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Abstract: Clinical noninferiority trials with three (or more) groups recently have
received much attention, e.g. due to the fact that regulatory agencies often require
that a placebo group has to be evaluated in addition to a new experimental drug and
an active control. We discuss the likelihood ratio tests for binary endpoints and various
noninferiority hypotheses. We find that, depending on the particular hypothesis, either
the LR test reduces asymptotically to the intersection union test, or to a test which
follows asymptotically a mixture of generalized χ2-distributions. The performance of
this asymptotic is investigated and an exact modification is given. It is shown that this
test considerably outperforms multiple testing methods with respect to power, such
as the Bonferroni adjustment. The methods are illustrated with a cancer study where
antiemetic agents were compared. Finally, we discuss the extension of the results to
other settings, such as normal endpoints.
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1. Introduction

Clinical trials to show therapeutic equivalence of two treatments are well established since
more than a decade (Hesketh et al. 1996; Diehm, Trampisch, Lange & Schmidt 1996; Tebbe
et al. 1998; Chouela et al. 1999; Dammann et al. 2000). Here in most cases, a new therapy
(e.g. a new treatment or a new dose of a drug) has to be shown to be not relevantly inferior
to an active control with respect to a primary clinical endpoint. Closely related to this are
superiority trials, where the aim is to show a relevant superiority of the new treatment
compared to a standard (Chan 1998; Chuang-Stein 2001; Dunnett & Tamhane 1997; Greco
et al. 1996; Gustafsson et al. 1996; Röhmel & Mansmann 1999). For binary outcomes, and
we will deal mainly with this situation in this paper, a considerable amount of statistical
methods have been developed since the pioneering work of Dunnett & Gent (1977). This
includes asymptotic procedures (Blackwelder 1982; Rodary, Com-Nougue & Tournade 1989;
Farrington & Manning 1990) as well as exact methods, which aim for keeping the nominal
level exactly for finite sample sizes (see e.g. Chan 1998; Röhmel & Mansmann 1999; Mart́ın
Andrés & Herranz Tejedor 2004).
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Less work is available on showing noninferiority in three-arm clinical trials, which, how-
ever, has become a task of great practical interest, due to the fact that it is often required
to include an additional placebo group to guarantee the assay sensitivity, i.e. the ability of
a trial to evaluate the efficacy of the new treatment. This is important in cases where one
cannot rely on the so-called constancy assumption, which would allow the use of historical
data for estimating the effect of the active control treatment. This issue is also highlighted
in Rothmann, Li, Chen, Chi, Temple & Tsou (2003) and by recent guidelines (Committee
for Proprietary Medicinal Products 1998a,b, 2001, 2002a,b). In general, methods for three
or more samples are based on multiple testing procedures, such as the intersection union
principle. See e.g. Wiens & Iglewicz (1999) and Tang & Tang (2004) for an account of meth-
ods for the assessment of noninferiority with binary data, or Pigeot, Schäfer, Röhmel &
Hauschke (2003) for the case of normal responses.

In this paper we will exploit the likelihood ratio (LR) test for the case of multiple samples.
We focus primarily on the case of three samples and binary outcomes, however in Section 7
we will briefly discuss extensions to other settings. The paper is organized as follows. The
asymptotic theory for general null hypotheses of the type

HU : ϑ3 ≥ h1(ϑ1) or ϑ3 ≥ h2(ϑ2) (1.1)

or of the type
HI : ϑ3 ≥ h1(ϑ1) and ϑ3 ≥ h2(ϑ2) (1.2)

will be considered in the next section. Here the parameter ϑi represents a failure rate or a
success probability under treatment i, i = 1, ..., 3. Many clinical problems can be expressed
by these types of hypotheses. For specific choices of h1 and h2 this includes e.g. hypotheses
on the differences, the relative risks or the odds ratios of the parameters.

The type of hypothesis HU can be used to show that a new treatment is ”as effective
as” (in the sense of being not relevantly inferior to) both of two standards, or that two
new treatments are as effective as a standard. Moreover, the problem of showing both the
superiority of a standard treatment as compared to placebo and the noninferiority of a test
treatment as compared to the standard can be also formulated by using a null hypothesis
of ”union type”. More precisely, in the latter case we obtain a testing problem

H̃U : ϑ3 ≥ ϑ1 or ϑ3 ≤ h2(ϑ2). (1.3)

Hence, the theoretical point of view, problems (1.1) and (1.3) can be treated in essentially
the same way. For the sake of brevity we will only describe the results for (1.1) in the
following.

In contrast, the null hypothesis HI in (1.2) is suitable for showing that a new treatment
is as effective as one of two standards, or that one of two new treatments is as effective as
a standard. For example, Hesketh et al. (1996) aim at showing that a new treatment at one
of two different doses is as effective as a standard one.

In Section 2 we will show that the LR test of HU is asymptotically the same as performing
independently two LR tests for the single null hypotheses H1 and H2, respectively, where

H1 : ϑ3 ≥ h1(ϑ1), H2 : ϑ3 ≥ h2(ϑ2), (1.4)

which yields the intersection union test (IUT; cf. Berger 1997). Thus, we can immediately
use the two-sample results from Munk, Skipka & Stratmann (2005) for this case. For HI the
situation is quite different and a rather complicated asymptotic law results which, among
others, depends on the specific functions h1, h2.

For practical purposes, in Section 4 we suggest for large sample sizes an asymptotic
modification and for small sample sizes an exact modification of the asymptotic test of HI ,
which is based on the cumulative likelihood ratios.

In an extensive numerical study in Section 5, it is shown that competitors, such as Bonfer-
roni adjusted tests for HI , are outperformed in terms of power for most parameter settings

imsart-generic ver. 2007/04/13 file: cjsmunk_preprint.tex date: April 29, 2008



Munk et al./Testing noninferiority based on the likelihood ratio statistics 3

in the alternative. This may lead to a considerable reduction of sample size when planning
the study. Numerically we found that a reduction of required sample sizes of up to 20%
can be achieved in certain settings. The performance of the proposed tests for HU follows
immediately from the results on the two-sample case as presented in Skipka, Munk & Freitag
(2004) or Munk, Skipka & Stratmann (2005).

At a first glance, it might be considered as a general drawback of any global test for
(1.2), that it does not provide us with the information as to which of the sub-hypotheses in
(1.4) can be rejected. However, an application of the closed testing principle will show that
a posteriori the pairwise comparisons can be performed in addition to this test, if HI can
be rejected, while still the nominal level α is maintained. This is discussed in Section 3.

Finally, in Section 6 the LR approach is illustrated by means of the data from a cancer
trial, where three antiemetic treatments were compared.

The computation of the exact tests is numerically rather involved and SAS code can be
obtained from the authors on request. In order to keep the paper readable, all proofs are
deferred to the Appendix.

