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Abstract

The fuzzy vault scheme is a cryptographic primitive being considered
for storing fingerprint minutiae protected. A well-known problem of the
fuzzy vault scheme is its vulnerability against correlation attack -based
cross-matching thereby conflicting with the unlinkability requirement and
irreversibility requirement of effective biometric information protection.
Yet, it has been demonstrated that in principle a minutiae-based fuzzy
vault can be secured against the correlation attack by passing the to-be-
protected minutiae through a quantization scheme. Unfortunately, single
fingerprints seem not to be capable of providing an acceptable security
level against offline attacks. To overcome the aforementioned security is-
sues, this paper shows how an implementation for multiple fingerprints can
be derived on base of the implementation for single finger thereby making
use of a Guruswami-Sudan algorithm-based decoder for verification. The
implementation, of which public C++ source code can be downloaded,
is evaluated for single and various multi-finger settings using the MCYT-
Fingerprint-100 database and provides security enhancing features such as
the possibility of combination with password and a slow-down mechanism.
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Figure 1: (a) Genuine (red) and chaff minutiae (grey); (b) each minutia is
encoded on a vault point’s abscissa where its ordinate binds the minutia to the
secret polynomial

1 Introduction

At a glance switching from password to biometric-based authentication schemes
can solve problems such as key management in which strong and secure pass-
words may be required to be stored on a chip card which however could possibly
be stolen. Similar to passwords biometric information must be stored in a pro-
tected form to prevent them from being lost on data theft. This introduces
new challenges due to the biometries’ non-deterministic nature. Properties for
effective biometric information protection, by means of renewable biometric ref-
erences, are requested by international standards [1]. There exist several bio-
metric modalities such as iris, face, palm, and fingerprints (see [2]) where each
is related with individual challenges; these must be accounted when implement-
ing extractors for renewable biometric reference for a specific modality or a
fusion thereof. In this article, we focus on fingerprints [3] and the generation of
renewable biometric references from them with a fuzzy vault scheme [4, 5].

1.1 Minutiae-Based Fuzzy Vault

In 2003, Clancy et al. [6] analysed the eligibility of the fuzzy vault scheme to
protect fingerprint minutiae which resulted in a series of minutiae-based fuzzy
vault implementations [7–11]. Basically, their functioning is as follows:

Enrolment

At most tmax minutiae are encoded as a subset A of a fixed finite field F; then,
a polynomial f ∈ F[X] of degree smaller than k is chosen at random and the
set of genuine pairs/genuine set, G = { (a, f(a)) | a ∈ A } is built; note that, if
|G| ≥ k, the genuine pairs encode the minutiae as well as the secret polynomial
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f . Next, a large set of chaff pairs/chaff set, C = { (x, y) } is generated such
that the values of x look like an encoding of a genuine minutiae and the values
of y are such that y 6= f(x). In this way the vault V = G ∪C is built hiding
the genuine pairs by dispersing them within the chaff pairs (see Figure 1 for a
visualization of this process).

We shall note here that it may be necessary to store a cryptographic hash
value SHA(f) along with V such that the pair (V,SHA(f)) builds the vault
record as a candidate for a renewable biometric reference. In fact, in [6] no such
hash value is employed but a mechanism for verifying the correctness of f is used
in which it is assumed that any other polynomial hardly interpolates a sufficient
number of vault pairs. Furthermore, in [8–11] a 16-bit cyclic redundancy check
code is attached to the correct polynomial such that its correctness can be
verified. We stress that a cryptographic hash value, as for example also used
in [12, 13], can serve as a mechanism for verification, too, and may even be
considered advantageous in view of blended substitution attacks the details of
which we refer to [14].

Verification

Given (V,SHA(f)), query minutiae are used to identify those vault pairs from
V of which vault minutiae, encoded on the abscissa, well agree with the query
minutiae; thereby the unlocking pairs/unlocking set U is established. If we
assume that the minutiae protected by the vault and the query minutiae stem
from the same finger, then the unlocking set may contain a significant proportion
of genuine pairs laying on the graph of the secret polynomial, i.e. (x, y) where
f(x) = y. Certain Reed-Solomon decoders can then be used to recover f the
correctness of which can be verified using the hash SHA(f).

Pre-Alignment

On genuine verification, the query minutiae must be aligned such that they
well agree with the genuine vault minutiae. In a minutiae-based fuzzy vault
[7, 9–11, 15] a common approach is to support this pre-alignment step using
auxiliary alignment data publicly stored along with the records. It is important
to note that public unprotected data does leak information about the protected
fingerprint which could be exploited by an intruder attempting to forge the
vault records in an attack. Attacks are discussed in the following in which
we ignore (for simplicity) that an implementation has to provide a mechanism
for automatic pre-alignment; but, the reader should be aware of the fact that
security may be lower in presences of auxiliary alignment data.

Security

Brute-Force Security An intruder who has intercepted a vault (V, SHA(f))
can try to guess k vault pairs and hope that they are genuine; if they are,
the interpolation polynomial f∗ will be equals to the secret polynomial f the
correctness of which can be verified using SHA(f). It is important to note that
recovery of f is equivalent to recovery of the genuine minutiae set protected
by the vault. The difficulty that a guess of k vault pairs yields to the correct
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polynomial is equals to (
n

k

)(
t

k

)−1
(1)

where t = |G| denotes the number of genuine pairs. This yields a notion of
brute-force security [16] being often used as the mere measure to assess security
in a fuzzy vault to fingerprint; this measure, however, tends to be quite low. For
example, in the implementation by Nandakumar, Jain, and Pankanti [10] for the
parameter configuration (n, tmax, k) = (224, 24, 11) at a genuine acceptance rate
of 86% brute-force security evaluates as 239.

False-Accept Security It is important to note, that brute-force security
tends to significantly overestimate the effective security of a minutia-based fuzzy
vault system. A more realistic measure can be derived from the false acceptance
rate FAR. An attacker can iteratively simulate impostor verification attempts
until he successfully unlocks the vault thereby running a false-accept attack ;
within each simulated attempt, he may succeed with probability equals to FAR.
More precisely, if the average impostor decoding time IDT is known, then the
attacker can expect to unlock the vault with effort

IDT · log(0.5)/ log(1− FAR) (2)

yielding the notion of false-accept security.
For example, in [10] for (n, tmax, k) = (224, 24, 9) brute-force security results

in 231 while the false acceptance rate has been evaluated as FAR = 0.01%. It has
furthermore been reported that the unlocking sizes were such that on verification
33 candidate polynomials had to be tested in average. Thus, an intruder can
expect to test 33 · log(0.5)/(1 − 0.01%) ≈ 218 candidate polynomials before
success. Compared to the brute-force security of 231, the false-accept attack
clearly is the more efficient attack. Even if no false accept has been observed,
the false acceptance rate still is non-zero. It may not be clear how to estimate
the false acceptance rate except coarse upper bounds (e.g. with the rule of
three [17]). Yet, brute-force security cannot be used for approximating the FAR
as emphasized above.

One may argue that a false-accept attack is harder to conduct for an intruder
since he has first to establish the attack database containing real fingerprints.
However, brute-force attacks may also be accelerated by exploiting the distri-
bution and dependency of the fingerprint features yielding statistical attacks.
It is important to note that the false-accept attack does exploit the distribution
and dependency of the biometric features and thus yields an upper bounds for
the system’s overall security.

