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Abstract. We study the convergence of regularized Newton methods applied to nonlinear
operator equations in Hilbert spaces if the data are perturbed by random noise. It is shown that
the expected square error is bounded by a constant times the minimax rates of the corresponding
linearized problem if the stopping index is chosen using a-priori knowledge of the smoothness of the
solution. For unknown smoothness the stopping index can be chosen adaptively based on Lepski��'s
balancing principle. For this stopping rule we establish an oracle inequality, which implies order
optimal rates for deterministic errors, and optimal rates up to a logarithmic factor for random noise.
The performance and the statistical properties of the proposed method are illustrated by Monte-Carlo
simulations.
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1. Introduction. In this paper we study the solution of nonlinear ill-posed op-
erator equations

F (a) = u, (1.1)

assuming that the exact data u are perturbed by random noise. Here F : D(F ) ⊂
X → Y is a nonlinear operator between separable Hilbert spaces X and Y, which is
Fréchet di�erentiable on its domain D(F ).

Whereas the solution of nonlinear operator equations by iterative regularization
methods with deterministic errors has been studied intensively over the last decade
(see Bakushinskii & Kokurin [2] and references therein), we are not aware of any con-
vergence and convergence rate results of iterative regularization methods for nonlinear
inverse problems with random noise, although in a many practical examples iterative
methods are frequently applied where the noise is random rather than deterministic.
Vice versa, nonlinear regularization methods are rarely used in a statistical context,
and our aim is to explore the potential use of these methods in classical �elds of ap-
plications such as econometrics [22] and �nancial statistics [10]. In particular, we will
derive rates of convergence under rather general assumptions.

We will consider the case that the error in the data consists of both deterministic
and stochastic parts, but we are mainly interested in the situation where the stochas-
tic noise is dominant. More precisely, we assume that the measured data uobs are
described by a Hilbert space process

uobs = F (a†) + δη + σξ, (1.2a)

where δ ≥ 0 describes the deterministic error level, η ∈ Y, ‖η‖ ≤ 1 denotes the
normalized deterministic error, σ2 ≥ 0 determines the variance of the stochastic noise,
and ξ is a Hilbert space process in Y. We assume that ξϕ := 〈ξ, ϕ〉 is a random
variable with E [ξϕ] = 0 and Varξϕ < ∞ for any test vector ϕ ∈ Y, and that the
covariance operator Covξ : Y → Y, characterized by 〈Covξϕ,ψ〉Y = E [ξϕξψ] satis�es
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the normalization condition

‖Covξ‖Y ≤ 1. (1.2b)

Note that in the case of white noise (Covξ = IY) the noise ξ is not in the Hilbert space
with probability 1, nevertheless this prominent situation is covered in our setting in
the weak formulation as above. For a further discussion of the noise model (1.2) we
refer to [5] where it is shown that it incorporates several discrete noise models where
the data consists of a vector of n measurements of a function u at di�erent points.
In this case σ is proportional to n−1/2, i.e. the limit n→∞ corresponds to the limit
σ → 0. A particular discrete noise model will be discussed in section 5.

In this paper we provide a convergence analysis for the class of generalized Gauss-
Newton methods given by

âk+1 := a0 + gαk+1 (F ′[âk]∗F ′[âk])F ′[âk]∗
(
uobs − F (âk) + F ′[âk](âk − a0)

)
(1.3a)

with gα(λ) := (λ+α)m−αm

λ(λ+α)m corresponding to m-times iterated Tikhonov regularization

with m ∈ N. Standard Tikhonov regularization is included as special case m = 1.
For deterministic errors (i.e. σ = 0 in (1.2a)) the convergence of the iteration (1.3a)
has been studied in [1, 2, 3]. Typically the explicit formula (1.3a) is not used in
implementations, but âk+1 is computed by solvingm linear least squares problems (see
Fig. 2.1). The advantage of iterated Tikhonov regularization over ordinary Tikhonov
regularization is a higher quali�cation number (see [12]). For simplicity, we assume
that the regularization parameters are chosen of the form

αk = α0q
k (1.3b)

with q ∈ (0, 1) and α0 > 0.
Let us comment on the di�erences when treating measurement errors as random

instead of deterministic: From a practical point of view the most important di�er-
ence is the choice of the stopping index. Whereas the discrepancy principle as most
common deterministic stopping rule works reasonably well for discrete random noise
models with small data vectors, the performance of the discrepancy principle becomes
arbitrarily bad as the size of the data vector increases. This is further discussed and
numerically demonstrated in �5. The same holds true for the deterministic version of
Lepski��'s balancing principle as studied for the iteration (1.3a) in [3]. From a theoret-
ical point of view the rates of convergence are di�erent for deterministic and random
noise, and in the latter case they depend not only on the source condition, but also
on the operator F and the covariance operator Covξ of the noise.

Actually our analysis also provides an improvement of known results for purely
deterministic errors, i.e. σ = 0. This is achieved by showing an oracle inequality, which
is a well-established technique in statistics (cf. [8, 9]), but rarely used in numerical
analysis so far. To our knowledge the only deterministic oracle inequality has been
shown by Mathé & Pereverzev [19, 21] for Lepski��'s balancing principle for linear
problems. Theorem 4.1 below is a generalization of this result to nonlinear problems.
As shown in Remark 4.3 this provides error estimates which are better by an arbitrarily
large factor than any known error deterministic estimates for any nonlinear inversion
method in the limit δ → 0.

An important alternative to the iteratively regularized Gauss-Newton method is
nonlinear Tikhonov regularization, for which convergence and convergence rate results
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for random noise have been obtained by O'Sullivan [23], Bissantz, Hohage & Munk
[4], Loubes & Lude«a [17], and Hohage & Pricop [14]. In this paper we show order
optimal rates of convergence under less restrictive assumptions on the operator than
in [14, 17, 23] and for a range of smoothness classes instead of a single one as in [4].

The paper is organized as follows: In the following section we show that the total
error can be decomposed into an approximation error, a propagated data error, and
a nonlinearity error, and the last error component is dominated by the sum of the
�rst two error components (Lemma 2.2). This will be fundamental for the rest of this
paper. In section 3 we prove order optimal rates of convergence if the smoothness of
the solution is known and the stopping index is chosen appropriately. Adaptation to
unknown smoothness by Lepski��'s balancing principle is discussed in section 4, and an
oracle inequality for nonlinear inverse problems is shown. The paper is completed by
numerical simulations for a parameter identi�cation problem in a di�erential equation,
which illustrate how well the theoretical rates of convergence are met and compare
the performance of the balancing principle and the discrepancy principle.

2. Error decomposition. In this section we will analyze the error

Ek = âk − a† (2.1)

of the iteration (1.3). We set â0 := a0, i.e. E0 = a0 − a†. Since lower bounds for
the expected square error are tyically not available for nonlinear inverse problems, we
compare our upper bounds on the error with lower bounds for the linearized inverse
problem

Ta = uobs
lin , uobs

lin = Ta† + δη + σξ (2.2)

with the operator T := F ′[a†]. It is a fundamental observation due to Bakushinskii
[1], which transfers directly from deterministic errors to random noise, that the total
error

Ek+1 = Eapp
k+1 + Enoi

k+1 + Enl
k+1 (2.3a)

in (2.1) can be decomposed into an approximation error Eapp
k+1, a propagated data noise

error Enoi
k+1, and a nonlinearity error Enl

k+1 given by

Eapp
k+1 := rαk+1(T

∗T )E0,

Enoi
k+1 := gαk+1(T

∗
kTk)T

∗
k (δη + σξ), (2.3b)

Enl
k+1 := gαk+1(T

∗
kTk)T

∗
k

(
F (a†)− F (âk) + TkEk

)
+

(
rαk+1(T

∗
kTk)− rαk+1(T

∗T )
)
E0.

