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Abstract

We use the sinc kernel to construct an estimator for the integrated squared regression
function. Asymptotic normality of the estimator at different rates is established,
depending on whether the regression function vanishes or not.
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1 Introduction

Suppose that f is a function with compact support, say supp(f) ⊂ [−1, 1],
and consider the regression model with fixed, equidistant design

Yk = f(tk) + εk, k = −n, . . . , n.

Here tk = k/n, k = −n, . . . , n, and εi is an i.i.d. additive noise with Eεk = 0,
Var εk = σ2 and Eε4k < ∞.
In this paper we focus on estimation of the quadratic regression functional

‖f‖2 =
∫ 1
−1

f 2(t) dt.

To this end we use an estimator based on the so-called sinc-kernel sinc(t) =
sin(t)/(πt). The sinc-kernel has been widely applied in the context of density
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estimation, see e.g. Davis (1975, 1977), Devroye (1992) or Glad et al. (2003),
because it has certain optimality properties in terms of mean square error
and mean integrated square error for sufficiently smooth densities. It also
arises naturally from a spectral cut-off procedure which is frequently applied
in inverse statistical estimation (cf. Rooij et al., 1999).
As an estimator for the regression function itself we use

f̂n,m(t) = n−1m
n∑

k=−n

sinc
(
m(t− tk)

)
Yk, m > 0, (1)

which we call the Fourier kernel estimator due to its origin as inverse Fourier
transform of the indicator function, and for the quadratic regression functional

N̂2n :=
∫ 1
−1

f̂ 2n,m(t)dt.

In Section 2 we show uniform convergence of f̂n,m to the regression f with
optimal rates under certain smoothness assumptions on f , given in terms of
the tail behaviour of its Fourier transform. However, it is well known that
estimators based on the sinc kernel have a certain wiggliness, and often do not
accurately represent the target function. Therefore, in order to estimate the re-
gression function itself, flat-top or supersmooth kernels can be a better choice
(cf. McMurry and Politis, 2004). Supersmooth kernels also simplify bandwidth
choice, particularly since they are absolutely integrable (cf. Devroye and Lu-
gosi, 2001, chapter 17, and Delaigle and Gijbels, 2004, for a simulation study
in the context of density estimation).
The main goal of this paper is to examine the asymptotic distribution of the
estimator N̂2n of the quadratic regression functional ‖f‖2. In Section 3 we
show that N̂2n is asymptotically normally distributed at a

√
n-rate. However,

for f = 0, the limiting distribution is degenerate, and a non-degenerate nor-
mal limit law appears with rate n/

√
m. Similar results have been obtained by

Huang and Fan (1999) for a regression function and its derivatives using local
polynomial estimators based on compactly supported kernels, and by Bickel
and Ritov (1988) for density estimators. However, the phenomenon of different
rates for f 6= 0 and f = 0 appears to be new in the context of quadratic re-
gression functionals. Let us stress that the above mentioned wiggliness of the
Fourier kernel estimator is inessential when using it to estimate quadratic re-
gression functionals. Also the choice of bandwidth seems to be less important
for the estimation of such functionals than for estimation of the function itself.
Recommendations could be based on a simulation study; cf. Dette (1999) for
an ad-hoc choice in a related context.
Finally, in the Appendix we collect some technical lemmas.
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2 Uniform convergence

In this section we show uniform pointwise convergence of the Fourier kernel
estimator (1). The following regularity condition on the tail behaviour of the
Fourier transform χf of the regression function f will be essential.

Assumption 1 The Fourier transform χf of f satisfies

|χf (ω)| ≤ d|ω|−(α+1/2) , |ω| ≥ 1 , for some d ≥ 0 and some α >
1
2
. (2)

Theorem 2 Suppose that m = o(n2/3) for n,m → ∞, supp(f) ⊆ [−1, 1],
f is Lipschitz continuous, and that the Fourier transform χf of f satisfies
Assumption 1. Then f̂n,m is uniformly consistent for all t ∈ [−1, 1] with

sup
t∈[−1,1]

Bias f̂n,m(t) = sup
t∈[−1,1]

|Ef̂n,m(t)−f(t)| = O(m−(α−1/2))+O(m3/2/n) (3)

and variance
sup

t∈[−1,1]
Var f̂n,m(t) = O(m/n).

