except for at most the isolated point p0. W.l.o.g assume that p0 = p is of locally

maximal orbit type. Since γ(t) = expp(tv) is a global parametrization of L, we have that

H0 ⊂ Ht for all t ∈ R. This argument can be applied to any point of locally maximal orbit

type, hence H0 = Ht for all t ∈ R except for at most isolated points.

Now, consider an arbitrary submanifold L of M and an arbitrary generalized submanifold

K of Q. Recall the normal bundle NL = ∪p∈L{p} × NpL of L in M . With the Riemann

exponential of M we have the well defined endpoint map

φ : NL → M

(p, v) 7→ φ(p, v) = expp(v) .
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Also, we have the set of orthogonal projections

K[p] :=


[p∗] ∈ K : dQ([p], [p∗]) = inf

[p′]∈K
dQ([p], [p′])

ff

of [p] ∈ Q \K onto K.

Definition A.3. Call

p ∈M \ L a focus of L if ∃(p′, v′) ∈ NL such that expp′(v′) = p and

(dφ)(p′,v′) is singular,

[p] ∈ Q \K a focal point of K if |K[p]| > 1.

Note that foci are points with locally stationary distance to a subset of L.

If G = {id} and M = R
m, then these definitions agree with Bhattacharya and Patrange-

naru ((2003), p.2 and p.12). Also for M = R
m, foci have been introduced as “focal points”

by Milnor ((1969), p.32); Hastie and Stuetzle ((1989), p.514) call the focal points of a one-

dimensional submanifold of Euclidean space the ambiguity set. We first give some illustrations

in the Euclidean plane.

1. The center of a circle is both a focus and a focal point to that circle; the “foci” of a

non-circular ellipse are its foci, the open line segment between them constitute its focal points,

none of which is a focus.

2. Consider a suitably smoothed version of the union of a circular segment and a line

segment 
− 1√

2

ff
×
»
− 1√

2
,

1√
2

–
∪


(x, y) ∈ R
2 : x ≥ − 1√

2
, x2 + y2 = 1

ff
.

Then the origin is its focus, the minimal distance to the origin, however, is attained at (−1/
√

2, 0),

from which the origin is reached by the endpoint map with non-singular derivative.

3. In order to see that the set of foci of a closed manifold is not necessarily closed, consider

a suitably smoothed version M of the union ∪∞
n=2(Kn ∪ Ln) of circular segments Kn and line

segments Ln defined by

Kn := {(x, y) ∈ R : (x− 1

n
)2 + y2 = R2

n, x > 0, |y| ≤ 2}, Rn := n− 1

n

Ln :=

8
<
:

{(x,−2) : 1
n

+
√
R2

n − 4 ≤ x ≤ 1
n+1

+
q
R2

n+1 − 4} n odd

{(x, 2) : 1
n

+
√
R2

n − 4 ≤ x ≤ 1
n+1

+
q
R2

n+1 − 4} n even .

Then, all pn = (1/n, 0) with n ≥ 2 are foci of M ; the origin, their limit point, however is not a

focus.

We are concerned with minimizing foci which form a closed subset for closed manifolds as

we shall see.

Definition A.4. A focus p of L will be called minimizing if there is (p′, v) ∈ NL such that

expp′(v) = p, (dφ)(p′,v) is singular and dQ(p,L) = ‖v‖.
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The following is a generalization of Theorem 3.2 of Bhattacharya and Patrangenaru ((2003), p.12),

which is a generalization of Proposition 6 of Hastie and Stuetzle ((1989), p.515).

Theorem A.5. Let G be a compact Lie group acting isometrically on a complete finite-dimensional

Riemannian manifold M , and let L be an arbitrary submanifold of M, K an arbitrary generalized

submanifold of Q = M/G. Then

(a) the set of foci and focal points of L has measure zero in M ,

(b) if L is closed then the set of minimizing foci and focal points of L is closed in M ,

(c) the set of focal points of K has measure zero in Q.

Proof. Throughout the proof we use the notation introduced above. Moreover let

L0 be the set of foci of L,

L00 be the set of minimizing foci of L,

L be set the of focal points of L, and

K be set the of focal points of K.

From the following Claims I and II we obtain the assertion (a). Claims III and IV yield assertion

(b), and Claim V assertion (c).

Claim I: L0 is of measure zero. By definition, L0 is the set of critical points of the

endpoint map φ : NL → M . As in Milnor ((1969), p.33), Sard’s theorem ensures that the

critical points have measure zero in M .

Claim II: L1 := L \ L0 is of measure zero. From every focus p ∈ L we have the set of

orthogonal projections Lp. Conversely, for every point p′ ∈ Lp ⊂ M , there is a unique normal

vector v = v(p, p′) such that p = expp′(v). If p′ ∈ Lp1 ∩ Lp2 for focal points p1 6= p2, then

obviously v(p1, p
′) and v(p2, p

′) cannot be collinear. Hence, there is a subset A ⊂ CL of the

cylindrical manifold

CL := {(q, v) ∈ NL : ‖v‖ = 1}

around L in NL and a mapping ψ : A → NL, (q, v) →
“
q, t(q, v) v

”
such that χ := φ ◦ ψ :

A → L1 is surjective. We show that χ is locally homeomorphic. Then, L1 ⊂ M is the locally

homeomorphic image of a subset A of a set of measure zero CL in NL with dim(NL) = dim(M);

hence L1 is a set of measure zero in M .