Here Tk := F ′[âk] and rα(λ) = 1 − λgα(λ) =
(

α
α+λ

)m
. If F is linear, then T =

Tk = F , and the Taylor remainder F (a†)− F (âk) + TkEk vanishes. Hence Enl
k+1 = 0,

i.e. the nonlinearity error vanishes for the linearized equation (2.2). This can also be
seen as follows: If F is linear, then the iteration formula (1.3a) reduces to the non-
recursive formula âk = a0 + gαk

(T ∗T )T ∗(uδlin − Ta0), which is the underlying linear
regularization method with initial guess a0 and regularization parameter αk applied
to (2.2). The approximation error Eapp

k agrees exactly in the linear and the nonlinear
case, and the data noise error Enoi

k only di�ers by the operator T and Tk. The goal
of the following analysis is to show that the nonlinearity error ‖Enl

k ‖ can be bounded
in terms of sharp estimates of ‖Eapp

k ‖+ ‖Enoi
k ‖ (Lemma 2.2).
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Approximation error. We will assume that there exists w ∈ Y such that

a0 − a† = T ∗w with ‖w‖ ≤ ρ, (2.4)

for some ρ > 0. This is equivalent to the existence of w̃ ∈ X with ‖w̃‖ ≤ ρ such
that a0 − a† = (T ∗T )1/2w̃ (see [12, Prop. 2.18]). Later we will require ρ to be
su�ciently small, which expresses the usual closeness condition on the initial guess
required for the convergence of Newton's method. Note, however, that we do not only
require smallness of a0 − a† in the norm ‖ · ‖X , but smallness in the stronger norm
‖(T ∗)† · ‖X . It is well known (see [12] or eq. (3.3) below) that under assumption (2.4)
the approximation error of iterated Tikhonov regularization is bounded by

‖Eapp
k ‖ ≤ Crρ

√
αk, k ∈ N. (2.5)

Moreover, the approximation error satis�es

‖Eapp
k+1‖ ≤ ‖Eapp

k ‖ ≤ γapp‖Eapp
k+1‖, k ∈ N (2.6a)

with γapp := q−m. If α0 is chosen su�ciently large, we also have

‖E0‖ ≤ γapp‖Eapp
1 ‖. (2.6b)

All the inequalities in (2.6) can be reduced to inequalities for real-valued functions
with the help of spectral theory [12]. The second inequality in (2.6a) follows from

rαk
(t) =

(
αk

αk + t

)m
≤

(
αk

αk+1 + t

)m
=

1
qm

rαk+1(t), t ≥ 0,

and the �rst inequality holds since rα(t) =
(
1− t

α+t

)m
is monotonically increasing

in α. Finally, (2.6b) follows from supt∈[0,t]

(
α0

q(α0+t)

)m
=

(
α0

q(α0+t)

)m
≥ 1 for α0 ≥

qt/(1− q) where t := ‖T ∗T‖.
Remark 2.1 Note that the second inequality in (2.6a) rules out regularization meth-
ods with in�nite quali�cation such as Landweber iteration as alternative to iterated
Tikhonov regularization. Although the regularized Newton method (1.3a) also con-
verges for such linear regularization methods ([2, 15]) and convergence is even faster
for smooth solutions, the estimate (2.15) in Lemma 2.2 will be violated in general as
it contains the norm of the approximation error ‖Eapp‖ itself instead of an estimate.
This estimate is crucial to achieve the improvement discussed in Remark 4.3. The
results of this paper also hold true for other spectral regularization methods satisfying
(2.6) and (2.12) below, but since iterated Tikhonov regularization is by far the most
common choice, we have decided to restrict ourselves to this case for simplicity.

Propagated data noise error. The deterministic part of Enoi
k can be estimated by

the well-known operator norm bound

‖gαk
(T ∗kTk)T

∗
k ‖ ≤

Cg√
αk

(2.7)

with a constant Cg depending only on m. This bound cannot be used to estimate the
stochastic part of Enoi

k , or more precisely the variance term

V (a, α) := ‖gα(F ′[a]∗F ′[a])F ′[a]∗ξ‖2
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with a ∈ D(F ) and α > 0, since ‖ξ‖ = ∞ almost surely for typical noise processes ξ
such as white noise. We assume that there exists a known function ϕnoi : (0, α0] →
(0,∞) such that

(E [V (a, α)])1/2 ≤ ϕnoi(α) for α ∈ (0, α0] and a ∈ D(F ). (2.8a)

Such a condition is satis�ed if F ′[a] is Hilbert-Schmidt for all a ∈ D(F ), and the
singular values of these operators have the same rate of decay for all a ∈ D(F ).
Estimates of the form (2.8a) have been derived for spectral regularization methods
under general assumptions in [5]. We further assume that

1 < γ
noi

≤ ϕnoi(αk+1)
ϕnoi(αk)

≤ γnoi, k ∈ N (2.8b)

for some constants γnoi, γnoi <∞. Moreover, we assume an exponential inequality of
the form

P {V (a, α) ≥ τE [V (a, α)]} ≤ c1e
−c2τ for all a ∈ D(F ), α ∈ (0, α0], τ ≥ 1 (2.8c)

with constants c1, c2 > 0. Such an exponential inequality is derived for Gaussian
noise processes ξ in the appendix. If ξ is white noise, and the singular values of F ′[a]
decay at the rate σj(F ′[a]) ∼ j−β with β > 1

2 uniformly for all a ∈ D(F ), then we
can choose ϕnoi of the form

ϕnoi(α) = Cnoiα
−c, (2.9)

with c := 1
2 + 1

4β and some constant Cnoi ∈ (0,∞) (see [5]). For colored noise c may

also have values smaller than 1
2 .

By virtue of the exponential inequality (2.8c) the probability is very small that
the stochastic propagated data noise error V (âk, αk) at any Newton step k is much
larger than the expected value E [V (âk, αk)]. We will distinguish between a �good
case� that the propagated data noise is �small� at all Newton steps, and a �bad case�
that the noise is �large� in at least one Newton step. The �good case� is analyzed in
Lemma 2.2 below. The proof of Theorem 3.2 will require a rather eloborate distinction
of what is small and what is large in order to derive the optimal rate of convergence.
This distinction will be described by functions τ(k, σ) satisfying

τ(k + 1, σ)ϕnoi(αk+1)2 ≥ τ(k, σ)ϕnoi(αk)2, σ > 0, k = 1, 2, . . . , k − 1. (2.10a)

For given τ = τ(k, σ) and a given maximal iteration number k, the �good event� Aτ,k
is that all iterates âk belong to D(F ) for k = 1, . . . , k (and hence are well de�ned)
and the propagated data noise error is bounded by

‖Enoi
k ‖ ≤ Φnoi(k) for k = 1, . . . , k with

Φnoi(k) :=
√
τ(k, σ)σϕnoi(αk) + δ

Cg√
αk
.

(2.10b)

Nonlinearity error. In the following we will assume that the Fréchet derivative
F ′ of F satis�es a Lipschitz condition with constant L > 0, i.e.