At a glance it seems reasonable to reduce the false acceptance rate to improve
security, e.g. by processing other features than mere minutiae [11,12]; but even if
we can reduce the false acceptance rate to its half, which would be a tremendous
improvement, false-accept security will increase only by a single bit. In view
of this fact it seems hard to believe that significant security improvements can
be achieved while sticking to a certain biometric modality. We may improve
biometric security with the requested significance in combinations with PIN or
password or by fusing multiple biometric instances, for example by developing
fuzzy vault for multiple fingerprints, the latter being addressed in this work.
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Figure 2: Visualization of the correlation attack: Two vaults (a), (b) with chaff
minutiae (grey and light-grey) and genuine minutiae (red and blue). (c), (d)
The genuine minutiae have a bias to be in agreement and can be identified to
attack unlinkability and irreversibility of both vaults.

Correlation Attack There exists other risks than mere offline attacks. A
well-known vulnerability of the fuzzy vault scheme poses the correlation attack
conflicting with the unlinkability and even irreversibility requirement). Assume
an attacker has intercepted two records that have been generated from the
same finger. Then, we may observe that genuine minutiae correlate well as
compared to chaff minutiae (Figure 2). This can be exploited by an attacker
to decide whether two records are related or non-related which conflicts with
the unlinkability requirement. Even worse, since the attacker may be able to
identify a significant number of genuine vault pairs via correlation, he may be
able to fully break the records. Kholmatov and Yanikoglu [18] demonstrated
that in principle approximately 60% related vault records can be broken with
the correlation attack.

A simple, yet effective, measure to avoid the correlation attack is to round
minutiae to coordinates of a grid (e.g. rectangular or hexagonal); all unoccu-
pied grid coordinates are used to encode chaff pairs. Then there is no correlation
that can be exploited. It has been demonstrated in [19] that in principle the
approach can work: A genuine acceptance rate of ≈ 80% at no observed false
accepts has been measured in combination with an automatic method for abso-
lute fingerprint pre-alignment which removes the problem of information leakage
from public auxiliary alignment data.

1.2 Contribution

In this paper, on base of the correlation attack-resistant implementation pre-
sented in [19] we design an implementation for multiple fingerprint. In partic-
ular, to make the verification process practical, we design a decoder based on
a Guruswami-Sudan algorithm [20]. Furthermore, due to the fact that chaff
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features are not random, we can base our implementation on the improved
fuzzy vault scheme by Dodis et al. [21, 22] with the positive effect of signifi-
cantly more compact records. The implementation furthermore features mea-
sures for preventing other known record multiplicity attacks. Optionally, the
implementation can be encrypted/decrypted with a user password and imple-
ments a configurable slow-down mechanism with which the verification time can
be artificially increased in order to improve absolute security. We evaluate our
implementation using the MCYT-Fingerprint-100 database [23] and provide a
security estimation against a certain false-accept attack. For example, in a four-
finger setting, our evaluation results in a genuine acceptance rate of 93% at an
estimated false-accept security of 265.

It may be worth noting that our implementation can be downloaded in form
of a C++ library called THIMBLE from

http://www.stochastik.math.uni-goettingen.de/biometrics/thimble.

The library is supplemented with two executable programs that make use of Dig-
ital Persona’s FingerJetFX OSE minutiae extractor (http://digitalpersona.
com/fingerjetfx). With these programs fuzzy vault protected data can be gen-
erated from single and multiple fingerprint images; furthermore the programs
can be used to run the verification process with single and multiple finger-
print against the protected data previously generated. Using our C++ library
THIMBLE, the generated records can be read (using the classes Protected-

MinutiaeTemplate and ProtectedMinutiaeRecord; also see the documenta-
tion of THIMBLE) and then processed allowing the community to run heavy
cryptanalyses with our implementation.

1.3 Related Work

An implementation for multiple fingerprint has been presented by Merkle et al.
in 2011 [13]. However, a performance evaluation for the implementation has
not been given and no measures for preventing record multiplicity attacks have
been implemented.

Nagar, Nandakumar and Jain in 2012 [24] considered different feature level
fusions between the modalities fingerprint, face and iris using the fuzzy vault
and fuzzy commitment scheme [25]. Even though verification performances were
not the focus in [24], only a 75% genuine acceptance rate at a 53 bit security
estimate has been achieved which can be significantly outperformed with our
implementation.

2 Implementation for Single Fingerprint

Throughout, we assume that fingerprint minutiae are absolutely pre-aligned. An
example of such a method has been presented in [19] and an implementation is
contained in our open-source software library THIMBLE.

2.1 Minutia Quantization

We pass absolutely pre-aligned minutiae through a quantization scheme. There-
fore, we use a hexagonal grid of which coordinates Λi are equidistantly spaced
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by ` pixels; the grid is centred in the region in which absolutely pre-aligned
minutia can occur (see Figure 3). Given a minutia (α, β, θ) at coordinate (α, β)
and angle θ, its quantization is computed by determining the index j of the grid
coordinate Λj being closest to (α, β), i.e.

j = arg min
i

Λi; (3)

the minutia angle is quantized by s different quanta encoded by j′ = bθ/(2π) ·sc
such that j′+s·j is the integer encoding the quantization of the minutia (α, β, θ).

We fix a finite field F where |F| ≥ r · s such that each minutia quantization
can be uniquely encoded by a finite field element; throughout, we do not nec-
essarily distinguish between finite field elements and integers encoding them.
Finally, we quantize a minutiae template by successively quantizing its minu-
tiae, preferring those attached with a higher quality estimation, and putting
the quantizations in a feature set A until each minutia has been processed or
A reaches a bound tmax. The quantization process is visualized in Figure 3.

2.2 Enrolment

Assume that we are provided a feature set A ⊂ F. Then a secret polynomial
f ∈ F[X] of degree smaller than k is generated uniformly at random and bound
to the feature set A by computing the polynomial

V (X) = f(X) +
∏
a∈A

(X − a) (4)

as an instance of the improved fuzzy vault scheme [21] (see Figure 4 for a visu-
alization); as motivated in Section 1.1, we store a cryptographic hash SHA(f)
of f along with V (X) such that the pair (V (X),SHA(f)) is considered as the
vault record.

If x ∈ A, then V (x) = f(x) and thus (x, V (x)) is a genuine pair; otherwise,
if x /∈ A, then V (x) 6= f(x) and (x, V (x)) is a chaff pair. Hence, we can encode
an instance of the original fuzzy vault scheme by a monic polynomial of degree
t = |A|.

2.3 Verification

On verification, using a query feature set B ⊂ F, briefly called query set, the
unlocking pairs are computed as U = { (b, V (b)) | b ∈ B } which contains
exactly |A ∩B| genuine pairs. If sufficiently many genuine pairs are contained
in U, then the secret polynomial f can be recovered using an algorithm for
decoding Reed-Solomon codes.

2.4 Parameter Configuration and Randomized Decoder

In [19], the parameters have been selected on base of a training using the finger-
print images contained in the FVC 2002 DB2-B [26] which have been scanned
at a resolution of 569 dots per inch. We adopt the parameters by choosing

• a hexagonal grid of which coordinates are equidistantly spaced by ` = 25
pixels,
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Figure 3: Visualization of the minutiae quantization process: The minutiae of
a minutiae template, being absolutely pre-aligned w.r.t. a coordinate system
(yellow) derived from a directed reference point estimation, are rounded to the
coordinates of a hexagonal grid centred in the region in which the minutiae
can occur; those coordinates to which minutiae round are used to encode gen-
uine features (red) while the others are used to encode chaff features (black).
Note that under the assumption that a fingerprint’s directed reference point
estimation can occur at any place within the fingerprint image and can have
any angle, the region in which absolutely pre-aligned minutiae can occur forms
a circle of radius equals the length of the fingerprint image’s diagonal; however,
the number of genuine features can only occur within a rectangle of dimension
equals the fingerprint image’s dimension which must be accounted in a security
analysis. Furthermore, note that the minutiae angle are also used for minutiae
quantization but their visualizations have been omitted for simplicity.