The mean squared error converges uniformly to 0 with rate

sup
t∈[−1,1]

E
((

f̂n,m(t)− f(t)
)2)
= O(m3/n2) +O(m−(2α−1)) +O(m/n).

Remark 1 Lipschitz continuity of f follows from Assumption 1 if α > 3/2.

Remark 2 Assumption 1 on the tails of the Fourier transform of χf implies
continuity of f on the whole real line. Since supp(f) ⊆ [−1, 1] it follows in
particular that f(1) = f(−1) = 0. This property of f allows to show uni-
form convergence of the estimator on [−1, 1]. Without such a condition kernel
regression estimators without boundary correction converge to f(x)/2 at the
boundary points, and not to the regression function (cf. Efromovich 1999, p.
330).

Remark 3 The sinc kernel estimator achieves asymptotic (rate) optimality.
This can be seen as follows. Let, say, f be an L1-function with Fourier trans-
form χF , and |χf (ω)| ≤ d|ω|−1−m,m ∈ N, m ≥ 2. This is (1) with α = m+1/2.
Then, according to Theorem 2, the pointwise MSE of the sinc-kernel estimator
is O

(
n−2m/(2m+1)

)
. The class of functions for which Assumption 1 holds with

α = m + 1/2 (see e.g. Chandrasekharan, 1989, p. 20) contains the class of
m-times continuously differentiable functions. This class is basically similar to
the class Cm defined in Fan and Gibjels (1996) if some additional regularity
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assumptions on the mth derivative of f are made. For the class Cm the rate
of convergence of the linear minimax risk is n−2m/(2m+1). Therefore, the sinc-
kernel estimator achieves the minimax rate of convergence in such function
classes.

Proof of Theorem 2. We proceed mostly along the lines of the proof of Theo-
rem 1 in Pawlak & Stadtmüller (1997), which is concerned with bandlimited
functions and a regression model on the whole real line. Write

E
(
f̂n(t)

)
=m

(n+1/2)/n∫
−(n+1/2)/n

f(u)sinc(m(t− u))du

+m
∑
|k|≤n

f (tk)

n−1sinc(m(t− tk))−
(k+1/2)/n∫
(k−1/2)/n

sinc(m(t− u))du


+m

∑
|k|≤n

(k+1/2)/n∫
(k−1/2)/n

sinc(m(t− u)) (f (tk)− f(u)) du

=A(t) +B(t) +C(t).

The following estimates, which hold uniformly for t ∈ [−1, 1], are obtained
by straightforward calculations using the Cauchy-Schwarz inequality and Lip-
schitz continuity of f .

|B(t)| = O
(
m3/2/n

)
, |C(t)| = O

(
m1/2/n

)
. (4)

To deal with the term A we write A(t) = f(t) −
∫
|ω|≥m χf (ω)e−iωt dω, and

estimate the remainder term as follows.∣∣∣∣ ∫
|ω|≥m

χf (ω)e
−iωtdω

∣∣∣∣ ≤ ∫
|ω|≥m

d|ω|−(α+1/2)dω ≤ 2dm−(α−1/2), (5)

which again holds uniformly in t. Now, (3) follows from (4) and (5). As for
the variance of f̂n,m(t), we estimate

Var f̂n,m(t) = σ2m n−1

 m∫
−m

sinc2 (mt− x) dx+O (m/n)

 = O (m/n) . 2

3 Asymptotic normality

In this section we analyse the asymptotic distribution of the quadratic regres-
sion functional

N̂2n :=
∫ 1
−1

f̂ 2n,m(t)dt = Y T AY,
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where

A = (aj,k)|j|,|k|≤n, aj,k = (m/n)2
1∫

−1

sinc (m (t− tj)) sinc (m (t− tk)) dt.