‖F ′[a1]− F ′[a2]‖ ≤ L‖a1 − a2‖ for all a1, a2 ∈ D(F ). (2.11)
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If the straight line connecting a† and âk is contained in D(F ), the Taylor remainder
in (2.3) is bounded as ‖F (a†) − F (âk) + TkEk‖ ≤ (L/2)‖Ek‖2. Now it follows from
(2.7) that the �rst term in the de�nition of Enl

k+1 is bounded by CgL/(2
√
αk+1)‖Ek‖2.

To bound the second term in the de�nition of Enl
k+1, we need the assumption (2.4)

and the estimate

‖ (rαk
(T ∗kTk)− rαk

(T ∗T )) (T ∗T )1/2‖ ≤ Cnl‖T − Tk‖, (2.12)

which can be shown with the help of the Riesz-Dunford formula, see Bakushinskii
& Kokurin [2, section 4.1]. Using (2.12), the source condition (2.4), and (2.11), the

second term can be bounded by C̃nlρ‖Ek‖ with a constant C̃nl > 0.
In summary we obtain the following recursive estimate of the nonlinearity error:

‖Enl
k+1‖ ≤

LCg
2√αk+1

‖Ek‖2 + C̃nlρ‖Ek‖. (2.13)

Lemma 2.2 Assume that the ball B2R(a0) with center a0 and radius 2R > 0 is
contained in D(F ) and that (1.2), (1.3), (2.8), and (2.11) hold true. Moreover, let
α0 be su�ciently large that (2.6b) is satis�ed.

Then there exists ρ > 0 speci�ed in the proof such that the following holds true
for all a† ∈ BR(a0) satisfying the source condition (2.4) and all δ, σ ≥ 0: If (2.10)
de�ning the �good event� is satis�ed with k = Kmax de�ned by

Kmax := max
{
k ∈ N : Φnoi(k)α

−1/2
k ≤ Cstop

}
and 0 < Cstop ≤ min

(
1

8LCg
,

R

4
√
α0

)
,

(2.14)
then âk ∈ BR(a†) and

‖Enl
k ‖ ≤ γnl (‖Eapp

k ‖+ Φnoi(k)) for all k = 1, . . . ,Kmax. (2.15)

Here γnl := 8LCgCstop satis�es γnl ≤ 1.
Proof. We prove this by induction in k, starting with the induction step. If the

assertion holds true for k − 1 (k = 2, . . . ,Kmax), then we obtain from (2.3a), (2.6a),
and (2.10) that

‖Ek−1‖ ≤ (1 + γnl)
(
‖Eapp

k−1‖+ Φnoi(k − 1)
)

≤ (1 + γnl) (γapp‖Eapp
k ‖+ Φnoi(k)) .

(2.16)

Hence, it follows from (2.13) and the inequality (x+ y)2 ≤ 2x2 + 2y2 that

‖Enl
k ‖ ≤ C̃nlρ(1 + γnl) (γapp‖Eapp

k ‖+ Φnoi(k))

+
LCg√
αk

(1 + γnl)2
(
γ2
app‖E

app
k ‖2 + Φ2

noi(k)
)
.

(2.17)

If ρ ≤ γnl/(2C̃nl(1 + γnl)γapp), the �rst term on the right hand side of (2.17) is
bounded by (γnl/2) (‖Eapp

k ‖+ Φnoi(k)). Now we estimate the second term in (2.17).
Using (2.5) we obtain

‖Eapp
k ‖

√
αk

≤ Crρ ≤
γnl

2LCg(1 + γnl)2γ2
app
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Input: uobs, δ, σ, F, a0, R,Kmax

k := 0; â0 := a0

while k < Kmax and ‖âk − a0‖ ≤ 2R

â
(0)
k+1 := a0

for j = 1, ..,m

â
(j)
k+1 := argmina∈X

{
‖F ′[âk](a− âk) + F (âk)− uobs‖2

Y + αk+1‖a− â
(j−1)
k+1 ‖2

X

}
âk+1 := â

(m)
k+1; k := k + 1

end

if (‖âk − a0‖ > 2R) K∗ := 0
else choose K∗ ∈ {0, 1, . . . ,Kmax} by (3.4), (3.7), (4.3) rsp.

Output: âK∗

Fig. 2.1. Algorithm: Iteratively regularized Gauss-Newton method with m-times iterated

Tikhonov regularization for random noise.

for ρ su�ciently small, so
LCg√
αk

(1 + γnl)2γ2
app‖E

app
k ‖2 ≤ (γnl/2)‖Eapp

k ‖. Moreover, it

follows from the inequality γnl ≤ 1 and the de�nition of Kmax that

LCg√
αk

(1 + γnl)2Φ2
noi(k) ≤

4LCg√
αk

Φ2
noi(k) ≤ 4LCgCstopΦnoi(k) ≤

γnl

2
Φnoi(k).

Therefore, the second line in (2.17) is also bounded by (γnl/2) (‖Eapp
k ‖+ Φnoi(k)),

which yields (2.15) for k. This can be used to show that âk ∈ D(F ): If ρ is su�-
ciently small, then ‖Eapp

k ‖ ≤ Crρ
√
α0 ≤ R/(2 + 2γnl). Moreover, it follows from the

monotonicity of Φnoi (cf. (2.10)), (2.14), and γnl ≤ min(1, LCgα
−1/2
0 /2) that

Φnoi(k) ≤ Φnoi(Kmax) ≤ Cstopα
1/2
Kmax

≤ Cstopα
1/2
0 ≤ R

4
≤ R

2 + 2γnl
.

Together with (2.15) this shows that ‖Ek‖ ≤ (1 + γnl)(‖Eapp
k ‖ + Φnoi(k)) ≤ R, i.e.

âk ∈ BR(a†) ⊂ D(F ).
It remains to establish the assertion for k = 1. Due to assumption (2.6b), ‖E0‖ is
bounded by the right hand side of (2.16) with k = 1. Now the assertion for k = 1
follows as above.

Since we do not assume the stochastic noise ξ to be bounded, there is a positive
probability that âk /∈ D(F ) at each Newton step k. Therefore, we stop the iteration
if ‖âk − a0‖ ≥ 2R for some k, and we choose the initial guess a0 as estimator of a† in
this case. The algorithm is summarized in Fig. 2.1.

3. Convergence results for known smoothness. In the following we will
assume more smoothness for a0 − a† than in (2.4). This is expressed in terms of
source conditions of the form

a0 − a† = Λ(T ∗T )w̃
7



where Λ is continuous and monotonely increasing with Λ(0) = 0 (see [20] for the linear
case). If

sup
t∈[0,t]

Λ(t)|rα(t)| ≤ CΛΛ(α), α ∈ [0, α0], (3.1)

then ‖Eapp
k ‖ ≤ CΛΛ(αk)‖w̃‖. The most important case is Λ(t) = tµ, and the condition

a0 − a† = (T ∗T )µw̃ with ‖w̃‖ ≤ ρ̃ (3.2)

is called a Hölder source condition. The largest number µ > 0 for which (3.2) holds
true with this choice of Λ is called the quali�cation µ0 of the linear regularization
method. The quali�cation of Tikhonov regularization is µ0 = 1, and the quali�cation
of m-times iterated Tikhonov regularization is µ0 = m (see [12]). We obtain

‖Eapp
k ‖ ≤ Cµα

µ
k ρ̃ for 0 ≤ µ ≤ µ0 (3.3)

Let us �rst consider deterministic errors, i.e. σ = 0. The following result shows
that the same rate of convergence can be achieved for the nonlinear inverse problem
(1.2) as for the linearized problem (2.2).
Theorem 3.1 (deterministic errors) Let the assumptions of Lemma 2.2 hold true
with σ = 0, and let

K∗ := min {Kmax,K} , K := argmin k∈N

(
‖Eapp

k ‖+ δ
Cg√
αk

)
. (3.4)

Then there exist constants C, δ0 > 0 such that

‖âK∗ − a†‖ ≤ C inf
k∈N

(
‖Eapp

k ‖+ δ
Cg√
αk

)
for all δ ∈ (0, δ0]. (3.5)

(Note that Eapp
k = rαk

(T ∗T )(a0 − a†) is well de�ned for all k ∈ N even if âk is not
well de�ned for all k.)