2. The likelihood ratio statistics – asymptotic results

Let us consider throughout the following three independent Bernoulli samples Xij ∼ B(1, ϑi)
with failure rates ϑi and sample sizes ni (j = 1, . . . , ni, i = 1, 2, 3). For the functions
hi : [0, 1] → [0, 1], i = 1, 2 in (1.1) and (1.2), we assume that they are strictly isotonic and
twice differentiable. This includes hypotheses on the difference (hDI(ϑ) = ϑ + θ0), for the
relative risk (hRR(ϑ) = ϑθ0), or for the odds ratio (hOR(ϑ) = θ0

θ0+ϑ−1−1 ).
More general, the hi might take into account also combinations of different measures of

discrepancies as well as different values of θ0, depending on the underlying response rate (see
Röhmel & Mansmann 1999, for a careful discussion of this issue). The threshold parameter
θ0 will subsume the maximum clinically relevant amount, which has to be fixed in advance.
The choice of the hi and of θ0 is a difficult and important task and will depend on the
particular medical application. We will not pursue this issue here, for a careful discussion
we refer to Lange (2003) and Lange & Freitag (2005), and the references given there.

Let ϑ = (ϑ1, ϑ2, ϑ3)
⊤ and x = (x1, x2, x3)

⊤, xi =
∑ni

j=1 xij ; i = 1, 2, 3, then the likelihood
is given as

Lx(ϑ) =

3
∏

i=1

(

ni

xi

)

ϑxi

i (1 − ϑi)
ni−xi . (2.1)

Further, let ϑ̂ = (xi/ni)i=1,2,3 the vector of the unconstrained maximum likelihood es-
timators (MLE), whereas the restricted MLE to a hypothesis H (RMLE) will be denoted
as

ϑ̂∗ ∈ {arg max
ϑ∈H

Lx(ϑ)} .

In the following we investigate the likelihood ratio statistic

T = T (x) := 2[log Lx(ϑ̂) − log Lx(ϑ̂∗)] . (2.2)

for the hypotheses in (1.1) and (1.2).

2.1. The hypothesis H
U

We will show in this section that for HU in (1.1) the LR statistic is the maximum of the
two-sample LR statistics for H1 and H2, respectively (cf. (1.4)). Further, we will see that
asymptotically, the three sample case for HU will be reduced to the two-sample case, which
has been treated in Munk, Skipka & Stratmann (2005). From there we require the following
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H
U

J1

J2
J3

S2

S1

Fig 1. Boundaries of the null spaces for HU for the difference.

result.

Theorem 1. Let Θ0 = {ϑ ∈ [0, 1]2 : ϑ1 ≥ h(ϑ2)} and Θh
0 = {ϑ ∈ [0, 1]2 : ϑ1 = h(ϑ2)}.

Assume that X1 ∼ B (n1, ϑ1) and X2 ∼ B (n2, ϑ2) are independent, where n1, n2 ≥ 1. Let
h : [0, 1] → [0, 1] be continuous and increasing, and not identically 1. Denote the two-sample
likelihood as

Lx,2(ϑ) =

(

n1

x1

)

ϑx1

1 (1 − ϑ1)
n1−x1

(

n2

x2

)

ϑx2

2 (1 − ϑ2)
n2−x2 .

Then
a) the MLE restricted to Θ0 exists and is given as ϑ̂∗ = ϑ̂ (the unrestricted MLE) if ϑ̂ ∈ Θ0

and if ϑ̂ /∈ Θ0 as

ϑ̂∗ =

{

arg max
{ϑ:ϑ1=h(ϑ2)}

Lx,2 (ϑ)

}

⊆ Θh
0 , (2.3)

i.e. the RMLE is attained on the boundary curve Θh
0 of Θ0.

b) If further h ∈ C(1)[0, 1], we have for ϑ1 = h(ϑ2) and for any solution ϑ̂∗

−2 ln λ
D−→ U ∼ 1

2 + 1
2Fχ2

1

,

as min {n1, n2} → ∞, s.t. n1

n2

→ c ∈ (0,∞), where λ = Lx,2(ϑ̂)/Lx,2(ϑ̂
∗) denotes the likeli-

hood ratio and Fχ2

1

the c.d.f. of the square of a standard normal random variable.

We mention that for many common measures of discrepancy h the two-sample RMLE can
be computed explicitly (Miettinen & Nurminen 1985; Skipka, Munk & Freitag 2004), other-
wise numerical methods can be used. Theorem 1 allows one to simplify the computational
effort significantly, because the maximum of the likelihood Lx,2 over the two-dimensional
set Θ0 reduces to maximization over a curve, where ϑ1 = h(ϑ2). Furthermore, sufficient

conditions on h for the uniqueness of the RMLE ϑ̂∗ are given in Munk, Skipka & Stratmann
(2005), which apply in the following as well.

We denote the two-sample RMLEs (for a boundary function h) as

ϑ̂∗
ni,nj ,xi,xj ,h := arg max

ϑ
ϑxi(1 − ϑ)ni−xi(h(ϑ))xj (1 − h(ϑ))nj−xj , i 6= j . (2.4)

Now, let us return to the three-sample case. Obviously, if ϑ̂ ∈ HU , then ϑ̂∗ = ϑ̂, thus the
LR statistic equals zero. Thus, let ϑ̂ /∈ HU . The boundaries of the pairwise null spaces (cf.
Figure 1) are denoted by

S1 := {ϑ ∈ HU |ϑ3 = h1(ϑ1)} , S2 := {ϑ ∈ HU |ϑ3 = h2(ϑ2)} . (2.5)
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Let Θh
U = {ϑ ∈ S1|ϑ3 < h2(ϑ2)} ∪ {ϑ ∈ S2|ϑ3 ≤ h1(ϑ1)}. Since

max
ϑ∈HU

Lx(ϑ) = max
ϑ∈Θh

U

Lx(ϑ) ≤ max
S1∪S2

Lx(ϑ) ≤ max
ϑ∈HU

Lx(ϑ) ,

where the above equal sign follows as in the proof of Theorem 1 in Munk, Skipka & Stratmann
(2005), the maximum over HU is calculated by

max
ϑ∈Θh

U

Lx(ϑ) = max
S1∪S2

Lx(ϑ) = max{max
S1

Lx(ϑ),max
S2

Lx(ϑ)} .

The parameter ϑ2 is unconstrained in S1, and ϑ1 is unconstrained in S2. Thus, the MLE
constrained to HU is obtained from one of the two-sample RMLEs (cf. (2.4)),

ϑ̂∗
S1

:= (ϑ̂∗
n1,n3,x1,x3,h1

, ϑ̂2 , h1(ϑ̂
∗
n1,n3,x1,x3,h1

))⊤ ,

ϑ̂∗
S2

:= (ϑ̂1 , ϑ̂∗
n2,n3,x2,x3,h2

, h2(ϑ̂
∗
n2,n3,x2,x3,h2

))⊤ .

Therefore, the test statistic (2.2) is given by

T = 2[ln Lx(ϑ̂) − ln max{Lx(ϑ̂∗
S1

), Lx(ϑ̂∗
S2

)}] = min{T1, T2} ,

where

Ti = 2[lnLx(ϑ̂) − lnLx(ϑ̂∗
Si

)] , i = 1, 2 . (2.6)

Hence, T equals to the two-sample LR test statistic for the hypothesis H1 : ϑ3 ≥ h1(ϑ1)

in case of Lx(ϑ̂∗
S1

) ≥ Lx(ϑ̂∗
S2

), otherwise it equals the two-sample LR test statistic for the

hypothesis H2 : ϑ3 ≥ h2(ϑ2). The following theorem guarantees that, asymptotically, HU is
rejected at level α if T is larger than the (1 − α)-quantile of the distribution of 1

2 + 1
2Fχ2

1

.