In the following theorem, we show asymptotic normality of N̂2n in two different
cases.

Theorem 3 If f = 0 and log(n)/
√

m → 0, m3/2/n → 0 as n, m → ∞, we
have

n m−1/2 N̂2n − 2m1/2σ2/π
D→ N

(
0, 4σ4/π

)
. (6)

If f 6≡ 0 is Lipschitz-continuous, has compact support supp(f) ⊆ [−1, 1], and
satisfies Assumption 1, and if m2 = o(n), and m−2α√n = o(1) as n,m →∞,
then √

n
(
N̂2n − ‖f‖2

)
D→ N(0, 4σ2‖f‖2).

Remark 4 It is remarkable that different rates appear in the two cases f = 0
and f 6= 0. Such a phenomenon was also observed by Dette (1999). He consid-
ered a statistic based on the difference of a parametric and a non-parametric
variance estimator to test the validity of a linear regression model, and ob-
tained different rates under the hypothesis and under fixed alternatives. Our
rates correspond to those of Dette, if the smoothing parameter m is replaced
by the multiplicative inverse of a bandwidth.

Remark 5 Theorem 3 gives rise to a consistent test for the hypothesis f = 0.
The potential power of this test is indicated by the consideration of local alter-
natives. Similar to Dette (1999) we obtain for the limiting variance under local
alternatives the value 4σ4/π as in (6). Dette’s (1999) result closely resembles
(6), if the smoothing length h of the nonparametric estimator in Dette’s test
is replaced by the multiplicative inverse of our smoothing parameter Ω. How-
ever, Dette’s regression model is yj,n = y(tj,n) = m(tj,n) + εj,n, j = 1, . . . , n
for design points t1,n, . . . , tn,n ∈ [0, 1]. This differs slightly from our setting,
both in the number of design points (n instead 2n + 1) and the size of the
support of the design density ([0, 1] instead of [−1, 1]). A close inspection of
our proofs shows that if our regression model is changed into n equally spaced
observations on [0, 1], the variance of (6) becomes µ20 := 2σ

4/π ≈ 0.64σ4. The
asymptotic variance µ20 of Dette’s test (his eq. (2.13)) depends on the kernel
used for the nonparametric variance estimator. In his numerical simulations
he used the Epanechnikov kernel. For this kernel µ20 ≈ 1.70σ4. Furthermore,
for the Gaussian kernel µ20 ≈ 0.81σ4, and for the Fourier estimate kernel as
discussed in this paper µ20 = 2σ

4/π, thus the variance for our test with this
kernel is recovered by Dette’s eq. (2.13). However, note that for the Gaussian
kernel and the Fourier estimate kernel the assumption of compact kernel sup-
port does not hold, so Dette’s theorems cannot be applied to these kernels.
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Hence our result extends Dette’s result to the Fourier estimate kernel which
is more powerful than tests based on the kernels mentioned above.

Remark 6 An inspection of the proof indicates that a similar result could be
obtained for a fixed, but non-equidistant design with differentiable, non-zero
design density. However, in that case the design density appears in certain in-
tegrals, which makes application of Fourier based methods almost impossible,
see e.g. Lemma 4. This could make the proof much more tedious.

Proof of Theorem 3. The proof goes along the lines of proof of Theorems 1
and 2 in Dette (1999). However the actual computations, based on arguments
involving the Fourier transform, are completely different. The expectation of
our statistic is given by

EN̂2n = σ2tr(A) +
∑

|j|,|k|≤n

aj,kf(tj)f(tk), (7)

and thus

N̂2n − E[N̂2n] =
∑

|j|,|k|≤n,

j 6=k

aj,k(εjεk − f(tj)f(tk)) +
∑
|j|≤n

aj,j(εj − σ2) = T1 + T2.

Firstly let us consider the case f = 0. Then

E T1 = E T2 = E(T1T2) = Cov(T1, T2) = 0

and
VarT1 = 2σ

4
∑

|j|,|k|≤n,

j 6=k

a2j,k, VarT2 = (µ4 − σ4)
∑
|j|≤n

a2j,j.