Proof. If K ≤ Kmax, then (3.5) follows with Φnoi(k) = δCg/
√
αk and C = 1 + γnl

from Lemma 2.2 and the error decomposition (2.3). On the other hand, using (2.5)
and (2.14) we get

‖Eapp
k ‖+Φnoi(k) ≥ Φnoi(k) > Cstop

√
αKmax ≥

1
1 + Crρ/Cstop

(
‖Eapp

Kmax
‖+ Φnoi(Kmax)

)
for k > Kmax. Therefore, (3.5) holds true with C = 1 + Crρ/Cstop if K ≥ Kmax and
hence K∗ = Kmax.

In particular, for Hölder source conditions (3.2) with µ ∈ [ 12 , µ0], plugging (3.3)
into (3.5), we obtain the rate

‖âK∗ − a†‖ = O
(
ρ̃

1
2µ+1 δ

2µ
2µ+1

)
, δ → 0 (3.6)

�rst shown by Bakushinskii [1] for µ = 1 and Blaschke, Neubauer & Scherzer [6] for
µ ∈ [1/2, 1]. Explicit rates for other source conditions follow analogously.

We now turn to the general noise model (1.2).
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Theorem 3.2 (general noise model) Consider an iterative regularization method
described by (1.3) and a noise model (1.2), (2.8). Assume that B2R(a0) ⊂ D(F ), that
F satis�es (2.11), and that a Hölder source condition (3.2) with µ ∈ (1/2, µ0] and ρ
su�ciently small holds true. De�ne

K := argmin k∈N

(
‖Eapp

k ‖+ δ
Cg√
αk

+ σϕnoi(αk)
)
. (3.7)

If ‖âk − a0‖ ≤ 2R for k = 1, . . . ,K, set K∗ := K, otherwise K∗ := 0. Then the
expected square error of the regularized Newton iteration converges at the same rate as
the expected square error of the corresponding linear regularization method, i.e. there
exist constants C > 1 and δ0, σ0 > 0 such that

(
E

[
‖âK∗ − a†‖2

])1/2 ≤ Cmin
k∈N

(
‖Eapp

k ‖+ δ
Cg√
αk

+ σϕnoi(αk)
)

(3.8)

for all δ ∈ (0, δ0] and σ ∈ (0, σ0]
Proof. We de�ne the �bounded noise� events A1 ⊂ A2 ⊂ . . . AJ(σ) with J(σ) :=⌊

ln(σ−2)/c2
⌋
and c2 from (2.8c) by

Aj :=
{
âk ∈ B2R(a0) and ‖Enoi

k ‖ ≤ δCg√
αk

+
√
τj(k, σ)σϕnoi(αk), k = 1, . . . ,K

}
,

with τj(k, σ) := j +
lnκ
c2

(K − k) and κ > 1 (3.9)

(cf. (2.10b)). Due to (2.8b) we can choose κ > 1 su�ciently small such that τj satis�es
condition (2.10a) for all j = 1, . . . , J . De�nition (3.9) is motivated by the fact that an
unusually large propagated data noise term Enoi

k at the �rst Newton steps, where the
total error is dominated by Eapp

k , has less e�ect than an unusually large propagated
data noise error at the last Newton steps. Lemma 2.2 and Lemma 3.4 below entail
that the iterates â1, . . . , âK remain in BR(a†) if the bounds on ‖Enoi

k ‖, k = 1, . . . ,K
in the de�nition (3.9) of Aj with j ≤ J(σ) are satis�ed and σ is su�ciently small.
Together with (2.8c) this yields for the probability of the complementary event

P(CAj) ≤ c1

K∑
k=1

exp(−c2τj(k, σ)) = c1 exp(−c2j)
K∑
k=1

κk−K

≤ c1 exp(−c2j)
∞∑
m=0

κ−m =
c1 exp(−c2j)

1− κ−1
.

By de�nition, we have K∗ = K for the events Aj . Applying Lemma 2.2 and the
inequality (x+ y + z)2 ≤ 3x2 + 3y2 + 3z2 and using γnl ≤ 1 we obtain

‖âK∗ − a†‖2 ≤ 6‖Eapp
K ‖2 + 6δ2

C2
g

αK
+ 6τj(K,σ)σ2ϕnoi(αK)2 =: Bj for the event Aj .

Moreover, by the de�nition of the algorithm we have an error bound ‖âK∗ − a†‖ ≤
‖âK∗ −a0‖+‖a0−a†‖ ≤ 3R for the event CAJ(σ). Note that J(σ) is chosen such that
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e−c2J(σ) ≤ σ2. Hence,

E
[
‖âK∗ − a†‖2

]
≤ P(A1)B1 +

J(σ)∑
j=2

P(Aj \Aj−1)Bj + P(CAJ(σ))9R2

≤ 6‖Eapp
K ‖2 + 6δ2

C2
g

αK
+ 6 (σϕnoi(αK))2

c1
1− κ−1

J(σ)−1∑
j=1

je−c2j

+
c1e

−c2J(σ)

1− κ−1
9R2

≤ C

(
‖Eapp

K ‖+ δ
Cg√
αk

+ σϕnoi(αK)
)2

for some constant C > 0. In the second line we have used that P(A1) +
∑J(σ)
j=2 P(Aj \

Aj−1) + P(CAJ(σ)) = 1 and P(Aj \ Aj−1) ≤ P(CAj−1). Now (3.8) follows as in the
proof of Theorem 3.1.

The proof of Theorem 3.2 is completed by the following two lemmas:
Lemma 3.3 Setting Φ̃noi(k) := δ

Cg√
αk

+ σϕnoi(αk), γ
noi

:= min{γ
noi
, q−1/2}, and

γnoi := max{γnoi, q
−1/2}, the optimal stopping index K de�ned in (3.7) satis�es the

following bounds:

Φ̃noi(K)
‖Eapp

K ‖
≤ γapp − 1

1− γ−1

noi

, (3.10)

K ≥ sup
{
K ∈ N : ‖Eapp

1 ‖γ1−K
app > inf

l∈N

(
Crρ

√
αl + Φ̃noi(1)γl−1

noi

)}
. (3.11)

Proof. It follows from (2.8b) that

1 < γ
noi

≤ Φ̃noi(k + 1)
Φ̃noi(k)

≤ γnoi, k ∈ N. (3.12)

To show (3.10), assume on the contrary that

(γapp − 1)‖Eapp
K ‖ < (1− γ−1

noi
)Φ̃noi(K). (3.13)

Then we obtain using (2.6a) and (3.12)

‖Eapp
K−1‖+ Φ̃noi(K − 1) ≤ γapp‖Eapp

K ‖+ γ−1

noi
Φ̃noi(K) < ‖Eapp

K ‖+ Φ̃noi(K)

in contradiction to the de�nition of K. Therefore, (3.13) is false, and (3.10) holds
true.

