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Abstract

Various exact tests for showing a difference between two treatments or the non-
inferiority (therapeutic equivalence) based on the difference of two binomial pro-
portions are compared. It is found that a frequently used test has to be applied
with great caution due to its numerical instability. Furthermore, a test based on the
score statistic can be recommended as a good compromise between a simple and
powerful procedure. Finally, a likelihood ratio based exact test is introduced, which
slightly outperforms all other tests from the literature with respect to power. The
issue of sample size determination is briefly addressed. All methods are illustrated
with help of an example where two antihelmintic agents are compared.
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1 INTRODUCTION

Testing the difference of two failure rates is a classical topic in statistics.
Closely related to this is the assessment of non-inferiority, which has signifi-
cantly gained in importance during the last years. This is due to the need of
statistical methodology encountered with therapeutic equivalence trials, where
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the aim is to show the non-inferiority of a new treatment as compared to stan-
dard one, instead of its superiority. In many trials, dichotomous endpoints are
the primary quantities of interest, such as failure or success rates. For example,
Rodary et al. (1989) used the rupture (of tumor) rate in patients with child-
hood nephroblastoma. In the ASSENT-2 trial (1999), the 30-days-mortality
rate after acute myocardial infarction was the primary endpoint.

In an FDA draft-guidance (1998) it is recommended that the difference of
failure rates δ = pT − pC of the treatment (T) and control (C) group should
fall below the value of ∆0 = 0.15 in clinical trials for the development of
antimicrobial drugs for urinary tract infections. A similar rule can be found in
CPMP (2003). For further applications see e.g. CPMP (1999) or FDA (1992).

Hence, the testing problem

H0 : δ > ∆0 versus H1 : δ < ∆0 (1)

results. If a suitable test allows for rejection of H0, so-called therapeutic equiv-
alence of T and C, or non-inferiority of the new treatment with respect to
control is established.

Example 1 In a randomized controlled clinical trial Chouela et al. (1999)
assessed therapeutic equivalence of ivermectin (an antihelmintic agent) with
respect to lindane (control) for the treatment of human scabies. The sample
size was 43, of whom 19 patients received ivermectin. Chouela et al. (1999) de-
fined the equivalence margin as 0.2 and argued that ivermectin is much simpler
applicable than lindane. The statistical analysis was performed using Black-
welder’s asymptotic test (Blackwelder, 1982) with α = 0.05. The p-value was
found to be 0.002, hence therapeutic equivalence of ivermectin and lindane was
claimed. It is well known, however, that for this small sample size the actual
level of Blackwelder’s test could be twice as the nominal level α, depending
on the unknown value of δ. Hence, this test should be used with great caution
here. Therefore, this example is re-analyzed in Section 5 by means of various
exact test procedures.

In contrast to asymptotic tests (cf. Dunnett and Gent, 1977; Farrington and
Manning, 1990; Roebruck and Kühn, 1995, for a survey), exact tests aim to
control the type I error exactly, i.e. the actual level α∗ of these tests should
never exceed the pre-assigned nominal level α. For ∆0 = 0, the most promi-
nent test is Fisher’s test, which lacks, however, from practicability, because
randomization is required to keep the nominal level exactly. If this random-
ization step is not performed, the power of this test becomes rather low as
compared to other procedures (Boschloo, 1970; McDonald et al., 1977; Upton,
1982; D’Agostino et al., 1988). Furthermore, this test cannot be transferred
to the testing problem (1) for ∆0 > 0, because it is based on the odds ratio
ρ = pT (1− pC)/(pC(1− pT )) and hence only suitable for the hypotheses (1) if
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∆0 = 0 (in this case ρ = 1). Mart́ın Andrés and Silva Mato (1994) have given
a comprehensive survey about unconditional exact tests for (1) when ∆0 = 0.

In this paper we compare various exact tests for the problem (1). This includes
the procedure suggested in the benchmark paper by Barnard (1947), the test
by Chan (1998), and the πlocal-test by Röhmel and Mansmann (1999b). More-
over, we present an exact version of the likelihood ratio test, which is in the
spirit of Kang and Chen (2000). It is shown that this test slightly outperforms
the afore mentioned competitors with respect to power. Furthermore, we ob-
served serious numerical difficulties with Barnard’s test which makes it hardly
applicable in practice.