Theorem 2. Let t > 0. Then, under the conditions of Theorem 1 for the samples Xij,
j = 1, . . . , ni, i = 1, 2, 3, and h1, h2, respectively, for all ϑ ∈ Θh

U it holds that

P (T > t) ≤ P (Z > t) + o(1) , (2.7)

where Z is distributed as 1
2 + 1

2Fχ2

1

. Furthermore, for some ϑ ∈ Θh
U we have strict equality

in (2.7).

2.2. The hypothesis H
I

For the hypothesis HI the situation is rather different, since the LR test is not a combination
of two pairwise comparisons. The boundary of the hypothesis HI in (1.2) is given by the
union of the surfaces

K1 := {ϑ ∈ [0, 1]3 | ϑ3 = h1(ϑ1) and ϑ3 ≥ h2(ϑ2)} ,

K2 := {ϑ ∈ [0, 1]3 | ϑ3 = h2(ϑ2) and ϑ3 ≥ h1(ϑ1)} .

In contrast to the hypothesis HU , the calculation of the LR statistic cannot be reduced to
the two-sample case in general, since K1 and K2 are proper subsets of S1 and S2 (cf. (2.5)),
respectively. Thus, the MLEs constrained to S1 and S2 are not included in HI for some
outcomes. In that case the MLE constrained to HI is a projection onto the ”edge” of HI ,
i.e. on K3 := K1 ∩ K2 (cf. Figure 2).

Theorem 3. Let ϑ̂ /∈ HI . With the notation of Section 2.1, the constrained MLE for the
hypothesis HI is given by

ϑ̂∗ :=











ϑ̂∗
S1

ϑ̂∗
S2

ϑ̂∗
K3

if

ϑ̂∗
S1

∈ HI , (ϑ̂∗
S2

/∈ HI ∨ (ϑ̂∗
S2

∈ HI , T1 ≤ T2))

ϑ̂∗
S2

∈ HI , (ϑ̂∗
S1

/∈ HI ∨ (ϑ̂∗
S1

∈ HI , T1 > T2))

ϑ̂∗
S1

/∈ HI , ϑ̂∗
S2

/∈ HI

,
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Fig 2. Null spaces for HU and HI , respectively.

where ϑ̂∗
K3

:= arg maxK3
Lx(ϑ).

It is shown in Theorem 3 that the calculation of the MLE can be reduced to the two-
sample case if ϑ̂∗

S1
∈ HI or ϑ̂∗

S2
∈ HI . Otherwise, L(ϑ) has to be maximized under the

constraint ϑ3 = h1(ϑ1) = h2(ϑ2). In order to find the arg max in this situation, one has to
compute the zeros of the function

F (ϑ3) =
x3

ϑ3
− n3 − x3

1 − ϑ3
+

h−1′

1 (ϑ3)(x1 − n1h
−1
1 (ϑ3))

h−1
1 (ϑ3)(1 − h−1

1 (ϑ3))
+

h−1′

2 (ϑ3)(x2 − n2h
−1
2 (ϑ3))

h−1
2 (ϑ3)(1 − h−1

2 (ϑ3))
,

which are often the roots of a multi-degree-polynomial. For hDI it is a 5-degree-polynomial,
for hRR and hOR we get a 3-degree-polynomial. In general, this can be determined numer-
ically by Newton’s method. Note that simultaneous testing of one-sided superiority in the
two-sample comparisons is contained as a special case (hi(ϑ) ≡ ϑ, i = 1, 2), in this case the
solution is the overall rate ϑ∗

3 =
∑

xi/
∑

ni. Note further, that for the resulting test any
local maximum in K1 ∪ K2 can be used as an MLE.

The LR statistic T is calculated as in (2.2), with ϑ̂∗ given by Theorem 3. The asymptotic
distribution of T for HI is rather complicated and is given in Theorem A.1 (see Appendix).
In contrast to the two-sample case (cf. Theorem 1), Theorem A.1 shows that the asymptotic
distribution of the LR depends on the parameters ϑi and the functions hi for ϑ ∈ HI , hence
asymptotically the LR test statistic is not free of nuisance parameters and the particular
choice of the boundary functions.

To investigate the magnitude of the dependence of the probability P (T > t) in Theorem
A.1 on the nuisance parameter ϑ1, a numerical study is performed for several parameter
configurations. Figure 3 shows the asymptotic probability P (T > 3.84) for the difference,
the relative risk, and the odds ratio. The critical value 3.84 is chosen such that it produces
asymptotic probabilities near 0.05. However, note that in order to obtain a level α-test the
critical value has to be chosen, s.t. maxϑ∈HI Pϑ (T > c) ≤ α. In a comprehensive numerical
study (not displayed) we found that this leads to a rather conservative test, which we do
not recommend in practice. In Section 4.2 we suggest a modification which overcomes this
drawback.

However, the merits of this section are twofold: first we have shown that the LR principle
leads to a well known IU method for HU , and to an asymptotically valid test for HI . This
result forms the basis for two modifications of the LR test - an exact version for small and an
asymptotic modification for larger sample sizes. This will be discussed in detail in Section
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Fig 3. The asymptotic probability P (T > 3.84) as a function of the rate ϑ1 for sev-
eral parameter configurations of θ1, θ2, cn1, cn2 with cni = ni

n3
, i = 1, 2 (solid line:

0.1, 0.2, 1, 1 for the difference, 1.5, 2, 1, 0.5 for the relative risk and the odds ratio; dotted
line: 0.1, 0.1, 1, 0.5 for the difference, 1.5, 1.5, 1, 1 for the relative risk and the odds ratio;
dashed line: 0.05, 0.1, 0.5, 0.5 for the difference, 1.25, 1.5, 0.5, 0.5 for the relative risk and the
odds ratio) and for hypothesis HI using the difference, the relative risk and the odds ratio.

4. Moreover, in Section 5 we will show that these tests are more powerful than various
competitors and practically feasible.

3. Pairwise comparisons

We have seen in Section 2.1 that the LR test for hypotheses of type HU will automatically
lead to performing both two-sample comparisons. In contrast, the LR test for hypotheses of
type HI does not yield immediate information on the pairwise comparisons, which could be
criticized from a practical point of view. However, it is actually possible to always perform
these pairwise comparisons in addition to the overall test, while keeping the nominal level
as will be discussed in the following.

In fact, our argument does not only apply to the asymptotic test from Section 2.2, rather
it applies to any global test for HI , including those tests suggested in Section 4.