• s = 6 quanta for minutiae angles,

• an upper bound of the genuine feature set size tmax = 44, and
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∏
a∈A(X − a)

+

f (X)

= V (X)

Figure 4: Visualization of the construction of an improved fuzzy vault instance:
The feature set A is encoded by the roots of its characteristic polynomial∏
a∈A(X − a) which are obscured by addition with a secret polynomial f(X);

the result is a polynomial V (X) from which it should be hard to reconstruct the
feature set unless a query set of reasonable similarity to A or f(X) is known.

• varying sizes k of the secret polynomial;
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note that the parameter ` = 25 has been re-scaled for fingerprints scanned at
500 dots per inch.

Due to the choice of tmax = 44 the unlocking sets occurring on verifica-
tion can be comparably large which may render complexity of the system-
atic decoding approach used in nearly all implementations of fuzzy fingerprint
vaults [9–12,15] infeasible. Consequently, in [19] a randomized decoder has been
used in which at most D randomly chosen unlocking pairs are tested. Conse-
quently, if an unlocking set U of size u = |U| contains ω = |A∩B| ≥ k genuine
pairs, the probability of a successful verification is equals to

1−

(
1−

(
ω

k

)
·
(
u

k

)−1)D
. (5)

3 Implementation for Multiple Fingerprints

We now come to the description of our implementation for multiple fingerprints.

3.1 Fusion of Multi-Finger Minutiae Records

Our aim is to achieve high security against offline attacks through the fusion
of multiple fingerprint minutiae templates while linkage attacks are avoided.
There exist different fusion strategies [27] that one might consider to employ
and we shall briefly discuss their properties in our context of biometric template
protection.

For each minutiae template in the record, we could generate fuzzy vault-
protected data using a method for single fingerprint (e.g. as outlined in Section
2) and store them separately. On verification, each query fingerprint template is
used to unlock its corresponding fuzzy vault record. Depending on the number of
positive individual verifications, we may accept the verification attempt thereby
following the concept of a decision-level fusion. However, it has been argued
in [28] that this fusion strategy may neither significantly improve on privacy nor
security of biometric data since an attacker still has the possibility of running
recovery attacks to each protected record separately. Similarly, in a score-level
fusion, which can be considered as a generalization of a decision-level fusion,
as each template is protected separately, they remain vulnerable to intensive
offline attack.

To improve resistance to offline attacks, we may employ a feature-level fusion.
Therefore, assume that the feature sets A1, ...,AN have been generated from
a user’s N different fingers as described in Section 2.1; furthermore, assume
that B1, ...,BN are second acquisitions such that Bj matches with Aj . To
follow the concept of a feature-level fusion we may fuse the records (A1, ...,AN )
and (B1, ...,BN ) into new feature sets A and B, respectively, such that |A1 ∩
B1| + ... + |AN ∩ BN | = |A ∩ B|. In this way, the enrolment and verification
procedure of our existing implementation for single finger (Section 2) can be
adopted. There exist multiple equivalent ways to realize such a fusion.

In our implementation we attach the finger position code (i.e. an integer
encoding a right/left thumb, right/left index finger etc.) to the elements of
the feature sets that together form the fused feature set. More precisely, let
L1, ..., LN denote the pair-wise distinct position codes (encoded by values from
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0, ..., 9) of those fingers from which the feature sets A1, ...,AN have been esti-
mated. For each j = 0, ..., N we attach the code Lj to the elements of Aj . Let
a ∈ Aj denote a feature encoded as an integer; then Lj + 10 · a may be used as
the feature element to which the finger code Lj has been attached. Finally, we
may use the union of all these attached feature elements, i.e.

A = {Lj + 10 · a | a ∈ Aj , j = 1, ..., N}, (6)

as the fused feature set. It is important to note, that the size of the field F
must now be at least 10 times larger than the minimal size required for single
fingerprints.

3.2 Enrolment

Analogous to the enrolment for single finger (Section 2.2), given a secret polyno-
mial f ∈ F[X] of degree smaller than k and a feature set A encoding a quantized
multi-finger minutiae record, the polynomial

V (X) = f(X) +
∏
a∈A

(X − a) (7)

is built. As usual (see sections 1.1 and 2.2) we publish a cryptographic hash
SHA(f) along with V (X) such that (V (X),SHA(f)) serves as the protected
template.

3.3 Verification

To decode the private template (V (X),SHA(f)) protecting a multi-finger record
using the quantization set B of a query record we build the unlocking set

U = { (b, V (b)) | b ∈ B } (8)

in the same way as in Section 2.3. Then, a decoding algorithm is applied to the
unlocking set U returning candidates for the secret polynomial f from which
the correct one can be identified using SHA(f). If a polynomial with the correct
hash can be recovered on decoding, then we consider the verification attempt
as successful and otherwise as unsuccessful.

3.4 Decoder for Multi-Finger

If the randomized decoder (Section 2.4) were adopted for verification, then we
may have expect a low verification performance: Assume we can expect that 20
out of 44 minutiae quantizations can be reproduced for two matching absolutely
pre-aligned minutiae templates. For k = 10 and D = 216 the randomized
decoder (e.g. see Section 2.4) will successfully decode with probability 1− (1−(
20
10

)(
44
10

)−1
) ≈ 99%; in a two-finger scenario we may extrapolate the unlocking

set to contain 2 · 44 = 88 pairs of which 2 · 20 = 40 are laying on a polynomial’s
graph where the degree of the polynomial is smaller than k = 20; then, the
randomized decoder will recover the secret polynomial with probability only

1 − (1 −
(
40
20

)(
88
20

)−1
) ≈ 0.03%. In view of this observation we should consider

alternative decoding mechanisms.
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Guruswami-Sudan Algorithm

An alternative way to tackle the decoding problem on verification is to use a
Guruswami-Sudan algorithm [20]. This class of algorithms can potentially re-
cover f from U in deterministic polynomial time if it contains ω >

√
u · (k − 1)

genuine pairs where u = |U|. Two statements have been given in [5] that led
the community to believe Guruswami-Sudan algorithms were not well suited to
support verification in a fingerprint-based fuzzy vault.

1. Implementations of a classical Reed-Solomon decoder are in general much
more efficient than implementations of the Guruswami-Sudan algorithm.

2. For many of the parameter choices, we are likely to encounter in practice,
(u+ k)/2 is fairly close to

√
u · (k − 1).

The second statement does not apply to our situation. In fact, (u + k)/2 can
be much larger than

√
u · (k − 1). For example, if N = 3, the unlocking sets

can be of size up to u = tmax · N = 132. Then, if k = 30, a classical Reed-
Solomon decoder can successfully decode if ω ≥ 81; an implementation of the
Guruswami-Sudan algorithm, however, requires ω ≥ 62 which is significantly
smaller.

Regarding the first statement, the original implementation of a Guruswami-
Sudan algorithm [20] has a running time of O(u15). Even though improved to
O(u7.752) in the meantime [29], this is significantly inferior to an O(u · log2 u)
achievable with classical Reed-Solomon decoders [30]. On the other hand, the
high complexities are worst case complexities and hold only if we want to tolerate
precisely up to u−

√
u · (k − 1) errors in U. If fewer errors suffice to be tolerated,

the running times can become feasible. Therefore, it may be useful to briefly
consider the two steps of a Guruswami-Sudan algorithm. For further details we
refer to [20].