The paper is organized as follows. In the next section we describe more pre-
cisely the general methodology for all exact tests mentioned above. In par-
ticular, we will find that the computational effort for Barnard’s test can be
considerable. Furthermore, this test causes numerical difficulties due to the
computation of extremely small probabilities for determining the region of re-
jection or its corresponding p-values. Because of the inductive construction of
the rejection region this test is not capable to correct small numerical errors
in subsequent calculations. This implies that the critical region of the Barnard
test (or an associated p-value) cannot be computed fully automatically and
has to be controlled visually by the statistician.

In Section 2.3 and 2.4 the πlocal-test and a test by Chan (1998) are introduced.
In Section 2.5 we present the exact version of the likelihood ratio test. The
computational effort is much less than for Barnard’s test and it is numerically
more stable.

In Section 3 all tests are compared numerically with respect to power, size
and computational time. To our knowledge such a comparison has not been
published so far. It is found that the actual level of the exact LR-test gets
closest to the nominal level in most cases. This test, Chan’s test and Barnard’s
test are comparable with respect to power, with a slight tendency in favor of
the LR-test. We mention, however, that this test may suffer from a theoretical
gap. This test cannot be shown to fulfill a convexity condition introduced by
Barnard (1947), although we found numerical evidence that this holds.

In Section 4 the issue of sample size determination (in order to control the type
II error) is briefly addressed. A more comprehensive discussion of this issue is
postponed to a separate publication. Finally, in Section 5 the performance of
all methods is discussed and illustrated by means of the above example. SAS
code for all tests can be obtained from the authors on request.
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2 UNCONDITIONAL EXACT TESTS

2.1 General methodology

In a clinical trial we will denote the outcome of a patient by X or Y which
is 1 or 0 according to a failure or not. Furthermore, we denote by pC and pT

the failure probability of the control and treatment group, respectively. Let
nC and nT denote the sample size in each treatment group. Under these as-
sumptions we observe two independent i.i.d. Bernoulli samples
X1, . . . , XnC

∼ B(1, pC) and Y1, . . . , YnT
∼ B(1, pT ), which have joint likeli-

hood

P(x,y)(pC , pT ) =

(
nC

x

)
pC

x (1 − pC)nC−x

(
nT

y

)
pT

y (1 − pT )nT −y , (2)

where x =
∑nC

i=1 xi, y =
∑nT

j=1 yj, (x, y) ∈ {0, . . . , nC} × {0, . . . , nT}.

This probability depends on the true failure rates pC and pT . If the outcome
(x, y) is represented on a grid of (nC + 1)× (nT + 1) points, the critical region
(CR) of any test for testing (1) is defined by a subset of this grid. Therefore,
the probability of type I error is given for (pC , pT ) ∈ H0 by

P ((X, Y ) ∈ CR | (pC , pT )) =
∑

(x,y)∈CR

P(x,y)(pC , pT ) . (3)

The principle of unconditional exact tests is to maximize the function (3)
over H0 in order to eliminate the nuisance parameters pC and pT . Thus, for a
given critical region (CR), the actual level for the probability of type I error
is determined by

α∗ = max
(pC ,pT )∈H0

P ((X, Y ) ∈ CR | (pC , pT )) . (4)

In general it is a difficult task to maximize over the entire null hypothesis,
a triangle in the (pC , pT )-plane. Röhmel and Mansmann (1999b) have shown
that if a certain condition holds for the critical region, the maximum is attained
always at the boundary pT = pC + ∆0.

This condition, called ”C” for convexity, has been introduced by Barnard
(1947). We say that a critical region CR fulfills condition ”C” if for any (x, y) ∈
CR it holds that (x + 1, y) ∈ CR and (x, y − 1) ∈ CR. The reasoning for ”C”
is that, if we reject (and hence conclude non-inferiority of T ) for x failures
in the control group, we should certainly reject for more than x failures, and
if we reject for y failures in the test group we are supposed to do the same
for less. We mention that the term convexity is somehow misleading, because
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”C” does not always force the critical region to be convex in the sense that
x, y ∈ C ⇒ λx + (1 − λ) y ∈ C, λ ∈ (0, 1). Perhaps quadrant monotonicity
would be a more appropriate term.

