Technical Report on "The assessment of non-inferiority in a gold standard design with censored, exponentially distributed endpoints"

M. Mielke
Department of Mathematical Stochastics, University Göttingen
e-mail: mielke@math.uni-goettingen.de

A. Munk
Department of Mathematical Stochastics, University Göttingen
e-mail: munk@math.uni-goettingen.de

A. Schacht
Lilly Deutschland GmbH, Bad Homburg
e-mail: schacht_alexander@lilly.com

1. Introduction

In this paper, we present some technical details required by Mielke et al. [1]. They derived the Wald-type test for the assessment of non-inferiority in a three-armed model with exponentially distributed, right censored endpoints. The presented test procedures are based on the asymptotic normality of the ML-estimators. In Theorem A.1 the asymptotic normality is derived by means of the classical theory of exponential families. Theorem A.2 provides the optimal allocation to the three groups in terms of minimizing the resulting asymptotic variance of the ML-estimator for a given total sample size. We start in section 2.1 with an introduction of the model considered by [1].

2. Model and Proofs of Theorems

2.1. Model and Hypothesis

The following introduction of the model is parallel to Section 2 of [1]. We are concerned with a three-armed clinical trial where one observes T_{ki}, $i = 1, \ldots, n_k$, independent and exponentially distributed survival times with parameters λ_k, $k = R, T, P$, where $R, T,$ and P abbreviates reference, treatment and placebo group, respectively. To fix the relation of the parameters λ_k and the distribution of the survival times we assume that $E[T_{ki}] = \lambda_k$. Further, let the corresponding censoring times U_{ki} be independent distributed according to G_k, where U_{ki} is independent of T_{ki} for $i = 1, \ldots, n_k$ and $k = R, T, P$. The observations consist of pairs (X_{ki}, δ_{ki}), where $X_{ki} = \min\{T_{ki}, U_{ki}\}$ are the observed survival times and $\delta_{ki} = 1_{\{T_{ki} \leq U_{ki}\}}$, $i = 1, \ldots, n_k$, $k = R, T, P$, are the corresponding censoring indicators. Hence, $\delta_{ki} = 1$ stands for an uncensored observation. Moreover, none of the groups should asymptotically vanish, i.e. for $k = R, T, P$ and $n = n_R + n_T + n_P$

$$\frac{n_k}{n} \rightarrow w_k \quad (1)$$

holds for $n_R, n_T, n_P \rightarrow \infty$ and some $w_k \in (0, 1)$. Further, we assume that the probabilities for an uncensored observation should be positive, i.e.

$$p_k := P(\delta_{ki} = 1) > 0,$$
for $k = R, T, P$.

Mielke et al. [1] consider the assessment of non-inferiority of a new treatment to a reference one in terms of a retention of effect hypothesis on the log scale, i.e.

$$H_0^N : \log \lambda_T - \log \lambda_P \geq \Delta (\log \lambda_R - \log \lambda_P)$$

vs.

$$K_0^N : \log \lambda_T - \log \lambda_P < \Delta (\log \lambda_R - \log \lambda_P)$$

with $\Delta \in [0, \infty)$. The alternative K_0^N means that the test treatment T achieves more than $\Delta \times 100\%$ of the active control effect, where both are compared to placebo and the effect is measured via the log relative risk (cf. Rothmann et al. [2]). The hypothesis (2) is equivalent to

$$H_0^N : \eta := \log \lambda_T - \Delta \log \lambda_R + (\Delta - 1) \log \lambda_P \geq 0$$

The ML-estimator for η is given by

$$\hat{\eta} = \log \hat{\lambda}_T - \Delta \log \hat{\lambda}_R + (\Delta - 1) \log \hat{\lambda}_P$$

by plugging in the ML-estimators

$$\hat{\lambda}_k = \frac{\sum_{i=1}^{n_k} X_{ki}}{\sum_{i=1}^{n_k} \delta_{ki}}$$

for $k = R, T, P$.

2.2. Asymptotic Normality of the MLE and Optimal Allocation

Asymptotic Normality of the ML-estimator, Theorem A.1: The ML-estimator $\hat{\eta}$ given in (4) is asymptotically normally distributed, i.e. $\sqrt{n} (\hat{\eta} - \eta) \xrightarrow{D} \mathcal{N}(0, \sigma^2)$ with variance

$$\sigma^2 = \frac{1}{w_T p_T} + \frac{\Delta^2}{w_R p_R} + \frac{(\Delta - 1)^2}{w_P p_P}.$$

