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Abstract— In this paper we propose and test a new method for
terminating the maximum likelihood expectation maximization
algorithm for reconstructing positron emission tomography im-
ages. The method is based on a stochastic multiresolution analysis
which involves all partial sums (scales) of normalized differences
between the projected images and the detector data for each
row of the sinogram. Previous methods involved only the single
total sum of these differences for all detectors. Our method is
theoretically founded on recent results from probability theory
on the almost sure behaviour of the maximum of the partial
sum process for Poisson data. Preliminary tests indicate that this
method produces predictions for the optimal stopping iterations
which are robust relative to modeling errors in the system matrix
and has a signal-to-noise ratio which is 80% of the maximal SNR
available from the MLEM iterates.

I. INTRODUCTION

It is well–known that if the MLEM (maximum likeli-
hood expectation maximization) algorithm is initialized with
a uniform image, the iterates initially improve, then after a
certain point gradually deteriorate (become more noisy and
lose resolution) in appearance and accuracy [1]. As a result,
there was an effort in the last two decades to develop suitable
stopping criteria for the MLEM algorithm [2], [3], [4], [5],
[6]. On the whole, these methods worked well for the case
in which the projection matrix used in the MLEM algorithm
exactly modeled the scanner system response function, but had
serious problems in the more realistic case of an approximate
model. In [5] a method is described that seeks to obtain a set
of “feasible images” from the MLEM algorithm. However,
this method depends on a suitable choice for a parameter that
measures the model inaccuracies and does not provide a finite
set of feasible images. It was also found that early termination
of the MLEM algorithm produced images with low contrast,
which represented the coarse scale image features, but did
not do as well with fine scale structures. This situation led
to the rapid development of a large body of research on
penalized ML, or, maximum a posteriori (MAP) reconstruction
algorithms. Although these algorithms are also iterative, there

is no need to terminate early, and one seeks to obtain the actual
limiting image. However, these methods rely on choosing
appropriate penalty functions, and regularization parameters.
There is significant interest in developing data–based methods
for determining the regularization parameter.

Despite the extensive development of MAP methods, the
only iterative algorithm that is currently in commercial use
is the OSEM (ordered subsets EM) algorithm [7], [8], which
is a fast version of the basic MLEM algorithm obtained by
iterative applications to subsets of the detector data. Thus, in
our estimation, the determination of suitable stopping criteria
for the MLEM algorithm remains an area of interest.

In this paper, we adopt the usual probabilistic model and
consider PET data which are observations of the Poisson
random variables

Yi ∼ Poiss([Ax]i), i = 1, . . . , m, (1)

where A is the projection matrix representing the scanner
system response function, x is the n− dimensional vector of
emission intensities, and [Ax]i is the ith entry of the vector
Ax. That is, [Ax]i is the mean number of detections in the
ith detector tube. Of the methods developed in [2], [3], [4],
[5], [6], due to space limitations, we will only discuss those
in [5], [6] as they are the ones most relevant to this paper.

For each iterate x̂, the methods in [5], [6] are based on
testing the null hypothesis that the data {Yi, i = 1, 2, . . . ,m}
are Poisson random variables with means {[Ax̂]i, i =
1, 2, . . . ,m}. By using a certain transformation, the null
hypothesis results in random variables {Zi, i = 1, 2, . . . ,M}
which are uniformly distributed on [0, 1]. Then, if the total
number of detections is large, Pearson’s test can be applied
to test the uniformity assumption. The test statistic, V is a
scaled, normalized sum of all the transformed data which is
asymptotically χ2

M−1. Thus, the null hypothesis was accepted
at the α% level of significance if the test statistic fell below
the 1 − α quantile of the χ2