Continuity of χ follows from continuity of t: let A ∋ (qn, vn) → (q, v) ∈ A and tn =

tn(qn, vn) → t0 with focal points L1 ∋ pn := expqn
(tnvn) → expq(t0v) = p. By continuity

of distance, dM (p, q) = dM (p, L). By hypothesis ep = expq

“
t(q, v)v

”
is focal with dM (ep, L) =

d(ep, q). This yields t0 = t(q, v).

Moreover, χ−1 = ρ ◦ φ−1|L1 is locally well defined and continuous as it is the composition

of the continuous projection

ρ : {(q, v) ∈ NL : ‖v‖ 6= 0} → CL, (q, v) 7→
„
q,

v

‖v‖

«
,
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and a locally diffeomorphic inverse branch φ−1 around L1; by hypothesis we stay away from

the singularity set L0 of φ.

Claim III: L00 is closed. Consider sequences pn ∈ L00, p′n ∈ L, and vn ∈ Tp′

n
L such that

pn = expp′

n
(vn) and dφ(p′

n,vn) is singular. If pn → p ∈M then, as we are considering minimizing

foci only, ‖vn‖ is bounded. As a consequence, p′n has a point of accumulation p′ ∈M which is in

L if the latter is closed. By continuity there is a v ∈ Np′L with expp′(v) = p and ‖v‖ = dM (p,L).

Again by continuity, dφq,v is singular, proving that p ∈ L00.

Claim IV: L00∪L is closed. In order to complete the argument that the set of minimizing

foci and focal points is closed, we consider a non-focal limit point p ∈M of a sequence of focal

points pn ∈M and show that it is a minimizing focus. Indeed if qn, q
′
n ∈ Lpn , qn 6= q′n, we may

assume that qn, q
′
n ∈ L have a common point of accumulation q ∈ L (since p is non-focal) and

that

expqn
(tnvn) = pn = expq′n

(tnv
′
n) (21)

for suitable unit length vn ∈ NqnL, v′n ∈ Nq′n
L, and tn = dM (qn, L) > 0. Again, tn has a point

of accumulation t and vn, v
′
n have a point of accumulation v such that

expq(tv) = p , t = dM (p, L) .

Hence, from (21) we infer at once that dφ(p,tv) is singular and thus p is a minimizing focus.

Claim V: K is of measure zero in Q. Since there are only countably many orbit types

in M , by hypothesis there is an index set I ⊂ N such that K = ∪i∈IKi, with submanifolds

Ki := K ∩ Q(Hi) of Q(Hi) and closed subgroups Hi of G for i ∈ I . As noted in the beginning

of this section, the inverse projection Li := π−1(Ki) of each of these is a submanifold of M .

Moreover, every point p ∈ [p], where [p] is focal for K, is focal for Li ∪ Lj with suitable indices

i, j ∈ I . As the argument of claim II is local in nature, it can be applied to every Li with

eL1
i := {p ∈ L1 \ L0

i : Lp ∩ Li 6= ∅}

instead of L1
i \ L0

i ; here L = ∪i∈IL
i and L0

i ,L1
i denote the foci and focal points, resp. of Li.

This yields that the set of focal points for L = ∪i∈ILi is of measure zero in M . As this is the

inverse projection of K, the latter is of measure zero in Q.
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Appendix B: Tree-Stem Data Set

Landmarks 1 2 3 4

27 14 14 14

Tree 1 0 0 0.05662873 −0.09531028

0 0 −0.0674875 0.03469011

29.7 17.6 17.6 17.6

Tree 2 0 0 −0.07479217 0.0587687

0 0 −0.04318128 0.1017904

32.5 18.2 18.2 18.2

Tree 3 0 0 0.1427532 −0.1581646

0 0 −3.496329e− 17 0.09131639

28 18 18 18

Tree 4 0 0 0.05264516 0.01673678

0 0 −0.06274006 0.094919

24.3 16.1 16.1 16.1

Tree 5 0 0 −0.0591466 0.04722901

0 0 −0.03414831 0.08180305

Table 5: Tetrahedral configurations from the stems of 5 Douglas fir trees. Units are

given in meters.
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Le, H. (2001). Locating Fréchet means with an application to shape spaces. Adv. Appl. Prob.

33, 324–338.

Le, H., and Kume, A. (2000). Detection of shape changes in biological features. Journal of

Microscopy 200, 140–147.

Mardia, K., and Patrangenaru, V. (2001). On affine and projective shape data analysis. In:

Functional and Spatial Data Analysis, Proceedings of the 20th LASR Workshop (Eds: K.V.

Mardia and R.G. Aykroyd), 39–45.

Michor, P. W., and Mumford, D. (2006). Riemannian geometries on spaces of plane curves. J.

of the European Math. Soc. 8, 1–48.



INTRINSIC SHAPE ANALYSIS: GEODESIC PCA 53
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