Proof. For $k = R, T, P$ the density for an observation (X_{ki}, δ_{ki}) can be written as

$$h_k(\lambda_k, x, \delta) = \lambda_k^{-\delta} e^{-\frac{x}{\lambda_k}} \tilde{h}_k(x, \delta)$$

with $\tilde{h}_k(x, \delta) = g_k(x) 1^{\delta} (1 - G_k)^{\delta} 1_{x \geq 0}$, g_k and G_k the density and distribution function, respectively, of the censoring times U_{ki}. Hence, the densities can be written as an exponential family

$$h_k(\lambda_k, x, \delta) = e^{-\frac{x}{\lambda_k}} \tilde{h}_k(x, \delta).$$

Therefore the required regularity conditions to obtain asymptotic normality of $\hat{\lambda}_k$ are satisfied and we have (confer for example [3, Theorem 4.6])

$$\sqrt{m_k} (\hat{\lambda}_k - \lambda_k) \xrightarrow{D} \mathcal{N}(0, I_k^{-1})$$

with Fisher information matrices I_k, which can be computed by

$$I_k = -E_{\lambda_k} \left[\frac{\partial^2}{\partial^2 \lambda_k} \log h_k(\lambda_k, X, \delta) \right] = \frac{p_k}{\lambda_k^2}$$

with $p_k = P(\delta_{ki} = 1) > 0$ by assumption. Consequently, the transformed ML-estimator $\sqrt{m_k}(\log \hat{\lambda}_k - \log \lambda_k)$ has asymptotic variance p_k^{-1}, which yields together with the independence of the groups and (1), that $\sqrt{n}(\hat{\eta} - \eta)$ is asymptotically normal with variance σ^2 (5).
Thus, based on Theorem A.1 we reject H_0^N for a given significance level α if

$$\sqrt{\frac{n}{\eta}} \frac{\eta}{\sigma} \leq z_\alpha,$$

where z_α denotes the α-quantile of the standard normal distribution and $\hat{\sigma}^2$ is a consistent estimator for σ^2. Based on Theorem A.1 Mielke et al. [1] point out that H_0^N is rejected with a probability of at least $1 - \alpha$, holds, whereas the significance level α, λ_k, p_k, Δ and hence also η given in (3) are pre-specified in planning a clinical trial. Thus, each term on the right hand side other than σ is positive definite since η is pre-specified by the allocation of the samples. Theorem A.2 presents the optimal allocation in terms of minimizing σ^2 and therewith the total required sample size n, confer (6).

Optimal allocation, Theorem A.2: The asymptotic variance σ^2 in (5) is minimized in

$$W = \{ (w_R, w_P) \in [0, 1]^2 : w_R + w_P \leq 1 \}$$

for

$$w_R^* = \frac{\Delta p_R^{-1}}{p_T^{-1} + \Delta p_R^{-1} + |1 - \Delta| p_P^{-1}}, \quad \text{and} \quad w_P^* = \frac{|1 - \Delta| p_P^{-1}}{p_T^{-1} + \Delta p_R^{-1} + |1 - \Delta| p_P^{-1}}.$$

Proof. Equating partial derivatives of σ^2 with zero gives

$$\frac{\partial}{\partial w_R} \sigma^2 = \frac{1}{p_T^2(1-w_R-w_P)^2} - \frac{\Delta^2}{p_T^2 w_R^2} = 0 \quad (7)$$

$$\frac{\partial}{\partial w_P} \sigma^2 = \frac{1}{p_T^2(1-w_R-w_P)^2} - \frac{(1-\Delta)^2}{p_T^2 w_P^2} = 0. \quad (8)$$

This yields a polynomial of degree four and four possible roots,

$$(w_R, w_P) = (\Delta p_R^{-1}, (1-\Delta)p_P^{-1}, (\Delta - 1)p_P^{-1}, (\Delta - 1)p_P^{-1}, (\Delta - 1)p_P^{-1}),$$

where

$$(w_R^*, w_P^*) = \left(\frac{\Delta p_R^{-1}}{p_T^{-1} + \Delta p_R^{-1} + |1 - \Delta| p_P^{-1}}, \frac{|1 - \Delta| p_P^{-1}}{p_T^{-1} + \Delta p_R^{-1} + |1 - \Delta| p_P^{-1}} \right)$$

is the only solution to (7) and (8) contained in W. Finally, the Hessian matrix of σ^2 with respect to (w_R, w_P) at (w_R^*, w_P^*) is positive definite since

$$\frac{\partial^2}{\partial^2 w_R} \sigma^2(w_R^*, w_P^*) = \frac{2 p_T p_R (p_T^{-1} + \Delta p_R^{-1}) (p_T^{-1} + \Delta p_R^{-1} + |1 - \Delta| p_P^{-1})^3}{\Delta} > 0$$

and the determinant of the Hessian matrix is equal to

$$\frac{4 p_T p_R p_P (p_T^{-1} + \Delta p_R^{-1} + |1 - \Delta| p_P^{-1})^7}{|1-\Delta| \Delta} > 0.$$

Hence a local minimum is attained at (w_R^*, w_P^*), which is also the global minimum in W, because it is the only stationary point in W.

\[\Box \]
References

[1] M. Mielke, A. Munk, and A. Schacht. Planning and assessing non-inferiority in a
gold standard design with censored, exponentially distributed endpoints. *Statistics in
Medicine*, Accepted.