In the first interpolation step a non-zero bivariate polynomial H ∈ F[X,Y ] of
(1, k−1)-weighted degree not too large is computed having the unlocking pairs as
roots with a certain algebraic multiplicity µ ≥ 1. In the second factorization step
all (univariate) polynomials f∗ ∈ F[X] of degree smaller than k are computed
with H(X, f∗(X)) = 0. One can prove that if ω >

√
u · (k − 1) and if µ is

sufficiently large, then the candidate list {f∗} contains the correct polynomial
f .

The bottleneck in the algorithm is the interpolation step and improving its
efficiency is subject of current research [29, 31, 32] while the factorization step
performs comparably well [33]. Overall, the multiplicity parameter µ is a very
critical parameter: The higher µ, the more errors the algorithm can tolerate;
on the other hand, the higher µ, the higher is its complexity. Specifically, the
interpolation step is closely an O(u2 ·µ4) (see [34]). Consequently, if µ is small,
e.g. µ = 1, the Guruswami-Sudan algorithm is closely an O(u2) while requiring
ω &

√
2 · u · (k − 1) [35] for successful recovery of f . If µ is sufficiently large,

then the algorithm requires the well-known bound ω >
√
u · (k − 1) to be met

in order to successfully recover f ; but then the decoding complexity may be
unacceptable.
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Figure 5: Computational performances of our implementation of a classical
Reed-Solomon decoder and the Guruswami-Sudan algorithm for unlocking sets
of size u = 440 and secret polynomials of length k = 30 over a finite field
containing 218 elements. The figure plots the measured computer times on a
single core of a 3.2GHz desktop for different multiplicities µ versus the number
of genuine pairs ω in the unlocking sets. The domains for which the decoding
attempts were successful are indicated by a thick plotting strength.

Preliminary Tests

It is not the purpose of the present article to provide comprehensive analyses
and evaluations of Guruswami-Sudan algorithms; therefore, we refer to [36].
However, in order to design a decoding mechanism, we describe some experi-
ments that we conducted. Therefore, we have implemented a Guruswami-Sudan
algorithm (contained in our public C++ library THIMBLE) in which the fac-
torization step and the interpolation step is performed as in [31] and [33], re-
spectively.

For simplicity, we consider the extremal case of using ten fingers in which
the unlocking sets can be of size up to u = 440. We consider secret polynomials
of length k = 30 since this requires the unlocking sets to contain at least 25%
genuine pairs (being typical for a fingerprint fuzzy vault) to be decodable with
a Guruswami-Sudan algorithm. For each ω = 0, . . . , 440 we built an unlocking
set U ⊂ F×F (where |F| = 218) of size u = 440 uniformly at random such that
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exactly ω unlocking pairs laid on the graph of a common polynomial f of degree
smaller than k = 30. We applied our Guruswami-Sudan algorithm implementa-
tion with multiplicities µ = 1, . . . , 5 to U as input and determined whether the
algorithm successfully discovered the correct polynomial; furthermore, we mea-
sured the times consumed by the decoding attempts that we have performed.
Additionally, we applied an own implementation of a classical Reed-Solomon
decoder [30] (also contained THIMBLE). The results of our tests are visualized
in Figure 5. With a multiplicity of µ = 1, 2, 3, 4, 5 it is possible to decode U if
it contains ω ≥ 146, 132, 126, 123, 121 genuine pairs, respectively, while for
a sufficiently large multiplicity the unlocking set must contain at least ω = 113
genuine pairs.

Not surprisingly for increasing multiplicity µ, the required time for a de-
coding attempt increases significantly. It is however interesting that the time
required also heavily depends on the number of genuine pairs ω contained in U.
In view of these observations it seems reasonable to use the following hierarchic
decoding mechanism.

Proposed Mechanism

Given the unlocking set U, a classical Reed-Solomon decoder is applied to re-
cover the correct polynomial; if unsuccessful, a Guruswami-Sudan algorithm
with increasing multiplicity µ = 1, ..., µmax is applied until the correct polyno-
mial is found or µ = µmax has been reached.

During our experiments (Section 4), we applied the decoding mechanism for
µmax = 3 which results in the affordable worst case decoding time measured
as less than 2s. Note that the average decoding time can be much smaller on
genuine verification.

4 Experiments

All experiments were performed on a single core of a 3.2GHz desktop computer
with sufficient RAM. We evaluated our minutiae-based fuzzy vault implementa-
tion for multiple fingerprint using the optical fingerprint scans contained in the
MCYT-Fingerprint-100 database [23]. The dataset contains fingerprint samples
of 100 different persons where each person provided 12 acquisitions for each of
their 10 fingers; the images were scanned at a resolution of 500 dots per inch
and have a dimension of 256× 400 pixels.

For each fingerprint we used Digital Persona’s FingerJetFX OSE extrac-
tor to pre-compute the fingerprint minutiae database. Furthermore, from all
fingerprints their directed reference points have been estimated using an imple-
mentation of the method described in [19]; for all but 0.55% of the fingerprints
a valid directed reference point could be successfully estimated where the av-
erage time for an estimation attempt was measured as ≈ 629ms. During our
experiments, we represented the minutiae templates w.r.t. the coordinate sys-
tems derived from the directed reference point estimations to obtain absolutely
pre-aligned minutiae templates.

We evaluated the verification performance for N = 2, N = 3, and N = 4
and various k = 7, ..., 30. Requiring the presence of not more than four fingers
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Table 1: Evaluation of operational performance with our minutiae-based fuzzy
vault implementation for N = 1 and N = 2; for N = 1 the right thumbs
were considered and the decoding step was implemented using the randomized
decoder (see Section 2.4); for N = 2 right index fingers and right middle fingers
were fused and the Guruswami-Sudan algorithm-based decoder (Section 3.4)
has been employed.

N = 1 (randomized decoder) N = 2
k GAR FAR GDT IDT GAR FAR GDT IDT
7 89.54% 2.76% 29ms 219ms 97.21% 0.16% 13ms 201ms
8 85.26% 0.67% 51ms 280ms 96.53% 0% 13ms 189ms
9 80.76% 0.11% 80ms 334ms 95.83% 0% 13ms 175ms
10 74.90% 0% 121ms 396ms 95.30% 0% 15ms 171ms
11 68.34% 0% 168ms 455ms 94.53% 0% 14ms 144ms
12 62.08% 0% 235ms 534ms 93.73% 0% 16ms 148ms
13 55.23% 0% 308ms 606ms 93.06% 0% 15ms 126ms
14 48.73% 0% 411ms 712ms 92.36% 0% 17ms 124ms
15 42.72% 0% 505ms 796ms 90.86% 0% 18ms 118ms
16 36.15% 0% 623ms 895ms 89.68% 0% 19ms 114ms
17 30.63% 0% 757ms 1.01s 88.33% 0% 20ms 108ms
18 25.46% 0% 862ms 1.09s 86.85% 0% 21ms 97ms
19 20.81% 0% 997ms 1.20s 84.14% 0% 23ms 95ms
20 16.67% 0% 1.14s 1.31s 82.23% 0% 25ms 90ms
21 13.29% 0% 1.30s 1.45s 79.79% 0% 27ms 94ms
22 10.63% 0% 1.43s 1.56s 77.21% 0% 30ms 88ms
23 8.18% 0% 1.60s 1.71s 74.27% 0% 33ms 92ms
24 5.98% 0% 1.73s 1.82s 70.76% 0% 36ms 88ms
25 4.60% 0% 1.89s 1.96s 66.94% 0% 39ms 93ms
26 3.31% 0% 2.05s 2.11s 63.36% 0% 40ms 83ms
27 2.39% 0% 2.24s 2.23s 59.04% 0% 42ms 80ms
28 1.73% 0% 2.41s 2.39s 56.43% 0% 44ms 77ms
29 1.12% 0% 2.59s 2.51s 52.53% 0% 48ms 82ms
30 0.85% 0% 2.80s 2.71s 48.82% 0% 49ms 82ms

from the system users has the advantage that the verification process can be
implemented with only one acquisition.