M−1 distribution. Results in [6]
showed that the method worked well when the matrix A was
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an exact model of the true system response function. We will
refer to this as the “exact model” case. In that case, as the
number of iterations increased, the corresponding test statistic
decreased past the critical value, then increased to values
exceeding the critical value. This resulted in a well–defined,
finite set of “feasible iterates”. However, it is impossible to
accurately model all the factors affecting the performance of a
real scanner. In this more realistic “inexact case” the proposed
method in [6] failed, as observed by the authors. Sometimes
the test statistic always remained above the critical value,
and on other occasions when it did fall below the critical
value, it remained below for all successive iterations. Thus
there were either no feasible iterates or infinitely many [5].
In order to obtain a more robust stopping rule, a modification
was proposed in [5] which required choosing an interval of
uncertainty around each Yi. Then similar (but more complex)
tranformations were performed on the data to obtain uniformly
distributed r.v.’s as in [6]. As a result, the same Pearson test
involving a χ2 test statistic could be applied. In this case, the
simulations indicated that all iterations past a certain point
were feasible. The method relies on an appropriate choice for
the interval of uncertainty, which depends on the total number
of detections. The authors acknowledge the unsuitability of
this feature as they were unable to develop a data–based
method for determining its value.

In this paper we propose and test a new method for ter-
minating the MLEM algorithm for the reconstruction of PET
images. The method is based on a stochastic multiresolution
analysis which involves all partial sums (scales) of normalized
differences between the projected images and the detector data
for each row of the sinogram. Previous stochastic methods
involved only the single total sum of these differences for all
detectors. Our method is theoretically founded in recent results
from probability theory on the almost sure behaviour of the
maximum of the partial sum process for Poisson data.

II. THEORY

For each estimator x̂ of the true emission intensity vector
x, consider the normalized residuals

Ri(x̂) =
Yi − [Ax̂]i√

[Ax̂]i
, i = 1, . . . ,m. (2)

If x̂ is a “good” approximation to x the residuals in (2)
approximately have mean zero and variance 1. In particular,
they should, in distribution, neither be ”too large” (which
would indicate substantial remaining signal in the residuals)
nor ”too small” (which would indicate overfitting).

Our proposed method is based on a modification of the test
statistic

Dm = max
0≤j<m

max
1≤k≤m−j

|∑j+k
i=j+1 Ri|

k α(k/ log(m))
, (3)

with Ri = Ri(x̂). That is, Dm is the maximum magnitude
of scaled partial sums of the residuals Ri, where the scaling
function α(·) will be determined later. Note that this multires-
olution test statistic (3) involves all possible re-binnings of

the data into increasing bin sizes in the detector space, and
at all locations. It therefore tests simultaneously whether the
residuals are consistent with the distribution of the noise – or
whether there are systematic deviations anywhere, at all bin
sizes.

Fundamental to our method is the following result adapted
to our setting from Steinebach [9] on the asymptotic behaviour
of Dm as m → ∞.

Theorem 1: If {Ri : i = 1, 2, . . . ,m} are independent,
identically distributed Poisson random variables with mean
λ (i.e. Ri ∼ Poiss(λ)), and α(·) is the ”inverse Chernoff
function” of the Poiss(λ)) distribution, then limm→∞ Dm = 1,
with probability 1.
Note that α(·) depends on the Poisson parameter, and the
residuals will only be identically distributed if x̂ is a constant
vector. Therefore we propose a modification Bm(x̂) of the test
statistic Dm for the case Ri = Ri(x̂).

Given the PET data {Yi : i = 1, 2, . . . ,m}, let µ =∑m
i=1 Yi/m, and αmean be the inverse Chernoff function for

the normalized residual R = Y −µ√
µ where Y ∼ Poiss(µ).

Then, the Chernoff function for R is given by ρ(y) =
inft≥0exp(−ty)M(t), where M(t) is the moment generating
function for the random variable R. It can be shown that
ρ is decreasing and positive, so its inverse function, ρ−1

exists. As a result, the inverse Chernoff function, αmean(c) =
ρ−1(exp(−1/c)), is easily computed. We replace Dm with the
following test statistic:

Bm(x̂) = max
0≤j<m

max
1≤k≤m−j

|∑j+k
i=j+1 Ri(x̂)|

k αmean(k/ log(m))
. (4)

To determine the analog of the limiting value 1 in Theorem 1,
we generate a frequency histogram of values of