Assume now that an overall level-α test for HI in (1.2) has lead to a rejection of the
null hypothesis. Then it is possible, in a second step, to perform two two-sample tests for
H1 and H2 from (1.4), respectively, each at level α. Note that the overall level α is not
exceeded. This is due to the closed testing principle (Marcus, Peritz & Gabriel 1976), since
the set H := {HI ,H1,H2} of hypotheses is closed under intersection, and since a hypothesis
H ∈ H is tested (at level α) only if each H̃ ⊆ H has been tested and rejected (at level α).

Thus, if the LR test from Section 2.2 rejects HI at level α, we may additionally perform
the pairwise comparisons and conclude which one was ”successful”, each at an error rate
α. An alternative procedure would be to use directly a multiple test procedure based on
the two-sample comparisons. The most prominent single step method to adjust the global
level α for the hypothesis HI is the Bonferroni adjustment. Here α is evenly divided to each
pairwise comparison, and HI is rejected if p(1) < α

2 , where p(1), p(2) are the smaller and
the larger of both p-values of the two-sample tests, respectively. Holm (1979) suggested a
step down procedure improving the Bonferroni adjustment. However, for HI and the case
of three samples, both procedures coincide.

Note that the possibility to perform each of the pairwise LR tests for H1 and H2 at level α,
given the overall three-sample LR test for HI was successful, leads automatically to a larger
power for the pairwise comparisons if compared to the Bonferroni-adjusted two-sample LR
tests for Hi, i = 1, 2. However, even unconditionally, we find in the subsequent numeri-
cal analysis (cf. Section 5) that the LR test for HI has larger power than the Bonferroni
adjustment in most cases.
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Note further, that it may happen that the overall test leads to rejection of HI , indicating
that one of the subhypotheses is not valid, albeit both pairwise tests do not lead to a
significant rejection. Simulation studies show that this occurs very rarely, but it cannot be
excluded, in general.

This effect is well known from other situations, e.g. within an analysis of variance accom-
panied by multiple testing strategies. We will discuss the impact of this phenomenon in the
specific context of a three sample noninferiority trial. Here, we are faced with the situation
that some noninferiority effect between the three groups is significant, however, it is not
possible to assess at level α, which one. Numerical experiments show that this situation only
occurs, if the observed rates ϑ̂ fall close to the boundary K1 ∩ K2.

There are situations where this does not cause a serious problem, e.g. when the primary
goal of the trial is to show that a new treatment is as effective as one of two standards
(cf. Section 1). In this case rejection of the global hypothesis reveals the new treatment as
effective as one of the standards, and it might be of contiguous interest, to which one. In
contrast, if the goal is to investigate whether one of two new treatments is as effective as
a standard, for a regulatory agency and the sponsor it will be important to know which
one. Receiving a significant result for the global test and two non significant results for the
pairwise tests here, is of very limited use, and finally will leave the drug authority in a
difficult situation.

To avoid these difficulties in general, we recommend to plan a clinical trial such that
a power, of 0.8, say, for both subhypotheses is guaranteed, respectively. Note that in this
case, the overall power of the test is at least 0.8 as well. Note further, that in contrast to
directly applying pairwise comparisons to HI (each at level α/2), one does not need to
adjust the level α (as shown above), resulting in a larger power and reduction of sample
sizes. In summary, we have seen that it is always advisable to perform the overall test in a
preliminary step. If this test rejects and the (rare) event happens, that none of the pairwise
tests leads to rejection, further sampling is required.

4. Modification of the LR test

4.1. Exact modification

Exact tests for general hypotheses in the two-sample case were first introduced in two seminal
papers by Barnard (1945, 1947). It has been shown, however, that Barnard’s original test
bears intrinsic numerical difficulties due to its specific iterative way to construct the region
of rejection (Skipka, Munk & Freitag 2004). During the last two decades various other exact
methods were suggested. Most of them were developed for H : ϑ1 = ϑ2 (Boschloo 1970; Upton
1982; D’Agostino, Chase & Belanger 1988), or for specific choices of h in the hypothesis
H : ϑ1 = h(ϑ2) (see e.g. Chan 1998). Finally, Röhmel & Mansmann (1999) presented a
general exact method for arbitrary hypotheses H : ϑ1 ≥ h(ϑ2), based on ideas of Barnard
(1947).

The methodology of unconditional exact approaches for two samples is directly transfer-
able to more than two samples (in the following described for three samples). In our context
this reads as follows. The actual level α∗ for a statistical test which specifies the critical
region, i.e. the subset CR of the sample space S = (0, . . . , n1) × (0, . . . , n2) × (0, . . . , n3) for
which the null hypothesis HI is rejected, is calculated by

P (X ∈ CR | ϑ) =
∑

x∈CR

Lx (ϑ) , (4.1)

where Lx(ϑ) is given in (2.1) and X = (X1,X2,X3)
⊤. A commonly used approach is to

eliminate the unknown parameter ϑ by maximizing the function (4.1) over HI , yielding

α∗ = α∗(CR) = max
HI

P (X ∈ CR | ϑ) . (4.2)
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Hence, an exact test fulfills α∗ ≤ α.
The performance of an exact test will mainly be determined by a criterion function which

allows for a proper ordering of the sample to determine which values are included in the
critical region, since the computational complexity to compare all possible 2n1+n2+n3+3

subsets of the sample space is too large, in general. Various approaches for the two-sample
case have been investigated in Skipka, Munk & Freitag (2004), and it has been shown that
the cumulative likelihood function outperforms other methods suggested in the literature
with respect to power. This will be extended in the following to the case of three samples.

In a first step, based on an idea of Storer & Kim (1990), the exact distribution of the LR

statistic is estimated by inserting the constrained MLE ϑ̂∗ into (2.1). With that, p-values
can be estimated for any outcome x = (x1, x2, x3)

⊤ ∈ S by calculating

p∗ (x) =
∑

a: T (a)≥T (x)

La(ϑ̂∗) , (4.3)

where a = (a1, a2, a3)
⊤ and T (a) is the likelihood ratio given in (2.2). These are the exact

p-values under the assumption that ϑ̂∗ (the MLE constrained to HI) is the true parameter.
In a second step these estimated p-values p∗(x) are used to sort all possible outcomes

x ∈ S in ascending order. Thus, we obtain a vector

S =
(

x(1), . . . , x((n1+1)·(n2+1)·(n3+1))
)

,

with the corresponding increasing values p∗
(

x(i)
)

=: p∗i . Now define

α∗
i = α∗





i
⋃

j=1

{

x(j)
}



 , (4.4)

which denotes the maximal actual level of the rejection region CRi =
⋃i

j=1 x(j) of the ”i
smallest” values in S with respect to the ordering induced by p∗. Finally, the critical region
is defined by

CR = CRk, k = arg max
i

{α∗
i ≤ α} .

In Section 5, this unconditional exact modification of the LR test for HI - denoted by
exact LR test in the following - will be compared to pairwise two-sample tests. Note that
this test does not share the specific numerical problems of Barnard’s test (cf. Skipka, Munk
& Freitag 2004).