If ”C” is fulfilled, the critical region can be identified with its boundary, which
has the advantage of simpler storage (always less than min {nC , nT} values)
as well as a reduction of computational complexity, as it is carefully discussed
in Röhmel and Mansmann (1999b, Sect. 7). We mention that condition ”C”
reduces the number of possible critical regions and hence the number of compu-
tations for finding the maximum in (4) from O(2nC+nT ) to O

((
nC+nT

nC

))
steps.

This can be seen by observing that any critical region satisfying condition ”C”
can be identified with an isotonic path from (0, 0) to (nC + 1, nT + 1). Now
an argument as in the ballot theorem (cf. Feller, 1968, p. 68) can be applied.

We mention that we found that all four tests under consideration satisfy condi-
tion ”C”. However, for the exact LR-test this is based on extensive numerical
investigations, and we have no rigorous proof for this.

Remark 2 If the rejection region of a test is of the form
{
(x, y) : T (x, y) > c

}

for a real valued function T , condition ”C” reads as a monotonicity condition
for T , viz.

T (x + 1, y) ≥ T (x, y) and T (x, y − 1) ≥ T (x, y) .

Hence, under condition ”C” T is isotonic in its first argument and antitonic
in the second one.

2.2 Barnard’s test

Barnard (1947) has constructed an unconditional exact test for H0 : δ = 0
versus H1 : δ 6= 0. Röhmel and Mansmann (1999b) have recognized that the
principle of constructing Barnard’s test is directly transferable to the testing
problem (1). The idea of calculating the critical region is to start with the out-
come (nC , 0), that is the most extreme outcome with respect to condition ”C”.
Then the critical region is extended iteratively. Potential next outcomes are the
adjacent points (nC −1, 0) and (nC , 1), which fulfill condition ”C”. The actual
levels α∗ (see (4)) for CR = {(nC , 0) , (nC − 1, 0)} and CR = {(nC , 0) , (nC , 1)}
are compared. From these adjacent points the outcome is included into the
critical region, which increases the actual level by the smallest amount. Now,
the next adjacent points and their amount to the actual level are calculated to
determine the next point to be included in the critical region. This procedure
is continued as long as α∗ remains smaller than the nominal level. Loosely
speaking, the critical region is based on the principle to include as much as
possible points under the constraint ”C” and α∗ ≤ α, whith α∗ in (4).
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Fig. 1. Exact level as a function of pC (left hand side) for calculated rejection regions
(right hand side) using a grid width of 1/200 (thin line), 1/1000 (thick line) and
1/2000 (dotted line)

We found, however, that a serious difficulty encountered with the practical use
of Barnard’s consists in the effective numerical computation of its rejection
region. To this end the maximum α∗ in (4) has to be determined for any
possible extension of the critical region. Numerically, this can only be achieved
by calculating α∗ on a discrete grid of the interval [0, 1 − ∆0], the domain of pC ,
say. The following algorithm was implemented for computing critical regions:

(1) The initial critical region consists of the most extreme possible outcome
only: CR1 = {(nC , 0)}.

(2) The adjacent outcomes not violating condition C are (nC − 1, 0) and
(nC , 1). α∗ is computed for CR = CR1 ∪ {(nC − 1, 0)} and CR = CR1 ∪
{(nC , 1)}, respectively. The maxima are determined by calculating the
values P ((X, Y ) ∈ CR | pT = pC +∆0) iteratively for pC ∈ {ε, 2ε, . . . , 1−
∆0 − 2ε, 1 − ∆0 − ε} with, e.g., ε = 1/1000. The critical region is ex-
tended by the outcome with the smaller resulting α∗. If α∗ is (numer-
ically) equal for both outcomes (e.g. if nT = nC) then CR2 = CR1 ∪
{(nC − 1, 0) , (nC , 1)}.

(3) Step 2 is iterated according to condition ”C” until α∗ exceeds the nominal
level.