To show (3.11), assume that

Crρ
√
αl + Φ̃noi(1)γl−1

noi < ‖Eapp
1 ‖γ1−K

app (3.14)

for some K, l ≥ 1. Then for all k ≤ K we have

‖Eapp
l ‖+ Φ̃noi(l) ≤ Crρ

√
αl + Φ̃noi(1)γl−1

noi

< ‖Eapp
1 ‖γ1−K

app ≤ ‖Eapp
K ‖ ≤ ‖Eapp

k ‖

≤ ‖Eapp
k ‖+ Φ̃noi(k)

10



using (2.5), (2.6a), and (3.12). Therefore, it follows from the de�nition of K that
K > K. Taking the in�mum over l in (3.14) and then the supremum over K yields
(3.11).

Lemma 3.4 Under the assumptions of Theorem 3.2 there exists σ0 > 0 such that

K ≤ Kmax(σ, j) for all σ ≤ σ0 and j = 1, . . . , J(σ) :=
⌊
ln(σ−2)/c2

⌋
(3.15)

with Kmax(σ, j) de�ned as in Lemma 2.2 using τj in (3.9):

Kmax(σ, j) := max
{
k ∈ N :

(
δ
Cg√
αk

+ τj(k, σ)σϕnoi(αk)
)
α
−1/2
k ≤ Cstop

}
Proof. It follows from (2.10a), the inequalities τj(K,σ) ≤ τJ(σ)(K,σ) ≤ ln(σ−2)/c2

and (3.10) that for all j ≤ J(σ) and k ≤ K(
δ
Cg√
αk

+ τj(k, σ)σϕnoi(αk)
)
α
−1/2
k ≤

(
δ
Cg√
αK

+ τJ(σ)(K,σ)σϕnoi(αK)
)
α
−1/2
K

≤ ln(σ−2)
c2

Φ̃noi(K)α−1/2
K

≤ 1
c2

γapp − 1
1− γ−1

noi

‖Eapp
K ‖ ln(σ−2)α−1/2

K (3.16)

≤ C ln(σ−2)αµ−1/2
K

with C := ρCµ

c2

γapp−1

1−γ−1
noi

. Furthermore, a straightforward calculation shows that the

in�mum in (3.11) decays at a polynomial rate in σ, so K ≥ −κ ln(σ) for some κ > 0.
As limx→∞ xqcx = 0 for all c > 0, there exists σ0 > 0 such that

C ln(σ−2)αµ−1/2
K ≤ C

(
α0

q

)µ−1/2

ln(σ−2)qln(σ−2)·(κ/2)·(µ−1/2) ≤ Cstop

for all σ ∈ (0, σ0]. This together with (3.16) gives the assertion.

The right hand side of the estimate (3.8) is known to be an order optimal error
bound for the linearized problem (2.2) under mild assumptions (cf. [5]). Again, more
explicit bounds can easily be derived und under more speci�c assumptions. E.g. if
δ = 0 and ϕnoi is given by (2.9), we obtain(

E
[
‖âK∗ − a†‖2

])1/2
= O

(
ρ̃

c
µ+cσ

µ
µ+c

)
, σ → 0. (3.17)

4. Adaptation by Lepski��'s balancing principle. The stopping index in
Theorem 3.2 cannot be computed since it depends on ‖Eapp

k ‖ and hence the smooth-
ness of the di�erence a0 − a† of the initial guess and the unknown solution. In this
section we address the problem how to choose the stopping index of the Newton
iteration adaptively using a Lepski��-type balancing principle.

We will present the balancing principle in a general framework adapted from
[19]. From our choice of notation it will be obvious how the regularized Newton
methods (1.3) �t into this framework and how the stopping index can be selected for
these methods. As the same method will hopefully also apply to other regularization
methods than (1.3), we have decided to use this more general setting.
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Fig. 4.1. Illustration of setting in section 4

General abstract setting. Let â0, â1, . . . , âKmax be estimators of a† in a metric
space (X, d), and let Φnoi,Φapp,Φnl : N0 → [0,∞) be functions such that

d(âk, a†) ≤ Φnoi(k) + Φapp(k) + Φnl(k), k ≤ Kmax. (4.1)

We assume that Φnoi is known and non-decreasing, Φapp is unknown and non-increasing,
and Φnl is unknown and satis�es

Φnl(k) ≤ γnl (Φnoi(k) + Φapp(k)) , k = 0, . . . ,Kmax (4.2)

for some γnl > 0. This is illustrated in Fig. 4.1 Note that under the assumptions of
Lemma 2.2 these inequalities are satis�ed for the iterates of the generalized Gauss-
Newton method (1.3) with Φapp(k) := ‖Eapp

k ‖ and Φnl(k) := ‖Enl
k ‖.

As in [3] we consider the following Lepski��-type parameter selection rule:

kbal := min {k ≤ Kmax : d(âk, âm) ≤ 4(1 + γnl)Φnoi(m),m = k + 1, . . . ,Kmax} (4.3)

Deterministic errors. We �rst recall some results from [19, 21] for linear problems,
i.e. Φnl ≡ 0. Assume that Φnoi satis�es

Φnoi(k + 1) ≤ γnoiΦnoi(k), k = 1, 2, . . . ,Kmax − 1 (4.4)

for some constant γnoi <∞, and let

k := min{k ≤ Kmax : Φapp(k) ≤ Φnoi(k)}. (4.5)

Then, as shown by Mathé & Pereverzev [21], the following deterministic oracle in-
equality holds true:

d(âkbal , a
†) ≤ 6Φnoi(k) ≤ 6γnoi min

k=1,...,Kmax
(Φapp(k) + Φnoi(k)) (4.6)

This shows that kbal yields an optimal error bound up to a factor 6γnoi.
If (4.1) and (4.2) hold true, then Assumption 2.1 in [3] is satis�ed with E(k)δ =

2(1 + γnl)Φnoi(k) (in the notation of [3]) and

K := min{k ≤ Kmax : Φnoi(k) + Φapp(k) + Φnl(k) ≤ 2(1 + γnl)Φnoi(k)}. (4.7)

Therefore, Theorem 2.3 in [3] implies the error estimate

d(âkbal , a
†) ≤ 6(1 + γnl)Φnoi(k). (4.8)

We obtain the following order optimality result inspired by Mathé [19]:
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Theorem 4.1 (deterministic oracle inequality) Assume (4.1)�(4.4). Then

d(âkbal , a
†) ≤ 6Φnoi(k) ≤ 6(1 + γnl)γnoi min

k∈{1,...,Kmax}
(Φapp(k) + Φnoi(k)) . (4.9)

Proof. As Φapp(k) ≤ Φnoi(k) implies

Φnoi(k) + Φapp(k) + Φnl(k) ≤ (1 + γnl) (Φapp(k) + Φnoi(k)) ≤ 2(1 + γnl)Φnoi(k),

we have K ≤ k with k de�ned in (4.5). Therefore, we get

d(âkbal , a
†)

(4.8)

≤ 6(1 + γnl)Φnoi(K)
K≤k
≤ 6(1 + γnl)Φnoi(k)

(4.6)

≤ 6(1 + γnl)γnoi min {Φapp(k) + Φnoi(k) : k = 1, . . . ,Kmax} .