4.2. Quasi exact modification

For larger sample sizes (50 per group, say) the computation of the exact LR test is rather
time consuming. Hence, for these situations we now will suggest a modification of this
test, which is based on the asymptotic distribution in Theorem A.1. Since the asymptotic
null distribution of the LR statistic depends on ϑ (cf. Section 2.2), we estimate the null
distribution by inserting that ϑ which is most likely under the null hypothesis. This test will
be called a quasi exact test in the sequel. The following algorithm describes this approach
in detail. As above, let x = (x1, x2, x3) be the observed outcomes and h1, h2 specified.

1. Calculate from x the MLE ϑ̂∗ constrained to HI (denoted as ϑ̂∗ in Theorem 3).

2. Compute a large number of 3 binomial samples with parameter ϑ̂∗ numerically by
simulations (in our investigation we used 100,000 repetitions).

3. Calculate the LR statistic T for each sample.
4. Calculate the (1 − α)-quantile t from the sample of T s.
5. Reject HI in case of T (x) > t.
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Although this test is not exact, we will see that it keeps its nominal level quite accurately. In
the next section this is investigated in detail by a numerical comparison of level and power
with two commonly used asymptotic methods. Our main finding is that the improvement in
power is considerable where at the same time the nominal level is not more exceeded.

5. Level and power comparisons for tests of H
I

The LR principle for the hypothesis HU leads to a combination of the two-sample LR tests,
where no level adjustment is necessary. Therefore, no further investigations are carried out
for these hypotheses and we refer to the investigations for the two-sample case in Skipka,
Munk & Freitag (2004) and Munk, Skipka & Stratmann (2005). However, as seen in Section
2.2, for the hypothesis HI the LR test cannot be reduced to the two-sample case. Therefore,
the LR test for HI (exact and asymptotic) will be compared with Bonferroni-adjusted
test procedures based on exact two-sample tests (other than the LR test) proposed in the
literature.

5.1. Exact tests

Munk, Skipka & Stratmann (2005) investigated exact two-sample LR tests for general hy-
potheses. Based on these results, the best competitors proposed in the literature are chosen:
Chan’s test (Chan 1998) is an unconditional approach for hDI and hRR based on Farrington
and Manning’s z statistic (Farrington & Manning 1990). For hOR, Fisher’s exact uncondi-
tional test can be applied, which is based on the generalized hypergeometric distribution. We
refer to Munk, Skipka & Stratmann (2005) for a detailed description of these competitors.

The exact procedures are investigated for various sample sizes (up to 50 per group). Note
that the computation time (approximately 5 minutes for a sample size of 25 per group and
20 minutes for 50 per group with a Pentium IV, 3 GHz, SAS V8) increases rapidly for
larger sample sizes. In comparison, the asymptotic test described at the end of Section 4.2
is computationally much more feasible. The power of all tests has been calculated always
exactly. In all simulation studies a broad scenario of parameter settings (θ1, θ2, n1, n2, n3, ϑ1)
is considered for the distance measures difference, relative risk and odds ratio:

• Equivalence margins:
(θ1, θ2) ∈ {(0.15, 0.15), (0.15, 0.2), (0.15, 0.25), (0.2, 0.2), (0.2, 0.25), (0.25, 0.25)} for hDI

and (θ1, θ2) ∈ {(1.5, 1.5), (1.5, 2), (1.5, 2.5), (2, 2), (2, 2.5), (2.5, 2.5)} for hRR and hOR.
• Sample size: Balanced sample sizes n1 = n2 = n3 ∈ {20, 25, 30, 40, 50} and unbalanced

sample sizes (n1, n2, n3) ∈ {(20, 20, 40), (25, 25, 50), (40, 40, 20), (50, 50, 25)}.
• Nuisance parameter : ϑ1 ∈ {0.1, 0.2, 0.3, 0.5, 0.8, 0.9} .
• Distances between the groups: ϑ1 = ϑ2 ≤ ϑ3 and ϑ1 ≥ ϑ2 = ϑ3 .

Overall, 648 parameter configurations were investigated for each distance measure, respec-
tively. Configurations are omitted in case of non-feasible settings (e.g. ϑ1 ≥ 1 − θ1 for hDI ,
ϑ1 ≥ 1/θ1 for hRR). The parameters ϑ1, ϑ2, ϑ3 are chosen such that, if possible, the re-
sulting power is larger than 0.8, at least for one of the tests compared. Here two settings
are investigated: either the parameter ϑ3 is chosen equal to or smaller than ϑ1 = ϑ2, or
the parameter ϑ1 is chosen equal to or greater than ϑ2 = ϑ3. In a second step, parameter
configurations are omitted for which all tests achieve a power larger than 0.9. Finally, 261
parameter configurations remain for the difference, 85 parameter configurations remain for
the relative risk, and 260 parameter configurations remain for the odds ratio.

Figure 4 represents the power of the exact LR test (vertical axes) and its competitors
(horizontal axes) for the three distance measures hDI , hRR and hOR, respectively. The
calculations show that the power of the exact LR test compared to its pairwise competitors is
larger in general. For nearly each parameter configuration and distance measure the LR test
outperforms the pairwise procedures using Bonferroni’s adjustment. Figure 5 gives Boxplots
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Fig 4. The power of the exact 3-sample LR test (vertical axis) in comparison to the pairwise
2-sample tests with Bonferroni’s adjustment (horizontal axis) for several parameter configu-
rations and for hypothesis HI using the difference, relative risk, and odds ratio, respectively.

(results of all distance measures combined) of the power differences between the exact LR
test and its competitors with Bonferroni’s adjustment.

As a conclusion, the calculations show that in most cases the exact LR test for HI

improves the power compared to the Bonferroni adjusted pairwise procedures, and this
improvement can be quite substantial. We mention that similar pictures are obtained if the
exact LR test for HI is compared with the Bonferroni adjusted procedure using the exact
two-sample LR tests instead of the two-sample tests used in Figures 4 and 5 (results not
shown).

Thus, the sample size can be significantly reduced when applying the exact LR test for
HI instead of the Bonferroni adjusted procedures. This will be illustrated by the following
example. Let h = hOR, (θ1, θ2) = (2, 2) and (ϑ1, ϑ2, ϑ3) = (0.8, 0.8, 0.6). Then a sample
size of 25 per group is required to give a power of 0.8 when using the Bonferroni adjusted
procedure (Fisher’s exact unconditional test). Applying the exact LR test for HI , a sample
size of 20 per group yields a power of 0.8, i.e. the sample size can be reduced by 20%.

5.2. The quasi exact test

The quasi exact LR test - described at the end of Section 4.2 - is numerically investigated by
simulations (100,000 simulation runs in each scenario) for sample sizes between 50 and 500
per group. Level and power of this test are compared to the pairwise asymptotic two-sample
tests based on Bonferroni’s adjustment of commonly used score tests. To this end, for hDI

and hRR Farrington and Manning’s test (Farrington & Manning 1990) is chosen, because
among asymptotic tests this test has been revealed in a variety of papers as a benchmark
w.r.t. power, albeit sometimes slightly liberal (cf. e.g. Munk, Skipka & Stratmann 2005).
For hOR a test based on the standardized log odds ratio is applied, which is the commonly
used approach. We mention that a survey on these and various other asymptotic approaches
can be found in Chen, Tsong & Hang (2000).