B̃m = max
0≤j<m

max
1≤k≤m−j

|∑j+k
i=j+1 R̃i|

k αmean(k/ log(m))
(5)

where

R̃i =
Ỹi − µ√

µ
, and Ỹi ∼ Poiss(µ) (6)

and determine its median ν.
We propose stopping the MLEM algorithm at the first iterate

x̂ for which Bm(x̂) ≤ ν. The idea is that if the test statistic,
Bm(x̂), computed from the residuals (2), is larger than ν the
projected means are not consistent with the random data, and
if it is smaller than this critical value the projected means
overfit the data (i.e. undersmooth the image).

III. EXPERIMENTAL METHODS

In this section we apply the proposed multiresolution
method to stopping the MLEM reconstruction of PET
(positron emission tomography) images. We compare it with a
previous algorithm developed by Llacer and Veklerov [5], [6],
and with the oracle–type method which chooses the iterate
with maximum signal-to-noise ratio (SNR). Of course, this
latter method cannot be applied in practice.
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As usual we consider the detector data in sinogram format,
which in the Siemens ECAT Exact scanner, is a 192 × 160
matrix, containing data in 192 angles (or “views”) and 160
bins in each view. First, we only consider partial sums within
each view. That is, the partial sums do not contain residuals
from more than one view. Then, to avoid very small means,
we consider ”pooled residuals”. In our simulations, it is
sufficient to pool the original residuals in 8 adjacent bins
for each view, before forming the partial sums. Of course,
this requires a further normalization (dividing by

√
8) for the

pooled residuals (2).
In [5], [6], an empirical histogram H(x̂) giving the number

of detectors j for which the observed count rate Yj is in a
certain bin of a slightly modified Poisson distribution function
with rate [Ax̂]i is first computed. If the null hypothesis holds,
i.e. the observations are Poisson distributed with the respective
rate predicted by the projected model for every detector, then
the distribution underlying the histogram is uniform. In the
second step, a Pearson χ2-test of H(x̂) for uniformity is
applied. This method, proposed in [6] produced reasonable
results in the exact case, when there was no modeling error
in the system matrix A. However, in the inexact case, where
there was modeling error, the method sometimes did not
produce any “feasible” images [5]. Therefore, they proposed
an improved version of their selection criterion, which we
will call the “LV” method. The improved method tests the
relaxed hypothesis that there exists some model among the
set of models with Poisson parameters in the intervals [[Ax̂]i ·
(1 − ε), [Ax̂]i · (1 + ε)], for which the hypothesis that the
observations are Poisson distributed with rates predicted by
the projected model cannot be discarded. All such iterates are
called “feasible”.

We performed a study with 20 simulations of noisy data
generated by a 128×128 slice of the Hoffmann phantom with
1 million total counts. To apply our method, we estimated the
median ν of the distribution of B̃m in (5) from 100 simulations
(under the hypothesis that the model holds). Application of
the LV method requires the user to determine the number
of bins Nclasses in the histogram H(x̂), and the uncertainty
parameter ε. We used the values Nclasses = 50, 500 and
ε = 0.001, 0.01 and ε = 0.1. The feasible iterates for the LV
method were those iterates for which the hypothesis that the
observations follow a Poisson distribution with rates predicted
by the projected means cannot be rejected at the 95% level.

We performed tests for both the exact and inexact case. In
the first test, we used the same matrix A to generate the data
and to reconstruct the images by the MLEM algorithm. For
the inexact case we generated the data using an approximate
matrix Ã, obtained from uniformly distributed detector gains
between ±5% in A.