Next we estimate the asymptotic behaviour of expectation and variance. For
the expectation tedious but straightforward computations show that

tr(A) = (m/n)2
n∑

k=−n

m−1
∫ m(1−tk)

m(−1−tk)
sinc2(t)dt = 2m/(πn) +O (log(n)/n) .

As for the variance, we start by estimating VarT2.

n∑
|j|≤n

a2j,j = m2 n−4
∑
|j|≤n

(∫ ∞

−∞
sinc2(t)dt−

∫
|t|≥m(1−tj)

sinc2(t)dt

)2
= O

(
m2/n3

)
.

From Lemma 4 it follows that the asymptotic variance of T1 is given by

VarT1 = 4σ
4m/(πn2) + o

(
m/n2

)
.
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Therefore in case f = 0 we have

N̂2n = 2σ
2m/(πn) +O (log(n)/n) + T1 +OP

(
m/n3/2

)
,

and it suffices to show asymptotic normality of T1. To this end we apply
Theorem 5.2 in de Jong (1987). Assumptions (1) and (2) of de Jong’s theorem
hold with K(n) = m1/4. Moreover, the maximal eigenvalue of A is estimated
as

σ(n)−1
n
max
i=−n

|µi| = O
(
m−1/2(logm)2

)
,

by applying Gerschgorin’s theorem. In fact,

σ(n)−1max
|j|≤n

|µj| ≤ σ(n)−1max
|j|≤n

∑
|k|≤n

|aj,k|

= cm−1/2max
|j|≤n

n−1
∑
|k|≤n

∣∣∣∣∣∣
m∫

−m

sinc (t−mtj) m sinc (t−mtk) dt

∣∣∣∣∣∣
=O

(
m−1/2 log2(m)

)
,

where we have used that

sup
x∈[0,m]

∫ m

0
|sinc(z − x)| dz = sup

x∈[0,m]

∫ m−x

−x
|sinc(z)| dz = O(log(m)),

and c is some generic constant. This proves (6).

Now let us consider the case f 6= 0. In this case the second term on the right-
hand side of (7) is ‖f‖2+o(n−1/2) by Lemma 5. In the variance Var(N̂2n−E N̂2n)
there appears an additional term

4σ2
n∑

i,j,l=−n

aijailf(tj)f(tl) = 4σ
2m2/n2

∑
|k|≤n

r2k,

where

rk =
∫ 1
−1

(
mn−1

∑
|j|≤n

f (tj) sinc (m (t− tj))
)
sinc (m (t− tk)) dt.

By Lemma 6 this equals

4σ2m2 n−2
∑
|k|≤n

(∫ 1
−1

f(t)sinc (m (t− tk)) dt+O
(
m1/2n−1/4

))2

=4σ2m2 n−2
∑
|k|≤n

(
n−1

n∑
|j|≤n

f (tj) sinc (m (tj − tk))

+O
(
m1/2n−1/4

)
+O (m/n)

)2
.
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Using Theorem 2 we can further simplify the last expression as

(m/n)2 (2σ/m)2
∑
|k|≤n

(
(f (tk) + o(1)) +O

(
m1/2n−1/4

))2
=4σ2n−2

∑
|k|≤n

(
f 2 (tk) + o(1)

)
= 4σ2 n−1‖f‖2 + o (1/n) ,

and Var N̂2n is asymptotically equal to 4σ
2‖f‖2/n. In summary, if f 6= 0 we

have
N̂2n = ‖f‖2 + 2

∑
|j|,|k|≤n

aj,kεjf(tk) + oP (n
−1/2),

and the conclusion follows by an application of Lyapounov’s theorem to the
variance dominating term∑

|j|,|k|≤n

aj,kεjf(tk). 2

4 Appendix

The Fourier transform is given by F(f)(ω) =
∫
R eiωxf(x) dx, so that F(sinc)(ω) =

1[−1,1](ω).