Table 1 shows the simulated level and power for the three distance measures difference,
relative risk and odds ratio, respectively. Different parameter settings are implemented,
analogously to the investigations mentioned above. Note, that the simulated levels are quite
accurate for all approaches. Overall, it can be seen that the quasi exact LR test is superior
to its competitors with respect to level and power in most cases.
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Table 1

The simulated power (level) (times 100) of the quasi exact LR test and its competitors (θ̃1, θ̃2 as the true
differences, relative risks, or odds ratios, respectively).

n1 n2 n3 θ1 θ2 ϑ1 θ̃1=θ̃2 LR test score test

difference

50 50 100 0.1 0.15 0.2 -0.02 84.9 (5.0) 84.7 (5.0)
75 75 75 0.1 0.15 0.3 -0.05 85.3 (5.0) 83.6 (4.7)
75 75 150 0.1 0.15 0.25 0 80.5 (4.9) 79.2 (5.0)
100 100 100 0.1 0.15 0.2 0 80.9 (5.1) 77.8 (4.2)
100 100 200 0.1 0.15 0.3 0 85.7 (4.9) 84.5 (4.8)
200 200 200 0.1 0.1 0.25 0 80.7 (5.0) 78.1 (4.3)
200 200 400 0.1 0.1 0.4 0 86.4 (4.9) 84.3 (4.8)
400 400 400 0.05 0.1 0.5 0 83.8 (4.9) 82.9 (4.7)
500 500 500 0.05 0.1 0.5 0 90.6 (5.3) 90.0 (4.7)

relative risk

50 50 100 1.5 1.75 0.4 1 82.4 (4.8) 79.8 (5.2)
75 75 75 1.5 1.75 0.35 1 80.9 (4.9) 79.1 (5.2)
75 75 150 1.5 1.75 0.3 1 81.8 (5.0) 80.6 (5.2)
100 100 100 1.5 1.5 0.2 0.75 81.5 (5.0) 80.3 (4.9)
100 100 200 1.5 1.5 0.3 1 79.4 (5.0) 77.1 (5.2)
200 200 200 1.25 1.5 0.3 1 80.0 (5.1) 78.9 (4.9)
200 200 400 1.25 1.5 0.25 1 80.7 (4.8) 79.8 (5.1)
400 400 400 1.25 1.25 0.35 1 83.6 (4.9) 80.7 (4.6)
500 500 500 1.25 1.25 0.3 1 82.8 (4.8) 80.7 (4.6)

odds ratio

50 50 100 1.5 1.75 0.4 0.75 80.2 (4.7) 77.6 (4.9)
75 75 75 1.5 1.75 0.5 0.8 77.8 (4.9) 75.3 (4.5)
75 75 150 1.5 1.75 0.3 0.8 83.0 (4.9) 80.6 (5.0)
100 100 100 1.5 1.5 0.4 0.75 83.9 (5.3) 82.2 (4.8)
100 100 200 1.5 1.5 0.45 0.85 84.5 (4.9) 82.4 (4.9)
200 200 200 1.25 1.5 0.3 0.85 79.8 (5.0) 78.2 (4.6)
200 200 400 1.25 1.5 0.25 0.9 79.5 (5.0) 77.6 (4.9)
400 400 400 1.25 1.25 0.35 0.9 79.0 (5.1) 75.5 (4.6)
500 500 500 1.25 1.25 0.2 0.85 84.3 (4.9) 81.8 (4.5)

imsart-generic ver. 2007/04/13 file: cjsmunk_preprint.tex date: April 29, 2008



Munk et al./Testing noninferiority based on the likelihood ratio statistics 13

-4

-2

0

2

4

6

8

10

12

14

Fisher's exact
uncond. test (OR)

Chan's
test (DI)

Chan's
test (RR)

Fig 5. Boxplot (whiskers are the 5% and 95% quantiles) for the power differences (times
100) between the exact LR test and the multiple comparison procedures using Bonferroni’s
adjustment for the three distance measures difference (DI), relative risk (RR) and odds ratio
(OR).

6. Example

In a randomized double-blind comparison in patients with cancer, Hesketh et al. (1996)
assess the efficacy of antiemetic agents in preventing cisplatin-induced nausea and vomiting.
The trial was performed to show noninferiority of dolasetron mesylate at doses of 1.8 mg/kg
(E1) and 2.4 mg/kg (E2), respectively, over the standard ondansetron (C) at its approved
dose of 32 mg. The primary analysis was done by comparing the failure rates of E1 and E2,
respectively, with C. Patients having emetic episodes or receiving rescue medication during
24 hours were classified as failures. For both comparisons the equivalence margin for the
odds ratio was specified as 2. It is not clearly described by Hesketh et al. (1996) whether it
was the goal to show noninferiority of both doses of dolasetron compared to ondansetron,
or to show that at least one of the doses of dolasetron is non-inferior to ondansetron.

The resulting failure rates were similar in the three groups: 110/198 (56%) in E1, 123/205
(60%) in E2, and 118/206 (57%) in C. Comparing E1 versus C and E2 versus C, the authors
calculated an odds ratio (upper 97.5% confidence limit) of 0.97 (1.47) and 1.16 (1.75),
respectively. They concluded that dolasetron (1.8 or 2.4 mg/kg) has comparable efficacy to
ondansetron, since the upper confidence limits were smaller than 2 (without specifying any
level adjustment; actually, there was no significance level stated at all).

If we apply the asymptotic LR test for the odds ratio for HU (which equals the pairwise
comparisons with level α, respectively), i.e. for showing that both treatments E1, E2 are
non-inferior to C, we obtain p-values of 0.00007 and 0.0019 comparing E1 versus C and E2

versus C, respectively, i.e. we can reject the null hypothesis HU at level α = 0.05. The same
p-values result for the asymptotic score tests. For comparison with the results in Hesketh
et al. (1996), we can determine test-based upper 97.5% confidence limits by calculating the
hypotheses boundaries for which the respective exact two-sample LR tests do not reject
the null hypotheses at level 2.5%. This results in boundaries 1.38 for E1 versus C and 1.66
for E2 versus C, which are even a bit smaller than the boundaries given by Hesketh et al.
(1996). Even if their boundaries - calculated with adjustment for covariates - are not directly
comparable to our boundaries, this indicates how powerful the LR test is.

If it is of interest to show noninferiority of at least one of both doses of dolasetron compared
to ondansetron, we can apply the LR test for HI . To embed this setting into hypothesis HI ,
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we have to regard success rates instead of failure rates. Thus, let ϑ1, ϑ2, and ϑ3 denote the
true success rates for E1, E2, and C, respectively. For this example we obtain T = 15.9 as
the value of test statistic (2.2). Applying the quasi exact test described in Section 4.2, we

get ϑ̂∗ = (0.37, 0.37, 0.54) as the constrained MLE and t = 3.81 as the 95%-quantile. The
approximated p-value is about 0.00009, hence we can reject HI at level α = 0.05. Thus,
we can now proceed with the two-sample comparisons, as was discussed in Section 3. Since
these can be performed each at level α, we can immediately use the results obtained above
when considering the null hypothesis HU .