The protected minutiae records were generated using the method described
in Section 2.1 and Section 3.1 for a fixed finite field F with |F| = 218. Whenever
a minutiae record’s quantization contained less than k elements we counted
this observation as a failure to enrolment. However, for none N = 2, 3, 4 and
k = 7, ..., 30 we observed a failure to enrolment which corresponds to a failure
to enrolment rate measured as 0%.

For each (N, k) we measured the genuine acceptance rate GAR by the fol-
lowing adoption of the FVC protocol [37]. We used each individuals jth scans
(j = 0, ..., 10) to generate a protected minutiae record using our implementa-
tion. The remaining scans (j′ = j + 1, ..., 11) were used to simulate a total
of 11 · 12/2 = 66 genuine verification attempts per person. Consequently, we
simulated up to 6600 genuine verification attempts for each (N, k).

To simulate impostor verification attempts, in order to estimate the oper-
ational false acceptance rate FAR, for each person (labelled with index j =
0, ..., 98) we generated a protected minutiae record using his first scans. The
remaining persons’ (j′ = j+1, ..., 99) first scans were used to simulate an impos-
tor verification attempt. This protocol (again adopted from the FVC protocol)
allowed us to simulate a total of up to 4950 impostor verification attempts.

15



Table 2: Evaluation of operational performance with our minutiae-based fuzzy
vault implementation for N = 3 and N = 4 for which {right index finger, right
middle finger, right ring finger} and {right index finger, right middle finger,right
ring finger, right little finger} were fused, respectively, and the Guruswami-
Sudan algorithm-based decoder (Section 3.4) has been employed.

N = 3 N = 4
k GAR FAR GDT IDT GAR FAR GDT IDT
7 99.21% 1.72% 15ms 357ms 99.53% 6.89% 25ms 477ms
8 99.09% 0.73% 13ms 312ms 99.39% 3.21% 23ms 430ms
9 98.89% 0.20% 14ms 293ms 99.23% 1.31% 23ms 422ms
10 98.65% 0.02% 14ms 273ms 99.06% 0.71% 21ms 374ms
11 98.33% 0.02% 15ms 259ms 98.94% 0.32% 21ms 351ms
12 98.15% 0% 15ms 239ms 98.74% 0.18% 21ms 336ms
13 97.85% 0% 15ms 239ms 98.56% 0.08% 20ms 303ms
14 97.38% 0% 16ms 220ms 98.50% 0% 20ms 293ms
15 96.89% 0% 17ms 194ms 98.29% 0% 20ms 291ms
16 96.47% 0% 17ms 187ms 98.12% 0% 21ms 290ms
17 95.91% 0% 18ms 182ms 97.83% 0% 21ms 261ms
18 95.33% 0% 20ms 189ms 97.47% 0% 22ms 262ms
19 94.41% 0% 21ms 177ms 97.05% 0% 20ms 220ms
20 93.73% 0% 22ms 173ms 96.73% 0% 22ms 231ms
21 92.77% 0% 23ms 153ms 96.47% 0% 23ms 211ms
22 92.08% 0% 25ms 164ms 96.17% 0% 25ms 231ms
23 91.41% 0% 26ms 150ms 95.58% 0% 26ms 212ms
24 90.44% 0% 25ms 136ms 95.05% 0% 26ms 203ms
25 88.73% 0% 27ms 128ms 94.52% 0% 28ms 215ms
26 87.38% 0% 28ms 129ms 94.12% 0% 31ms 200ms
27 86.18% 0% 29ms 128ms 93.41% 0% 28ms 187ms
28 84.85% 0% 31ms 125ms 92.42% 0% 34ms 202ms
29 83.70% 0% 33ms 125ms 91.62% 0% 35ms 185ms
30 82.00% 0% 36ms 121ms 90.86% 0% 35ms 172ms

In addition to an evaluation of our implementation for multiple fingerprints,
we also evaluated our implementation for single fingerprints N = 1 following the
same protocol. It is important to note that for N = 1 we used the randomized
decoder [19] with D = 216 decoding iterations [19] (also see Section 2.4). Note
that for N = 1 we measured a 2% failure to enrolment rate for all k = 7, ..., 26;
for k = 30, the rate was measured as 5%.

We also kept track of the average genuine decoding time GDT and average
impostor decoding time IDT; it is important to note that these times do not
include the times needed to estimate absolutely pre-aligned minutiae templates
from the fingerprints; therefore, the time N · 629ms should be added to the
GDT and IDT to obtain the times required in operational mode.

The result of our experimental evaluations are listed in Table 1 and Table 2.

5 Security

In this section, we discuss the difficulty of an intruder to conduct an offline
attack against protected minutiae records generated by our implementation.
Therefore, one could estimate the brute-force security from Equation (1): For
example, for N = 4 within N · r′ · s = 4 · 200 · 6 = 4800 chaff features up to
N · tmax = 4 · 44 = 176 genuine features are hidden; note that r′ = 200 is the
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number of hexagonal grid coordinates equidistantly spaced by ` = 25 pixels
that fit in an image of dimension 256 × 400 (c.f. the grey frame visualized in
Figure 3) while r = 1381 is the number of grid coordinates for the region in
which absolutely pre-aligned minutiae can occur. For k = 12, the expression(
r′·s
k

)
·
(
N ·tmax

k

)−1
for computing the brute-force security evaluates to approxi-

mately 263. It is important, however, that for (N, k) = (4, 13) our performance
evaluation indicates a false acceptance rate of 0.08% which clearly contradicts
a security of 263 suggested by the brute-force attack. In view of the fact, that
brute-force security tends to drastically overestimate any realistic security no-
tion, in the following we focus on the more realistic security notion suggested
by false-accept attacks.

5.1 False-Accept Security Estimation

In this section, we discuss the possibility of an intruder to break a record gen-
erated by our implementation through a false-accept attack. The probably
most intuitive approach is to iterate through a large database containing real
absolutely pre-aligned minutiae records with which he successively simulates
impostor verification attempts. This may, however, not result in sharp esti-
mates: According to Table 1 and Table 2 no false accepts have been observed
for N = 1, 2, 3, 4 where k ≥ 13. The rule of three [17] suggests that with confi-
dence 95% the false acceptance rates will be smaller than 3/4950 ≈ 0.06% which
is way much too coarse for a satisfactory estimation of false-accept security. Yet,
the false acceptance rate may be much smaller, especially for k � 12. In [19] the
following heuristic method for estimating an upper false-accept security bound
has been introduced and applied for a single fingerprint implementation.

Assume that an attacker has intercepted a vault record (V (X),SHA(f))
generated by our implementation protecting the feature set A. He may then
use the jth query set B(j) from his established attack database containing real
fingerprint records to build the unlocking set U(j) of size uj = |U(j)| which

contains exactly ωj = |A ∩ B(j)| genuine vault pairs. The attacker has the
possibility to run the randomized decoder (Section 2.4) with D iterations. The
probability that he will recover the correct polynomial from U is equals to

pj =

0 , if ω < k

1−
(

1−
(
ωj

k

)(
uj

k

)−1)D
, if ω ≥ k

. (9)

The expected value for pj may be considered as the false acceptance rate achiev-
able with the randomized decoder. It has been proven in [19] that the cost for
running the above attack becomes minimal for D = 1: Although the value for
pj decreases, less iteration steps have to be performed. Consequently, against
this specific attack we can estimate the difficulty for the attacker much more
sharper than possible by the rule of three [17]. It is important to note that the
expected value for pj is not equals the false acceptance rate of the implementa-
tion; rather, its inverse is the difficulty for running the above false-accept attack
which implicitly accounts for decoding complexity.