Obviously, we could add the term Φnl(k) to Φapp(k) + Φnoi(k) on the right hand
side of (4.9). Hence, Theorem 4.1 implies that the Lepski�� rule (4.3) leads to an
optimal error bound up to a factor 6(1 + γnl)γnoi among all k = 1, . . . ,Kmax. How-
ever, Theorem 4.1 even implies the stronger result that we obtain the same rates of
convergence as in the linear case, which are often known to be minimax.

Setting Φapp(k) := ‖Eapp
k ‖, Φnoi(k) = δCg/

√
αk and Φnl(k) := ‖Enl

k ‖ yields the
following oracle inequality for the Gauss-Newton iteration, where we have replaced
{1, . . . ,Kmax} by N (see Theorem 3.1):
Corollary 4.2 Let the assumptions of Lemma 2.2 hold true for σ = 0, i.e. Φnoi(k) =
δCg√
αk

. Furthermore let kbal be chosen as in (4.3). Then

‖âkbal − a†‖ ≤ 6(1 + γnl)γnoi min
k∈N

(
‖Eapp

k ‖+
Cgδ√
αk

)
. (4.10)

Remark 4.3 If a† belongs to the smoothness class Mµ,ρ := {a0 + (T ∗T )µw̃ : ‖w̃‖ ≤
ρ̃} de�ned by the source condition (3.2) with µ ∈ [1/2, µ0], then it follows from (4.10)
and (3.3) that

‖âkbal − a†‖ ≤ min
k∈N

(
Cµα

µ
k ρ̃+

Cgδ√
αk

)
= O

(
ρ̃

1
2µ+1 δ

2µ
2µ+1

)
, δ → 0, (4.11)

and for linear problems it is well-known that among all possible methods this is the best
possible uniform estimate over Mµ,ρ up to a constant (see [12]). Assume now that
µ ∈ [1/2, µ0). Then limα→0(λ/α)µrα(λ) = 0 for all λ ≥ 0 and supλ,α |(λ/α)µrα(λ)| ≤
Cµ, and it follows from spectral theory and Lebesgue's dominated convergence theorem
that α−µ‖rα(T ∗T )(T ∗T )µw̃‖ → 0 as α→ 0 for all w̃ ∈ X , i.e.

‖Eapp
k ‖

Cµρ̃α
−µ
k

→ 0, k →∞. (4.12)

As we will show in a moment, this implies that for all a† ∈Mµ,ρ

mink∈N
(
‖Eapp

k ‖+ Cgδ√
αk

)
mink∈N

(
Cµα

µ
k ρ̃+ Cgδ√

αk

) → 0, δ → 0. (4.13)
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(4.13) is the deterministic analog of what is known as supere�ciency in statistics (see
[7]).

To show (4.13), let ε > 0. Using Lemma 3.3, eq. (3.11) with σ = δ and ϕnoi(α) =
Cg/

√
α, we obtain that K(δ) := argmin k∈N‖Eapp

k ‖ + Cgδ√
αk

tends to ∞ as δ → 0.
Therefore, it follows from (4.12) that there exists δ0 such that ‖Eapp

K(δ)‖ ≤ εCµρα
µ
K(δ)

for all δ < δ0. Using eq. (3.10) in Lemma 3.3 we obtain Cgδ/
√
αK(δ) ≤ C‖Eapp

K(δ)−1‖ ≤
CεCµρ̃α

µ
K(δ) with C := γapp−1

1−√q . Now a straightforward computation shows that

inf
α>0

(
Cµα

µρ̃+
Cgδ√
α

)
≥ C̃(Cε)2µ/(2µ+1)Cµρ̃α

µ
K(δ)

≥ C̃(Cε)−1/(2µ+1)
‖Eapp

K(δ)‖+ C Cgδ/
√
αK(δ)

1 + C

with C̃ > 0 independent of ε and δ. This shows (4.13) since we can make (Cε)1/(2µ+1)

arbitrarily small.
Eq. (4.13) implies that although estimates of the form (4.11), known in deter-

ministic regularization theory for the discrepancy principle and improved parameter
choice rules ([12, 16]), are order optimal as uniform estimates over a smoothness
class, they are suboptimal by an arbitrarily large factor for each individual element
of the smoothness class in the limit δ → 0. To our knowledge it is an open question
whether or not deterministic parameter choice rules other than Lepski��'s balancing
principle are optimal in the more restrictive sense of oracle inequalities.

General noise model. We return to the general noise model (1.2).
Theorem 4.4 Let the assumptions of Lemma 2.2 hold true with Kmax determined

by (2.14) with Φnoi(k) := δ
Cg√
αk

+ lnσ−2

c2
σϕnoi(αk), and assume (3.2) with µ > 1

2 . Let

K∗ := kbal as in (4.3) if âk ∈ B2R(a0) for k = 1, . . . ,Kmax and K∗ := 0 else. Then
there exists a constants C, δ0, σ0 > 0 such that

(
E

[
‖âK∗ − a†‖2

])1/2 ≤ Cmin
k∈N

(
‖Eapp

k ‖+ δ
Cg√
αk

+ (lnσ−1)σϕnoi(αk)
)

(4.14)

for δ ∈ [0, δ0] and σ ∈ (0, σ0].
Proof. First consider the event Aτ,Kmax of �bounded noise� de�ned by (2.10b)

with τ(k, σ) = (lnσ−2)/c2. Then the assumptions of Theorem 4.1 are satis�ed with
Φapp(k) := ‖Eapp

k ‖ and Φnl(k) := ‖Enl
k ‖ due to (2.3a), (2.8b) and Lemma 2.2, and we

get

‖âkbal − a†‖ ≤ 6(1 + γnl)γnoi min
k=1,...,Kmax

(‖Eapp
k ‖+ Φnoi(k))

As µ > 1
2 , we can use the same arguments as in Lemma 3.4 to show that K :=

argmin k∈N (‖Eapp
k ‖+ Φnoi(k)) ≤ Kmax for δ, σ small enough, and hence the minimum

may be taken over all k ∈ N0. Moreover, we have

P(CAτ,Kmax) ≤ c1

Kmax∑
k=1

exp(− lnσ−2) = c1Kmaxσ
2 ≤ Ctailσ

2 lnσ−1,

for some constant Ctail > 0. For the last inequality we have used that Kmax =
O

(
lnσ−1

)
due to the de�nition of Kmax and the fact that ϕnoi is decreasing. Using
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again that ϕnoi is decreasing and K →∞ as σ → 0, we get

P(CAτ,Kmax) ≤ Ctailσ
2 lnσ−1 ≤ C min

k∈N0

(
‖Eapp

k ‖+ δ
Cg√
αk

+ (lnσ−1)σϕnoi(αk)
)2

(4.15)
for σ small enough with a generic constant C. Hence,

E
[
‖âK∗ − a†‖2

]
≤ P(Aτ,Kmax) min

k=1,...,Kmax
(‖Eapp

k ‖+ Φnoi(k))
2 + P(CAτ,Kmax)(3R)2

≤ C2 min
k=1,...,Kmax

(
‖Eapp

k ‖+ δ
Cg√
αk

+ (lnσ−1)σϕnoi(αk)
)2

.

In particular, for δ = 0 and ϕnoi is given by (2.9), we obtain(
E

[
‖âK∗ − a†‖2

])1/2
= O

(
ρ̃

c
µ+c (σ lnσ−1)

µ
µ+c

)
, σ → 0. (4.16)

Comparing (4.16) to (3.17) or (4.14) to (3.8) shows that we have to pay a log-
arithmic factor for adaptivity. As shown in [26] it is impossible to achieve optimal
rates adaptively in the general situation considered in this paper. However, for special
classes of linear inverse problems, which are not too ill-posed, order optimal adap-
tive parameter choice rules have been devised (see e.g. [9]). It remains an interesting
open problem to construct order optimal adaptive stopping rules for mildly ill-posed
nonlinear statistical inverse problems.