7. Discussion

We mention that the LR test for three armed trials can be extended to other settings. More
general, if the observations come from an exponential family, similar Theorems as 1 and 2
can be proved. Besides of the binomial model discussed so far the most common assumption
is normality. Here, various simplifications are possible.

In this case we observe normally distributed samples Xij ∼ N(µi, σ
2) (j = 1, . . . , ni;

i = 1, 2, 3). Most commonly, the hypotheses corresponding to (1) and (2) are formulated in
terms of mean differences, e.g. Hypericum Depression Trial Study Group (2002),

HU : µ3 − µ1 ≥ δ1 or µ3 − µ2 ≥ δ2 (7.1)

and
HI : µ3 − µ1 ≥ δ1 and µ3 − µ2 ≥ δ2, (7.2)

where δ1, δ2 are threshold values specified in advance. In this particular case, without chang-
ing the testing problem, δ1 and δ2 can be set to zero when adding δ1 to x1j and δ2 to x2j . Of
course, when other distance measures are specified, shifting of the margins may no longer be
possible (e.g. for the standardized difference). Pigeot et al. (2003) or Tang & Tang (2004)
investigated trials where the noninferiority margin δ1 for a new treatment compared to a
standard treatment is specified as a fraction of the true difference between the standard
treatment and placebo. This setting can also be treated with help of the LR test - both
asymptotically and exact. We will present this case in more detail in a further publication.

For one-sided hypotheses and more than two groups the statistical theory is based on
methods of order restricted statistical inference which was extensively developed since the
early 1950s. Barlow, Bartholomew, Bremner & Brunk (1972) have summarized much of
the early work. For k independent groups with normally distributed data and means µ =
(µ1, . . . , µk), Robertson, Wright & Dykstra (1988) consider hypotheses of the type

H0 : µ is isotonic with respect to � vs. ¬H0 ,

where � is a partial ordering of µ. Robertson, Wright & Dykstra (1988) developed the LR
test for different partial orderings. Applying their formulae to the hypothesis (7.1) it can
be easily shown that the LR test is equivalent to the IUT, if for the IUT the two-sample
variance estimates are replaced by the pooled three-sample variance estimates. This leads
to an improvement over the pairwise testing when using the two-sample pooled standard
deviation, due to the larger number of n1 + n2 + n3 − 3 degrees of freedom. The hypothesis
(7.2) is a particular case of a simple tree hypothesis for k > 2 groups. The formulae for the
LR test in this case can be found in Robertson, Wright & Dykstra (1988).

To summarize, we have shown that in a three armed noninferiority or superiority trial
in the binomial setting the LR principle leads to two different tests. For null hypotheses
which are the union of two sub-hypotheses of the type ϑ3 ≥ h1(ϑ1) and ϑ3 ≥ h2(ϑ2),
the intersection union test results asymptotically, whereas for testing the intersection of
these sub-hypotheses a rather complicated asymptotic test results. An exact modification
of this test yields numerically feasible solutions for small sample sizes. This unifies various
approaches suggested in the literature for particular choices of h1, h2, and it leads to tests
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which outperform Bonferroni-adjusted tests in terms of power. In addition, if the test for an
intersection hypothesis leads to a rejection, then the pairwise comparisons can be performed
in a second step, where no level adjustment is required.

There are several methodological aspects which remain to be investigated in the future.
Issues related to the construction of test-based confidence intervals and to the determination
of necessary sample sizes for the exact tests will be addressed in forthcoming publications.
Further, we will deal with the problem of showing the retention of the fraction of the control
effect in the three-sample design.

Appendix A: Proof of Theorem 2.

First note that

P (T > t) = P (T1 > t , Lx(ϑ̂∗
S1

) ≥ Lx(ϑ̂∗
S2

)) + P (T2 > t , Lx(ϑ̂∗
S1

) < Lx(ϑ̂∗
S2

)) .

In case of ϑ3 = h1(ϑ1), ϑ3 < h2(ϑ2) ,

P (Lx(ϑ̂∗
S1

) ≥ Lx(ϑ̂∗
S2

)) = 1 + o(1) ,

and thus,
P (T > t) = P (T1 > t) + o(1) .

Analogously, in case of ϑ3 = h2(ϑ2), ϑ3 < h1(ϑ1) ,

P (T > t) = P (T2 > t) + o(1) .

Hence, if ϑ is not located on the edge S1∩S2 = {ϑ : ϑ3 = h1(ϑ1) = h2(ϑ2)}, the test statistic
follows the same distribution (1

2 + 1
2Fχ2

1

) as in the two-sample case (cf. Theorem 1).
If ϑ is located on the edge S1 ∩ S2,

P (T > t) = P (T1 > t , T2 > t) ≤ P (T1 > t) ,

i.e. P (T > t) ≤ α for t = (1
2 + 1

2Fχ2

1

)1−α.

Appendix B: Proof of Theorem 3.

A similar argument as in Munk, Skipka & Stratmann (2005, Lemma 1a) yields that the
maximum of Lx(ϑ) over HI is attained in Θh

I = K1 ∪ K2.

If ϑ̂∗
S1

/∈ HI , we have that arg maxK1
L(ϑ) ∈ K3, since Lx(ϑ) is isotonic in ϑ2 (ϑ2 < ϑ̂2)

for fixed parameters ϑ3 = h1(ϑ1). Analogously, arg maxK2
Lx(ϑ) ∈ K3 holds for ϑ̂∗

S2
/∈ HI .

It follows that ϑ̂∗ = ϑ̂∗
K3

.

If ϑ̂∗
S1

∈ HI and ϑ̂∗
S2

/∈ HI , it follows that arg maxK2
Lx(ϑ) ∈ S1, since K3 ⊂ S1. If

ϑ̂∗
S1

∈ HI and ϑ̂∗
S2

∈ HI , maxϑ∈HI Lx(ϑ) = Lx(ϑ̂∗
S1

) for T1 ≤ T2. This proves the case

ϑ̂∗ = ϑ̂∗
S1

, and by symmetry the case ϑ̂∗ = ϑ̂∗
S2

, also.

Appendix C: Asymptotic null distribution of the LR for HI

Theorem A.1. Let ϑ3 = h1(ϑ1) = h2(ϑ2) and X = (X1,X2,X3)
⊤ a 3-dimensional normally

distributed random vector with zero mean and covariance matrix Σ−1, where

Σ := diag

(

1

ϑ1(1 − ϑ1)
,

1

ϑ2(1 − ϑ2)
,

1

ϑ3(1 − ϑ3)

)

.
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Let further, for i = 1, 2,

Σi := diag

(

1

ϑi(1 − ϑi)
,

1

ϑ3(1 − ϑ3)

)

,

Ci := (
√

ci , h′
i(ϑi))

⊤ ,

Σ∗
i :=

ci

ϑi(1 − ϑi)
+

h′
i(ϑi)

2

hi(ϑi)(1 − hi(ϑi))
,

and

C := (
√

c1 ,
√

c2[h
−1
2 (h1(ϑ1))]

′ , h′
1(ϑ1))

⊤ ,

Σ∗ :=
c1

ϑ1(1 − ϑ1)
+

c2([h
−1
2 (h1(ϑ1))]

′)2

h−1
2 (h1(ϑ1))[1 − h−1

2 (h1(ϑ1))]
+

h′
1(ϑ1)

2

h1(ϑ1)(1 − h1(ϑ1))
.