During evaluation of the false acceptance rates (Section 4), we kept track
of M = 4950 observations for pj . This allowed us to estimate the difficulty of
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Table 3: Estimations of the difficulty against a false-accept attack scenario; the
genuine acceptances rates, of which more precise values can be found in Table
1 and Table 2, are listed for the reader’s convenience as well.

N = 1 N = 2 N = 3 N = 4
k GAR security GAR security GAR security GAR security

7 90% 220 97% 219 99% 218 100% 218

8 85% 223 97% 221 99% 221 99% 220

9 81% 226 96% 223 99% 223 99% 223

10 75% 229 95% 226 99% 225 99% 225

11 68% 232 95% 228 98% 228 99% 227

12 62% 236 94% 231 98% 230 99% 230

13 56% 240 93% 233 98% 233 99% 232

14 49% 244 92% 236 97% 235 99% 234

15 43% 249 91% 239 97% 237 98% 236

16 36% – 90% 241 96% 240 98% 239

17 31% – 88% 244 96% 242 98% 241

18 25% – 87% 247 95% 245 97% 243

19 21% – 84% 250 94% 247 97% 246

20 17% – 82% 254 94% 249 97% 248

21 13% – 80% 257 93% 252 96% 250

22 11% – 77% 261 92% 254 96% 253

23 8% – 74% 266 91% 257 96% 255

24 6% – 71% 270 90% 259 95% 257

25 5% – 67% 275 89% 262 95% 260

26 3% – 63% 280 87% 265 94% 262

27 2% – 59% 286 86% 268 93% 265

28 2% – 56% – 85% 270 92% 267

29 1% – 53% – 84% 273 92% 270

30 1% – 49% – 82% 276 91% 273

performing the above attack as

1

M

M∑
j=1

pj . (10)

The result of the suggested security estimations are listed in Table 3. It is
important to note that eventually for sufficiently large k we encountered no
pj 6= 0 such that our estimate becomes zero; for this case it is not possible to
report a realistic estimation and the corresponding entries in Table 3 are left
empty.

Important Remark

Our estimates of false-accept security look promising indeed (see Figure 6).
For example, at (N, k) = (4, 27) we achieve an operational genuine acceptance
rate of 93% at a false-accept security estimated as 265. However, a few words of
caution must be given. Even though the size in Table 5.1 are more realistic than
suggested by a brute-force attack notion, they remain heuristic estimates for
upper bounds for the difficulty in breaking our implementation. It is important
to note that any analyses against a specific attack cannot provide more than
mere upper bounds. It may well be that smaller upper bounds can be found
against the above attack or that an attacker can run an improved attack. In
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Figure 6: Genuine acceptance rates plotted versus the estimated security levels
for a different number of fingerprints N ; note that for N = 1 the randomized
decoder has been used (Section 2.4).

order to ease analyses against any further attack, we published C++ source
code of our implementation as part of THIMBLE.

5.2 Record Multiplicity Attacks

One of the most serious problem with a traditional minutiae-based fuzzy vault
is its vulnerability against the correlation attack [18]. For our implementation
there exists no correlation between genuine vault features which could be ex-
ploited by an attacker to gain advantage in linking or breaking two (or more)
related vault records. We stress that this is an obvious property of our im-
plementation: Conducting experiments with this specific attack will definitely
result in a 0% advantage. In the following we set our focus to a record multi-
plicity attack that is of more relevance for our implementation.
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Table 4: Rates at which two related vault records can be cross-matched and
broken with the attack from [38,39] for the configurations from our experiments
(Section 4). The attack was never successful for non-related vault records. Fur-
thermore, if the feature sets have been passed through a random record-specific
but public permutation process, the attack was never successful, too—neither
for related nor non-related records.

N = 1 N = 2 N = 3 N = 4
related related related related related related related related

k linkage recovery linkage recovery linkage recovery linkage recovery
rate rate rate rate rate rate rate rate

7 35.78% 35.54% 76.28% 76.28% 78.63% 78.63% 78.41% 78.41%
8 35.49% 35.06% 75.28% 75.27% 78.10% 78.10% 77.76% 77.76%
9 30.43% 29.68% 72.62% 72.59% 76.91% 76.91% 76.34% 76.34%
10 30.03% 28.36% 71.55% 71.50% 76.22% 76.22% 75.67% 75.67%
11 24.98% 21.85% 68.90% 68.79% 74.46% 74.46% 74.53% 74.53%
12 24.67% 19.47% 67.77% 67.36% 73.71% 73.71% 73.78% 73.78%
13 19.90% 11.94% 65.08% 64.49% 71.84% 71.84% 72.28% 72.28%
14 19.72% 8.63% 63.84% 62.69% 70.80% 70.78% 71.66% 71.66%
15 14.89% 0% 60.68% 58.83% 68.78% 68.76% 70.29% 70.29%
16 14.59% 0% 59.17% 56.52% 67.80% 67.77% 69.39% 69.39%
17 10.61% 0% 56.52% 52.72% 65.92% 65.89% 67.92% 67.92%
18 10.39% 0% 55.10% 49.76% 65.18% 65.12% 67.31% 67.31%
19 7.33% 0% 51.70% 44.95% 63.07% 62.95% 65.87% 65.87%
20 7.22% 0% 50.29% 41.74% 61.94% 61.77% 64.97% 64.97%
21 4.73% 0% 47.25% 36.76% 59.86% 59.60% 63.51% 63.51%
22 4.59% 0% 45.71% 33.50% 58.65% 58.23% 62.67% 62.66%
23 2.74% 0% 42.81% 28.70% 56.93% 56.26% 61.05% 61.00%
24 2.68% 0% 41.14% 25.11% 55.88% 54.91% 60.01% 59.96%
25 1.45% 0% 37.89% 19.90% 53.52% 52.04% 58.33% 58.30%
26 1.42% 0% 36.21% 15.87% 52.49% 50.31% 57.22% 57.18%
27 0.66% 0% 32.78% 10.24% 50.23% 47.41% 55.75% 55.66%

In 2013, Blanton and Aliasgari [38] observed that, given two vault records

W (X) = f(X) +
∏
a∈A

(X − a) and

W (X) = g(X) +
∏
b∈B

(X − b)
(11)

protecting the feature sets A and B of size t with deg(f),deg(g) < k, such
that |A ∩ B| ≥ (t + k)/2, then the set difference A \ B and B \ A can be
recovered explicitly by solving a system of non-linear equations. In particular,
if A = B, an attacker may observe that the upper t − k coefficients of V (X)
and W (X) are equal which is hardly the case for A 6= B. We can therefore
not guarantee that the improved fuzzy vault scheme fulfills the unlinkability
requirement. For the general case |A ∩ B| ≥ (t + k)/2, Blanton and Aliasgari
argued that recovery of the feature sets’ differences is computationally hard
since solving a system of non-linear equations is NP hard in general. However,
Merkle and Tams [39] observed that the extended Euclidean algorithm can be
used to efficiently solve the equations established by Blanton and Aliasgari. In
particular, if zj = wj ·V +vj ·W denotes the sequence in the extended Euclidean
algorithm applied to V and W where without loss of generality |A| ≥ |B|, then
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there exists j0 such that vj0 and wj0 split into linear factors of which roots
coincide with A \B and B \A, respectively (more specifically, j0 is such that
deg(vj0) is minimal where deg(vj0) + k > deg(zj0)).