5. Numerical experiments. To test the predicted rates of convergence with
random noise and the performance of the stopping rule (4.3), we consider a simple
parameter identi�cation problem for an ordinary di�erential equation where the for-
ward operator F is easy to evaluate and reliable conclusions can be obtained by Monte
Carlo simulations within reasonable time. The e�ciency of the iteratively regular-
ized Gauss-Newton method to solve large-scale inverse problem has been su�ciently
demonstrated in a number of previous publications (see e.g. [13]).

Forward operator. For a given positive function a ∈ L2([0, 1]) and a given right
hand side f ∈ L2([0, 1]) let u ∈ H2

per([0, 1]) denote the solution to the ordinary
di�erential equation

−u′′ + au = f in [0, 1]. (5.1)

Here Hs
per([0, 1]), s ≥ 0 denotes the periodic Sobolev space of order 2 with norm

‖u‖2
Hs

per
=

∑
j∈N

(1 + j2)s
∣∣∣∣∫ 1

0

u(x) exp(−2πijx) dx
∣∣∣∣2 .

We introduce the parameter-to-solution operator

F : D(F ) ⊂ L2([0, 1]) → L2([0, 1])
a 7→ u.

If G denots the inverse of the di�erential operator − ∂2

∂x2 + 1 with periodic bound-
ary conditions, the di�erential equation (5.1) can equivalently be reformulated as an
integral equation

u+GMa−1u = Gf
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with the multiplication operator Ma−1u := (a − 1)u. To prove the Fréchet di�er-
entiablity of F , it is convenient to consider Ma−1 as an operator from Cper([0, 1]) to
L2([0, 1]) and G as an operator from L2([0, 1]) to Cper([0, 1]). ThenMa is bounded and
G is compact, and it is easy to show that F is analytic on the domain D(F ) := {a ∈
L2([0, 1]) : I+GMa−1 boundedly invertible in Cper([0, 1])}. In particular, F ′ satis�es
the Lipschitz condition (2.11). By a Neumann series argument, D(F ) is open, and it
contains all positive functions. Di�erentiation of (5.1) with respect to a shows that
for a perturbation h of a the Fréchet derivative uh = F ′[a]h satis�es the di�erential
equation

−u′′h + auh = −hu in [0, 1]

where u is the solution to (5.1). This implies that F ′[a]h = −(I +GMa−1)−1GMuh.
We brie�y sketch how Hölder source conditions (3.2) can be interpreted as smooth-

ness conditions in Sobolev spaces under certain conditions. Assume that a ∈ Hs ∩
D(F ) with s > 1/2, and f ∈ C∞. Here and in the following we shortly write Hs for
Hs

per([0, 1]). Since G : Ht → Ht+2 is an isomorphism for all t ≥ 0 and uv ∈ Ht

for u, v ∈ Ht with ‖uv‖Ht ≤ C‖u‖Ht‖v‖Ht for t > 1/2, it can be shown that
I +GMa : Ht → Ht is an isomorphism for t ∈ [0, s] and that u ∈ Hs. Moreover, the
operators F ′[a], F ′[a]∗ : Ht → Hmin(s,t+2) are bounded, and if u has no zeros in [0, 1]
and t ≤ s− 2 the inverses are bounded as well. Under this additional assumption, it
can be shown using Heinz' inequality (see [12]) that (F ′[a]∗F ′[a])µ : L2 → H4µ is an
isomorphism if 2d2µe ≤ s. Thus, a, a0 ∈ Hs implies a Hölder source condition with
µ = s/4. Moreover, the singular values of F ′[a] behave like σj(F ′[a]) ∼ j−2, and this
asymptotic behavior is uniform for all a with ‖a‖L∞ ≤ C.

Noise model. Let us assume our data are n noisy measurements of u† = F (a†) at
equidistant points x

(n)
j := j

n ,

Yj = u†
(
x

(n)
j

)
+ εj , j = 1, . . . , n. (5.2)

The measurement errors are modeled by i.i.d. random variables εj satisfying

E [ε]j = 0, Varεj = σ2
ε <∞.

For n even we introduce the space Πn := span
{
e2πijx : j = −n/2, . . . , n/2− 1

}
and

the linear mapping Sn : Rn → Πn, which maps a vector u = (u1, . . . , un)> of
nodal values to the unique trigonometric interpolation polynomial Snu ∈ Πn sat-

isfying (Snu)(x
(n)
j ) = uj , j = 1, . . . , n. We will show that uobs := SnY with

Y := (Y1, . . . , Yn)> satis�es assumption (1.2a). Hence, we interpret uobs as our ob-
served data. Since

√
nSn is unitary, uobs and Y have unitarily equivalent covariance

operators.
We have δη = E [u]obs − F (a†) and σξ = uobs − E [u]obs

in (1.2a), and E [u]obs

is the trigonometric interpolation polynomial of F (a†) at the points x(n)
j . Hence, by

standard estimates of the trigonometric interpolation error (see e.g. [24, Cor. 2.47])
the deterministic error of the data function uobs is bounded by

δ = ‖E [u]obs − u†‖L2 ≤ C

n2
‖u†‖H2 .

Moreover, the covariance operator of the stochastic noise is given by

Covuobs = CovSnε = SnCovεS∗n =
σ2
ε

n
Pn,
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σ = 0.1 n = 200 n = 800 n = 3200
Kmax = 14 σε = 0.01 σε = 0.02 σε = 0.04

mink ‖âk − a†‖ 0.0270± 0.0039 0.0263± 0.0036 0.0261± 0.0039
optimal

argmink‖âk − a†‖ 8.92± 0.27 8.92± 0.27 8.95± 0.22
‖âkbal − a†‖ 0.0386± 0.0024 0.0383± 0.0022 0.0383± 0.0025

balancing kbal 7.00± 0 7.00± 0 7.00± 0
Ibal 1.44 1.47 1.48

‖âkdiscr − a†‖ 0.0532± 0.0048 0.0763± 0.0012 0.1047± 0.0009
discrepancy kdiscr 6.09± 0.27 5.00± 0 4.00± 0

Idiscr 1.98 2.93 4.06

σ = 0.01 n = 200 n = 800 n = 3200
Kmax = 22 σε = 0.001 σε = 0.002 σε = 0.004

mink ‖âk − a†‖ 0.0089± 0.0008 0.0088± 0.0009 0.0088± 0.0008
optimal

argmink‖âk − a†‖ 11.32± 0.47 11.43± 0.50 11.32± 0.47
‖âkbal − a†‖ 0.0116± 0.0006 0.0116± 0.0007 0.0116± 0.0006

balancing kbal 10.00± 0 10.00± 0 10.00± 0
Ibal 1.31 1.33 1.32

‖âkdiscr − a†‖ 0.0116± 0.0006 0.0171± 0.0005 0.0254± 0.0003
discrepancy kdiscr 10.00± 0 9.00± 0 8.00± 0

Idiscr 1.31 1.96 2.90
Table 5.1

Comparison of balancing principle and discrepancy principle as stopping rules. For each value

of n and σε the algorithm was run 100 times. The values after ± denote standard deviations.