Then, as mini=1,2,3{ni} → ∞, such that cni := ni

n3

→ ci ∈ (0,∞) (i = 1, 2), it holds for
t > 0 that P (T > t) → p1(t) + p2(t) + p3(t), where

p1(t) := P

(

(X1,X3)A1

(

X1

X3

)

> t ∩ [X3 <
h′

1(ϑ1)√
c1

X1 ∪ X3 <
h′

2(ϑ2)√
c2

X2]

∩ B1X1 ≥ (h−1
1 [h2(ϑ2)])

′
√

c2
X2 ∩

[

B2X2 <
(h−1

2 [h1(ϑ2)])
′

√
c1

X1

∪ {B2X2 ≥ (h−1
2 [h1(ϑ2)])

′
√

c1
X1 ∩ (X1,X3)A1

(

X1

X3

)

≤ (X2,X3)A2

(

X2

X3

)

}
])

,

p2(t) := P

(

(X2,X3)A2

(

X2

X3

)

> t ∩ [X3 <
h′

2(ϑ2)√
c2

X2 ∪ X3 <
h′

1(ϑ1)√
c1

X1]

∩ B2X2 ≥ (h−1
2 [h1(ϑ2)])

′
√

c1
X1 ∩

[

B1X1 <
(h−1

1 [h2(ϑ2)])
′

√
c2

X2

∪ {B1X1 ≥ (h−1
1 [h2(ϑ2)])

′
√

c2
X2 ∩ (X1,X3)A1

(

X1

X3

)

> (X2,X3)A2

(

X2

X3

)

}
])

,

p3(t) := P

(

X⊤AX > t ∩ [X3 <
h′

1(ϑ1)√
c1

X1 ∪ X3 <
h′

2(ϑ2)√
c2

X2]

∩ B1X1 <
(h−1

1 [h2(ϑ2)])
′

√
c2

X2 ∩ B2X2 <
(h−1

2 [h1(ϑ2)])
′

√
c1

X1

)

,

with (letting (x)1 denote the first component of the vector x)

A = Σ − ΣCΣ∗−1

C⊤Σ ,

Ai = Σi − ΣiCiΣ
∗−1

i C⊤
i Σi , i = 1, 2 ,

Bi = (Σ∗−1

i C⊤
i Σi)1 , i = 1, 2 .

Proof Theorem A.1. If ϑ̂∗ = ϑ̂∗
Si

(i = 1, 2), i.e. the MLE constrained to HI is in Si, the test

statistic Ti is given by (2.6). Since for ϑ̂∗ = ϑ̂∗
K3

the MLE is calculated under the constraint

K3, the test statistic is given by T3 := 2[ln L(ϑ̂) − lnL(ϑ̂∗
K3

)].
With Theorem 3 it holds for t > 0 that

P (T > t) = P (T1 > t ∩ ϑ̂ /∈ HI ∩ ϑ̂∗
S1

∈ HI ∩ [ϑ̂∗
S2

/∈ HI ∪ {ϑ̂∗
S2

∈ HI ∩ T1 ≤ T2}])
+P (T2 > t ∩ ϑ̂ /∈ HI ∩ ϑ̂∗

S2
∈ HI ∩ [ϑ̂∗

S1
/∈ HI ∪ {ϑ̂∗

S1
∈ HI ∩ T1 > T2}])

+P (T3 > t ∩ ϑ̂ /∈ HI ∩ ϑ̂∗
S1

/∈ HI ∩ ϑ̂∗
S2

/∈ HI) .
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From Pruscha (2000, Th. 4.3, p. 253) it follows that Ti (i = 1, 2, 3) is asymptotically equiv-
alent to (X̂i, X̂3)Ai (X̂i, X̂3)

⊤ if ϑ3 = hi(ϑi) for i = 1, 2, and to X̂⊤A X̂ if ϑ3 = h1(ϑ1) = h2(ϑ2)
for i = 3, where

X̂ = (X̂1, X̂2, X̂3)
⊤ = (

√
nj(ϑ̂j − ϑj))j=1,2,3 .

Note that ϑ̂ ∈ HI is equivalent to ϑ̂3 ≥ h1(ϑ̂1) ∩ ϑ̂3 ≥ h2(ϑ̂2) and hence to
√

n3(ϑ̂3 − ϑ3) ≥
√

n1

cn1

(h1(ϑ̂1) − h1(ϑ1)) ∩ √
n3(ϑ̂3 − ϑ3) ≥

√

n2

cn2

(h2(ϑ̂2) − h2(ϑ2)). Since we

have hi(ϑ̂i) − hi(ϑi) = h′
i(ϑi)(ϑ̂i − ϑi) + op(|ϑ̂i − ϑi|) as mini=1,2,3{ni} → ∞, it holds that

√
n3[ϑ̂3 − hi(ϑ̂i)] − [X̂3 −

h′
i(ϑi)√
cni

X̂i]
P−→ 0 .

Now ϑ̂∗
S1

∈ HI is equivalent to h1(ϑ̂
∗
S1,1) ≥ h2(ϑ̂2) and hence to

√
n3(ϑ̂

∗
S1,1 − ϑ1) ≥

√

n2

cn2

[h−1
1 (h2(ϑ̂2)) − h−1

1 (h2(ϑ2))], where ϑ̂∗
S1,1 is the first component of

ϑ̂∗
S1

(note that h−1
1 (h2(ϑ2)) = ϑ1). An application of Pruscha (2000, Corollary 4.1, p. 249)

gives that this is asymptotically equivalent to the condition B1X̂1 ≥ (h−1

1
[h2(ϑ2)])

′

√
cn2

X̂2. The

proof for ϑ̂∗
S2

∈ HI is carried out analogously.

From Pruscha (2000, Th. 3.4, p. 194) it follows that X̂
D−→ N3(0,Σ

−1(ϑ)). Slutsky’s
theorem finishes the proof.
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We are indebted to S. Senn, S. Lange, J. Röhmel, and H.J. Trampisch for helpful comments
and discussions. Various comments of a referee are gratefully acknowledged, which lead to
an improved version of this manuscript.

References

R. E. Barlow, D. J. Bartholomew, J. M. Bremner & H. D. Brunk (1972). Statistical Inference

under Order Restrictions. John Wiley & Sons, London.

G. A. Barnard (1945). A new test for 2x2 tables. Nature, 156, 177.

G. A. Barnard (1947). Significance tests for 2x2 tables. Biometrika, 34, 123-138.

R. L. Berger (1997). Likelihood ratio tests and intersection-union. In S. Panchapakesan and N.

Balakrishnan, editors, Advances in Statistical Decision Theory and Applications, Chapter 15,

pages 225-237. Birkhäuser.
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