As we observed experimentally during our performance evaluation (see Sec-
tion 4) the property |A ∩ B| ≥ (max{|A|, |B|} + k)/2) is way much too often
fulfilled for related records (related linkage rate; see Table 4); furthermore and
even worse, the discovered differences A \ B and B \ A are very often suffi-
cient (related recovery rate) to break two related records which conflicts with
the irreversibility requirement. On the other side in our experiments we never
observed |A∩B| ≥ (max{|A|, |B|}+k)/2) fulfilled for non-related records. This
allows an adversary to attack unlinkability of our implementation and calls for
a countermeasure.

Fortunately, the property |A∩B| ≥ (max{|A|, |B|}+k)/2 can be destroyed
by passing the feature sets through a random record-specific but public permu-
tation process [19,39]. Let P ,Q : E→ E be two random permutations between
the vault feature space E ⊂ F of size n = |E|. Instead of constructing the vault
records to protect the feature sets A and B the vaults are generated to protect
the shuffled feature sets

A′ = P (A) = { P (a) | a ∈ A }
B′ = Q(B) = { Q(b) | b ∈ B };

(12)

note that since the permutations are public the verification process can be easily
modified by passing the query features through the same permutation. Since
P ,Q : E → E are random, the shuffled feature sets A′ and B′ are random,
even for related feature sets. Then, assuming without the loss of generality that
|B′| ≤ |A′|, the probability that A′ and B′ share at least ω0 elements is equals
to

P( |A′ ∩B′| ≥ ω0 ) = 1−
∑ω0−1
j=0

(|B′|
j

)
·
(
n−|B′|
|A′|−j

)(
n
|A′|
) (13)

which directly follows from the definition of the hyper-geometric distribution.
For the configurations considered in this paper the feature sets have a size

of |A′|, |B′| ≤ tmax · N where tmax = 44 and N = 1, ..., 4. Furthermore, the
feature space is of size n = N · r · s = N · 1381 · 6 = N · 8286. For N = 1, ..., 4,
k = 7, ..., 30, and k ≤ |B′| ≤ |A′| ≤ N · tmax it is easy to verify that the
probability computed with Equation (13) never becomes larger than 2−72 where
ω0 = b(|A′|+ k)/2c. This is sufficient for an effective and valid countermeasure
against record multiplicity attacks. In fact, during our experiments (Section
4), we never observed related or non-related records against which the attack
from [39] was successful when the countermeasure was implemented.

Finally, note that it is not necessary to store the full table for the permuta-
tion process along with a vault record (V (X),SHA(f)). Instead we may store
a compact seed generating the permutation. In our implementation, which is
contained in THIMBLE, we exploit the public hash SHA(f) as the seed gener-
ating the record-specific public permutation process of the records. In such a
way no additional storage bits are needed to prevent the attack from [39].

21

http://en.wikipedia.org/wiki/Hypergeometric_distribution
http://www.stochastik.math.uni-goettingen.de/biometrics/thimble


5.3 Variant with Password

The estimates for our implementation’s resistance against offline attacks look
promising. Furthermore, using record-specific (but public) permutation pro-
cesses, there are currently no efficient and effective record multiplicity attacks
known with which an attacker can link (or even break) two related records he
might have intercepted. It might however well be that in the process of future re-
search more efficient attacks will be found. We made our implementation public
such that this process can be eased and accelerated. If as a result significant vul-
nerabilities are found, it may be important to consider the possibility of securing
the implementation with an additional user-specific secret password/PIN.

For a user password κ let encκ,decκ : {0, 1}∗ → {0, 1}∗ be a symmetric
encryption and decryption function, respectively. On enrolment, the function
encκ can be used to encrypt the bits needed to represent the first t = deg(V )
coefficients of the monic record’s vault polynomial V (X). On verification, the
correct vault polynomial can be recovered using decκ which reveals the first t
coefficients of V (X) while the leading coefficient is known to be equals to 1;
otherwise, if another user password κ′ 6= κ is used to decrypt the vault, then
another vault polynomial (indistinguishable from the correct one) is obtained
with which the verification will, with overwhelming probability, fail.

It is important to note that some encryption/decryption functions (such
as AES [40]) work with a multiple of a fixed block length. In order to fulfil
the requirement that falsely decrypted data is indistinguishable from correctly
decrypted data, it may be necessary to pad the leading block by random bits
which are ignored on decryption. In such a way, additional security provided
by the strength of a user password is multiplied with the security provided by
the fuzzy vault-based protection of the minutiae templates. For example, at
(N, k) = (4, 20) our security estimates as 248 at a GAR = 97% (see Table 3).
If a four digit PIN is used to encrypt the vault records, then the security can
be increased by approximately 13 bits to 248+13 = 261. Assuming that the
same PIN can be reproduced on genuine verification, the GAR of 97% will be
maintained.

There does already exist an implementation of a minutiae-based fuzzy vault
that additionally protects the records with a user password [15] in which however
the possibility of using a password goes at the cost of the genuine acceptance
rate. Furthermore, no guarantees that falsely decrypted vault records are in-
distinguishable from correctly decrypted vault records are addressed in [15]. As
a consequence in [15] the securities provided by the user password and by the
fuzzy vault may not multiply, thereby requiring a certain strength from the user
passwords (e.g. 64 bits). Our implementation has the advantage that it can be
combined with even weak user passwords (e.g. easily memorable PINs).

5.4 Slow-Down Functions

Another approach to improve security against offline attacks is to involve mea-
sures for artificially forcing the verification to be slowed down. In such a way,
on a simulated impostor verification attempt, an attacker has to wait a certain
time before he can continue with a next trial. In the following we outline a
simple way of realizing such a slow-down mechanism of which an interface is
implemented in THIMBLE.
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A slow-down mechanism can be obtained by exploiting the possibility of
encrypting/decrypting the vault records with a secret key. Assume that we
want to artificially slow down the verification process by the factor K. On
enrolment, a secret quiz q = 0, ...,K − 1 is chosen uniformly at random. The
quiz is used to encrypt the vault in a similar manner as outlined above in Section
5.3. Finally, the quiz q is dismissed. On (impostor) verification, the verifier has
to iterate through all possible quizzes q′ = 0, ...,K−1 and with each q′ the vault
is temporarily decrypted of which only one reveals the correct vault polynomial
that possibly leads to a (false) accept.

In this way, the verification process can effectively be slowed down. This en-
ables us to improve the absolute security of our implementation against offline
attacks by log2(K) bits. On genuine verification, on the other hand, the process
is expected to be slowed down by the factor K/2. Consequently, the relation
between system security and genuine verification time cannot be changed by
slow-down measures. Nonetheless, slow-down functions may be a measure to
increase absolute security while maintaining relative security in view of increas-
ing computer power enabling faster and faster offline attacks while also enabling
faster and faster verification.

6 Discussion

We presented and described a new implementation of a minutiae-based fuzzy
vault for multiple fingerprints of which C++ source code is publicly available.
Our implementation has been designed to resist known record multiplicity at-
tacks and features several security-enhancing functionalities, e.g. combination
with user password/PIN and slow-down functions. Our evaluation and security
estimates indicate promising verification performances and comparably high re-
silience against offline attacks — even without a user password/PIN that needs
to be kept secret. For example, at a security level estimated as 53 bits we
achieve a genuine acceptance rate of 96% whilst in [24] a genuine acceptance
rate of 75% has been achieved for the same security level estimation. Yet,
pessimism is appropriate as we may have learned from earlier security overesti-
mates: It is definitely possible that attacks will be discovered that significantly
perform better than the false-accept attack scenario that we considered in Sec-
tion 5.1. In order to allow the community to analyse our implementation with
their own attacks we published the source code of our implementation. This
may accelerate and ease future research.