Lemma 4 Let m3/2 = o(n) and log(n) = o(m1/2) as n, m →∞, then

∑
|j|,|k|≤n,

j 6=k

 1∫
−1

sinc (m (t− tj)) sinc (m (t− tk)) dt

2 = 2n2/(πm3) + o
(
n2/m3

)
.

Proof. First observe that

∫ 1
−1
sinc (m (t− tj)) sinc (m (t− tk)) dt

=m−1
∫ m

−m
sinc (mtj − t) sinc (mtj + (m(tk − tj)− t)) dt

=m−1 (sinc (m(tj + tk))− c̃j,k) ,

where
c̃j,k :=

∫
|t|≥m

sinc (t−mtj) sinc (t−mtk) dt.

Next we estimate the sum over the squared sinc functions. In fact, tedious but
straightforward calculations show that

8



∑
|j|,|k|≤n,

j 6=k

sinc2 (m(tj + tk)) =
∑

|j|,|k|≤n

sinc2 (m(tj + tk))−
∑
|j|≤n

sinc2 (2mtj)

= 2 ·
(
(2n+ 1)

2n∑
k=1

sinc (mtk)
2 −

2n∑
k=1

k sinc (mtk)
2 +O(n)

)

= 2 ·
(
(2n+ 1)

(∫ 2n+1/2
1/2

sinc (mt/n)2 dt+O (m/n)

)

+
∫ 2n+1/2
1/2

t sinc (mt/n)2 +O
(
n2 log(n)/m2

)
+O(n)

)
(8)

= 2n2/(πm) + o
(
n2/m

)
.

Finally, for the sum over the squared error terms c̃2j,k tedious, but straightfor-
ward computations yield

∑
|j|,|k|≤n,

j 6=k

c̃2j,k = o
(
n2/m

)
,

which shows its asymptotic negligibility as compared to the sum over the
squared sinc-functions. This completes the proof of the lemma. 2

Lemma 5 Suppose supp(f) ⊆ [−1, 1], that f is Lipschitz-continuous, and
that the Fourier transform χf of f satisfies Assumption 1. If m−2α√n = o(1)
and m2 = o(n), then

‖Ef̂n,m − f‖2L2[−1,1] = o(n−1/2),

and in particular

‖Ef̂n,m‖2 = ‖f‖2L2[−1,1] + o(n−1/2).

Proof. We let χn denote the Fourier transform of Ef̂n,m. Using Parseval’s
equality, we compute

‖fn − f‖2L2[−1,1] ≤ ‖fn − f‖2L2(−∞,∞) = (2π)
−1‖χn − χf‖2L2(−∞,∞) (9)

= (2π)−1

 m∫
−m

|χn(ω)− χf (ω)|2 dω +
∫

|ω|≥m

|χf |2(ω)dω

 (10)

=E/(2π) +O(m−2α).

In order to estimate E, observe that χn(ω) = 1[−m,m](ω) (χf (ω) + c̄(ω)), where
c̄(ω) is estimated as follows.
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|c̄(ω)|=

∣∣∣∣∣∣
∑
|j|≤n

(
n−1f (tj) e

iωtj −
∫ (j+1/2)/n

(j−1/2)/n
eiωtf(t)dt

)∣∣∣∣∣∣
≤n−1

∑
|j|≤n

sup
ξ∈[ j−1/2

n
,
j+1/2

n
]

∣∣∣eiωtjf (tj)− eiωξf (ξ/n)
∣∣∣

≤n−1 L′ · (2n+ 1)/n = O (1/n) , (11)

independently of m and ω ∈ [−m,m],where L′ is a Lipschitz constant for
eiω ·f(·). The lemma follows from (9) and (11). 2

Lemma 6 Let the conditions of Lemma 5 hold. Then

∣∣∣∣∣∣
∫ 1
−1

(
(m/n)

∑
|k|≤n

f (tk) sinc (m (t− tk))
)
sinc (m (t− tj)) dt

−
∫ 1
−1

f(t)sinc (m (t− tj)) dt
∣∣∣∣ = o

(
(nm)−1/2

)
.

The proof is straightforward using the Cauchy-Schwarz inequality and Lemma
5 and is therefore omitted.
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