Fig. 5.1. left panel: rates of convergence of (E
ˆ
‖a† − âkbal‖

2
˜
)1/2 as σ → 0 for di�erent

smoothness of exact solution. The triangles indicate the rates predicted by theory and the bars the

empirical standard deviations of the reconstruction error. right panel: exact solutions.

where ε := (ε1, . . . , εn)>, and Pn ∈ L(L2([0, 1])) is the orthogonal projection onto Πn.
Note that the stochastic noise level

σ =
σε√
n

(5.3)

dominates the deterministic noise level δ = O(n−2) for large n.
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Numerical results. As exact solutions a† we used three functions of di�erent
smoothness shown in the right panel of Fig. 5.1. These functions were de�ned in
terms of Fourier coe�cients such that they belong to

⋂
t>sH

t
per([0, 1]) with s ∈

{0.5, 1.5, 3.5}. The initial guess was always chosen as the constant function 1. We
never had to stop the iteration early because an iterate was not in the domain of
de�nition of F .

We �rst tested the performance of the balancing principle for σ = 0.1 and σ = 0.01
and three di�erent values on n (cf. eq. (5.3)) for the curve with s = 1.5. For
each value of σ and n, 100 independent data vectors Y were drawn from a Gaus-
sian distribution according to the additive noise model (5.2). We chose Φnoi(k) :=
( 1
25

∑25
l=1 ‖gαk

(T ∗kTk)T
∗
k ε

(l)‖2)1/2, where ε(l) are independent copies of the noise vec-
tor. Moreover, we set γnl = 0.1 in (4.3). Note that this choice of Φnoi is not fully
covered by our theory since we only use an estimator of the expected value, as op-
posed to (2.8a) we do not have a uniform bound over a ∈ D(F ), and we dropped
the logarithmic factor in Theorem 4.4. Furthermore, recall that the Lepski�� rule re-
quires the computation of iterates up to a �xed Kmax speci�ed in (2.14). Usually the
Lipschitz constant L involved in the de�nition (2.14) of Kmax is not known exactly.
Fortunately, we only need an upper bound L on the Lipschitz constant, and the ex-
perimental results are insensitive to the choice of L. As expected from the assumtions
of our convergence results, the reconstructions are also insensitive to the choice of
α0 > 0 and q ∈ (0, 1) as long as they are su�ciently large. Further increasing α0

and q results in more Newton steps and hence more computational e�ort to reach the
optimal value of αk = α0q

k, but no noticable di�erence in the reconstructions.
The results of our �rst series of simulations are summarized in Table 5.1. As

�ine�ciency index� of a stopping rule K∗ we used the number

I :=
(E

[
‖âK∗ − a†‖2

]
)1/2

(E [mink=0,...,Kmax ‖âk − a†‖2])1/2
.

The results displayed in Table 5.1 demonstrate that both the expected optimal error
(the denominator in the previous expression) and the expected error for the balancing
principle (4.3) (the numerator) only depend on σ = σε/

√
n, but not on n. This is in

contrast to the discrepancy principle, which is de�ned in a discrete setting by

kdiscr := min{k : n−1/2‖F (âk)− Y ‖Rn ≤ τσε}

Here τ = 2.1, Y = (Yj)j=1..n is the vector de�ned in (5.2), (F (a))j := (F (a))(x(n)
j ),

j = 1, . . . , n, and the factor n−1/2 before the Euklidean norm in Rn is chosen such
that n−1/2‖F (a)‖Rn ≈ ‖F (a)‖L2([0,1]). The discrepancy principle for the noise model
(5.2) works fairly well for small n, but badly for large n, as previously observed e.g. in
[18] for linear problems. The reason is that the standard deviation of the measurement

error n−1/2
(
E

[∑n
j=1 ε

2
j

])1/2

= σε = σ
√
n tends to in�nity as n→∞ with constant

σ, and hence the discrepancy principle stops too early. In fact this happens almost
always at the �rst step for n su�ciently large, whereas the optimal stopping index,
which asymptotically depends only on σ, but not on n, may be arbitrarily large for
small σ.

Finally we tested the rates of convergence with the balancing principle for the
three curves a† shown in the right panel of Fig. 5.1. We always chose n = 128 and
varied σε. For each value of σ and each of the three curves a† we performed 50 runs
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of the iteratively regularized Gauss-Newton method. The triangles in the left panel
show the rates σ1/6, σ3/8, and σ7/12, which are obtained by neglecting the logarithmic
factor in (4.16) and setting c = 5

8 and µ = 1
8 ,

3
8 ,

7
8 following the discussion above. Note

that the experimental rates agree quite well with these predicted rates even for the
�rst two functions, which are not smooth enough to be covered by our theory.

In summary we have demonstrated that the performance of the balancing principle
is independent of the sample size n whereas the discrepancy principle works well for
small n, but becomes more and more ine�cient as n→∞. Moreover, for the balancing
principle the empirical rates of convergence match the theoretical rates very well.

Appendix A. exponential inequality for Gaussian noise.
In this appendix we will prove the exponential inequality (2.8c) for the case that

the noise process ξ in (1.2a) is Gaussian.
Let us consider the random variable V = ‖Λ̃ξ‖2 for an arbitrary linear operator

Λ : Y → X such that E
[
‖Λ̃ξ‖2

]
< ∞. Since CovΛξ = ΛMΛ∗ with M := Covξ,

the operator ΛMΛ∗ is trace class, i.e. the eigenvalues λ1 ≥ λ2 ≥ · · · of ΛMΛ∗ satisfy∑∞
i=1 λi = E [V ] < ∞. Note that M−1/2ξ is a Gaussian white noise process, i.e. the

random variables ξi :=
〈
M−1/2ξ, ϕi

〉
are i.i.d. standard normal for any orthonormal

system {ϕi} in Y. In particular, if {ϕi} is a system of left singular vectors of ΛM1/2,
then V =

∑∞
i=1 λiξ

2
i . The random variables ξ2i are i.i.d. χ2

1 with Laplace transform

E
[
exp

(
tξ2i

)]
= (1− 2t)−1/2, 0 < t <

1
2
.

Then it holds that

P

 ∞∑
i=1

λi(ξ2i − 1) ≥ η

√√√√2
∞∑
i=1

λ2
i

 ≤ exp
(

1
8
− η

4

)
(A.1)

for any η > 0 (see [11, 25]).
Theorem A.1 Under the above conditions we have for any τ ≥ 1 that

P (V ≥ τE [V ]) ≤ exp
(

1
8
− C

4
(τ − 1)

)
, (A.2)

where C := 2−1/2
∑∞
i=1 λi/(

∑∞
i=1 λ

2
i )

1/2.
Proof. Rewrite

{V ≥ τE [V ]} =

{ ∞∑
i=1

λiξ
2
i ≥ τ

∞∑
i=1

λi

}
=


∞∑
i=1

λi(ξ2i − 1) ≥ η

√√√√2
∞∑
i=1

λ2
i

 ,

where η = (τ − 1)C and apply (A.1).

Since λi ≥ 0, we have
∑∞
i=1 λ

2
i ≤ (

∑∞
i=1 λi)

2
, and hence C ≥ 2−1/2 for any

eigenvalue sequence (λi). Therefore, choosing Λ := gα(F ′[a]∗F ′[a])F ′[a]∗, we obtain
(2.8c) with c1 = exp( 1

8 + 1
4
√

2
) and c2 = 1

4
√

2
.

A variation of the proof in [25] allows in principle an extension for more general
(non χ2) random varables under proper growth conditions on the Lqaplace transform
of the ξ2i . This would give an exponential bound of the form (2.8c), again.
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