We have demonstrated that, by fusing multiple biometric instances, it may
be possible to achieve high usability at high resistance to known recovery and
linkage attacks. We used the fingerprint modality to demonstrate the effec-
tiveness of fusing multiple biometric instances. In view of the presence of other
well-studied biometric modalities such as face, iris, and signature, it is legitimate
to ask whether our implementation can be modified for other multi-biometric
fusions as well to achieve high security and usability. It seems safe to claim
that if the multi-biometric templates can be encoded as feature sets of which
similarity is reflected by the set difference metric, then it may be possible to
reach this goal; it is due to analyses and evaluations of specific well-conceived
implementations to verify this. However, some templates of certain biometric
modalities may not be suitable for being encoded as feature sets. This can
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negatively affect verification performance of the scheme and may require other
fusions strategies. For an overview of the complexity of this theme, we refer the
reader to [24].

Another interesting task for future research addresses the effectiveness of ap-
plying a random record-specific but public permutation process in an improved
fuzzy vault scheme to prevent record multiplicity attacks (Section 5.2). As of
now, no attack from record multiplicity is known with which an intruder can gain
significantly more advantage than breaking one of the vaults individually. To
support this notion, a proof would be highly desirable or alternatively we might
disprove the effectiveness of the countermeasure by formulating an effective and
efficient linkage attack exploiting the publicity of the permutation processes.
The need for an answer to this question is emphasized by the fact that a sim-
ilar, yet different, countermeasure in a binary fuzzy commitment scheme [41]
makes the scheme vulnerable to another attack from record multiplicity [42,43].
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[19] Tams, B., Mihăilescu, P., Munk, A.: ’Security considerations in minutiae-
based fuzzy vaults’, IEEE Trans. Inf. Forensics Security, 2015, 10, (5), pp.
985–998

[20] Guruswami, V., Sudan, M.: ’Improved decoding of reed-solomon and
algebraic-geometric codes’, IEEE Trans. Inf. Theory, 1998, 45, (6), pp.
1757–1767

[21] Dodis, Y., Reyzin, L., Smith, A.: ’Fuzzy extractors: how to generate strong
keys from biometrics and other noisy data’. Proc. Int. Conf. Theory and
Applications of Cryptographic Techniques, Interlaken, Switzerland, May
2004, pp. 523–540

25



[22] Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: ’Fuzzy extractors: how
to generate strong keys from biometrics and other noisy data’, SIAM J.
Comput., 2008, 38, (1), pp. 97–139

[23] Ortega-Garcia, J., Fierrez-Aguilar, J., Simon, D., et al.: ’MCYT baseline
corpus: a bimodal biometric database’, IEE Proc. on Vision, Image and
Signal Processing, 2003, 150, (6), pp. 395–401

[24] Nagar, A., Nandakumar, K., Jain, A. K.: ’Multibiometric cryptosystems
based on feature-level fusion’, IEEE Trans. Inf. Forensics Security, 2012, 7,
(1), pp. 255–268

[25] Juels, A., Wattenberg, M.: ’A fuzzy commitment scheme’. Proc. of ACM
Conf. on Computer and Communications Security, 1999, Singapore, pp.
28–36

[26] Maio, D., Maltoni, D., Cappelli, R., Wayman, J., Jain, A.: ’FVC2002:
Second fingerprint verification competition’. Proc. Int. Conf. on Pattern
Recognition, Quebec City, Canada, August 2002, pp. 811–814

[27] Ross, A., Nandakumar, K., Jain, A. K.: ’Handbook of multibiometrics’
(Springer, 2006)

[28] Merkle, J., Kevenaar, T., Korte, U.: ’Multi-modal and multi-instance
fusion for biometric cryptosystems’. Proc. BIOSIG, Darmstadt, Germany,
September 2012, pp. 51–62

[29] Cohn H., Heninger, N.: ’Ideal forms of coppersmith’s theorem and
guruswami-sudan list decoding’. Proc. Innovations in Computer Science,
Bejing, China, January 2011, pp. 298–308

[30] Gao, S.: ’A new algorithm for decoding reed-solomon codes’, in Bhar-
gava, V.K., Poor, H.V., Tarokh, V., Yoon, S. (Eds.): ’Communications,
Information and Network Security’ (Springer, 2002), pp. 55–68

[31] Trifonov, P.: ’Efficient interpolation in the guruswami-sudan algorithm’,
IEEE Trans. Inf. Theory, 2010, 56, (9), pp. 4341–4349

[32] Alekhnovich, M.: ’Linear diophantine equations over polynomials and soft
decoding of reed-solomon codes’. Proc. Symp. on Foundations of Computer
Science, Vancouver, Canada, November 2002, pp. 439–448

[33] Roth, R. M., Ruckenstein, G.: ’Efficient decoding of reed-solomon codes
beyond half the minimum distance’, IEEE Trans. Inf. Theory, 2000, 46,
(1), pp. 246–257

[34] ’The guruswami-sudan decoding algorithm for reed-solomon codes’,
http://www.ee.caltech.edu/EE/Faculty/rjm/papers/RSD-JPL.pdf,
accessed January 2015

[35] Sudan, M.: ’Decoding of reed solomon codes beyond the error-correction
bound’, Journal of Complexity, 1997, 13, (1), pp. 180–193

[36] Guruswami, V., Rudra, A.: ’Error correction up to the information-
theoretic limit’, Commun. ACM, 2009, 52, (3), pp. 87–95

26

http://www.ee.caltech.edu/EE/Faculty/rjm/papers/RSD-JPL.pdf


[37] Maio, D., Maltoni, D., Cappelli, R., Wayman, J., Jain, A.: ’FVC2000: fin-
gerprint verfication competition’, IEEE Trans. Pattern Anal. Mach. Intell.,
2000, 24, (3), pp. 402–412

[38] Blanton, M., Aliasgari, M.: ’Analysis of reusability of secure sketches and
fuzzy extractors’, IEEE Trans. Inf. Forensics Security, 2013, 8, (9), 1433–
1445

[39] Merkle, J., Tams, B.: ’Security of the improved fuzzy vault scheme in the
presence of record multiplicity’, arXiv:1312.5225, 2013

[40] FIPS PUB 197: ’Announcing the advanced encryption standard (AES)’,
2001

[41] Kelkboom, E. J. C., Breebaart, J., Kevenaar, T. A. M., Buhan, I., Veldhuis,
R. N.: ’Preventing the decodability attack based cross-matching in a fuzzy
commitment scheme’, IEEE Trans. Inf. Forensics Security, 2011, 6, (1), pp.
107–121

[42] Tams, B.: ’Decodability attack against the fuzzy commitment scheme with
public feature transforms’, arXiv:1406.1154, 2014

[43] Simoens, K., Tuyls, P., Preneel, B.: ’Privacy weaknesses in biometric
sketches’. Proc. IEEE Symp. on Security and Privacy, Oakland, USA, May
2009, pp. 188–203

27

http://arxiv.org/abs/1312.5225
http://arxiv.org/abs/1406.1154

	Introduction
	Minutiae-Based Fuzzy Vault
	Contribution
	Related Work

	Implementation for Single Fingerprint
	Minutia Quantization
	Enrolment
	Verification
	Parameter Configuration and Randomized Decoder

	Implementation for Multiple Fingerprints
	Fusion of Multi-Finger Minutiae Records
	Enrolment
	Verification
	Decoder for Multi-Finger

	Experiments
	Security
	False-Accept Security Estimation
	Record Multiplicity Attacks
	Variant with Password
	Slow-Down Functions

	Discussion