IV. RESULTS AND CONCLUSIONS

Our simulations of the values of the test statistic B resulted
in a small variance of 0.006 and the median value ν =
0.95. Additional testing with different numbers of total counts
produced only a relatively small variation in the value of the

0 20 40 60
0

1

2

3

4

5

6

7

8

Iterate

M
ul

tir
es

ol
ut

io
n 

T
es

t S
ta

tis
tic

0 20 40 60
0

1

2

3

4

5

6

7

8

Iterate

M
ul

tir
es

ol
ut

io
n 

T
es

t S
ta

tis
tic

(a) (b)

Fig. 1. Multiresolution test statistic for one realization in (a) exact case
and (b) inexact case. The iterate corresponding to the dashed line is the
multiresolution stopping iterate.
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Fig. 2. LV test statistic for one realization in (a) exact case with , Nclasses =
50, and (b) inexact case, with Nclasses = 50, ε = 0.01. The feasible iterates
for the 5% level of significance correspond to values below the dashed line.

median. So, the method is stable relative to variations in the
total counts.

Fig. 1 contains plots of the values of the multiresolution
test statistic Bm(x(k)) for the kth iteration x(k) in the (a)
exact case, and (b) inexact case. The broken line represents
the crtical value, ν. So, the first iterate that falls below the line
is the predicted multiresolution stopping iterate. Although this
plot is for a single realization, randomly chosen among from
those that had the same stopping iterate as the mean, it is
typical of all realizations. Fig. 2 contains plots of the LV test
statistic H(x(k)) (as k varies) for the kth iteration x(k) in the
(a) exact case, with Nclasses = 500, and (b) inexact case,
with Nclasses = 50, ε = 0.01. The broken line represents
the crtical value for the χ2 distribution. So, all iterates that
fall below this value are feasible. This plot is for a single,
randomly chosen realization. Observe, in Fig. 2, the LV mehod
produced infinitely many feasible iterates in both cases. This
behavior occurred in all our simulations. It is important to
note that in every simulation, the LV method failed to reject
very late iterates which were clearly too speckled to be con-
sidered reasonable reconstructions. In contrast, the proposed
multiresolution stopping criterion always produced a definite
stopping iterate, with the property that images obtained from
iterations preceeding this value were not consistent with the
random data, and images obtained from succeeding iterations
overfitted the data, resulting in undersmoothed estimates.

We now compare our method with the oracle of choosing
the maximal SNR. In the exact case the multiresolution and
maximal SNR stopping iterates had means of 15, 47, with
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Fig. 3. (a) True phantom; (b) Multiresolution MLEM iterate: exact case; (c) Multiresolution MLEM iterate: inexact case; (d) MLEM iterate with maximum
SNR: exact case; (e) MLEM iterate with maximum SNR: inexact case

standard deviations of 2.7, 1.3 respectively. In the inexact
case the multiresolution and maximal SNR stopping iterates
had means of 14, 47, with standard deviations of 2.7, 1.1
respectively. The small variation between the exact and inexact
results were most likely due to the relatively small model error
in the system matrix. We expect more significant variation
when the method is applied to real data. Although the mul-
tiresolution iterate was obtained in one-third the time taken
to achieve the maximal SNR, the SNR of the multiresolution
iterate was always approx 80% of the maximal SNR.

Fig. 3 shows the true phantom, and reconstructions obtained
by stopping the MLEM algorithm using the proposed method
and at the optimal SNR, in the exact and inexact cases, for
a randomly chosen realization. Visually, the main features
of the image are recovered reasonably well (compared to
the maximal SNR images) by the iterates predicted from the
multiresolution criterion.

In conclusion, we have proposed a completely data–based
method for stopping the MLEM algorithm. Our stopping
criterion depends on the observed data, the forward projections
of the reconstructed image at each iteration and on a pre-
processing step to determine a critical model parameter. This
parameter is the median of a simulated test statistic, which
only depends on the total number of observations. This depen-
dence is very stable, thus a few simulated values will serve a
wide range of applications. The method has been demonstrated
to be very effective in determining suitable stopping iterates
for reconstructing PET images with the MLEM algorithm
applied to a uniform initialization. The method is also very
stable in the presence of modeling errors in the system

matrix and adds only a modest computational burden to the
basic MLEM algorithm. In our preliminary tests, this method
produced images that have a signal-to-noise ratio (SNR) which
is 80% of the maximal SNR available from the MLEM iterates,
and in one–third the time taken to achieve maximal SNR.
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