(4) Stop the iteration and choose the preceding critical region.

Note that in step 2 the selection of a possible point to be included in the critical
region depends heavily on the grid width ε chosen to determine α∗. We found
that this yields an intrinsically numerical difficulty, because the correspond-
ing α∗’s to be compared are below the numerical precision of any standard
software. Due to the iterative structure of the algorithm a wrong selection
of a point in iteration step ”i” will affect the entire subsequent construction
and may lead to completely wrong rejection regions. This is in contrast to the
subsequent algorithms in 2.3 - 2.5.

Figure 1 shows the exact levels (l.h.s.) as a function of the nuisance parameter
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pC (with nC = nT = 100 and ∆0 = 0.01) for rejection regions, which are calcu-
lated using three different grid widths (1/200, 1/1000 and 1/2000). The right
hand figure displays the corresponding rejection regions. Observe that, for a
width of 1/1000, the rejection region and its level curve differ tremendously
from the regions with 1/200 and 1/2000, respectively.

We will illustrate this with the following numerical example. For the construc-
tion of the rejection region it is essential that the probabilities corresponding
to the potential points are ordered correctly. These probabilities may be ex-
tremely small, in particular for larger sample sizes. E.g., for nT = nC = 100,
∆0 = 0.01, and the initial critical region CR = {(100, 0)}, the maximum
is α∗ ≈ 8.34 ∗ 10-62 (for pC = 0.495). In contrast, for unconditional exact
tests which use a test statistic T as an ordering criterion this is a minor
problem (just rounding errors may cause difficulties). As a consequence, if Ti

and Tj are wrongly ordered, this will not affect the following Tk, k > i, j.
However, by constructing the critical region of Barnard’s test the preceding
sequence of the points in the rejection region essentially determines all subse-
quent points. To illustrate this, assume that the correct ”Barnard ordering”
is (x1, y1), . . . , (xi, yi), (xi+1, yi+1), and

max
(pC ,pT )∈H0

P ((X, Y ) ∈ {(x1, y1), . . . , (xi, yi), (xi+1, yi+1)} | (pC , pT )) ≤ α.

Assume further, that instead of (xi, yi) the outcome (x′
i, y

′
i) is wrongly inserted

into the critical region. Then it may happen that the ”correct” outcomes
(xi, yi) and/or (xi+1, yi+1) will not be included into the critical region, because

max
(pC ,pT )∈H0

P ((X, Y ) ∈ {(x1, y1), ..., (x
′
i, y

′
i), (xi, yi)} | (pC , pT )) > α,

max
(pC ,pT )∈H0

P ((X, Y ) ∈ {(x1, y1), ..., (x
′
i, y

′
i), (xi+1, yi+1)} | (pC , pT )) > α, or

max
(pC ,pT )∈H0

P ((X, Y ) ∈ {(x1, y1), ..., (x
′
i, y

′
i), (xi, yi), (xi+1, yi+1)} | (pC , pT )) > α.

Remark 3 We mention that there is some divergent terminology in the liter-
ature. In various papers and software packages ”Barnard’s test” does not refer
to the test introduced by Barnard (1947). E.g., the software product StatX-
act refers to ”Barnard’s test”, but actually uses the unconditional exact test
from Chan (see below), in case of the testing problem (1). Testimate advertises
the ”Barnard type exact test for non-inferiority using the Röhmel-Mansmann
procedure”, but this is in fact equal to the πlocal-test (see below).

2.3 The πlocal-test

Röhmel and Mansmann (1999b) have suggested an additional unconditional
exact test for the problem (1). Here probabilities πmin (x, y) are calculated
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for all possible outcomes (x, y) (0 ≤ x ≤ nC , 0 ≤ y ≤ nT ). These are the
H0-probabilities for outcomes (i, j) with i ≥ x and j ≤ y:

πmin (x, y) = max
H0

∑

i≥x

(
nC

i

)
pC

i (1 − pC)nC−i
∑

j≤y

(
nT

j

)
pT

j (1 − pT )nT −j .

The set of all possible outcomes (x, y) is sorted in ascending order by πmin(x, y),

which is denoted as S =
(
S1, . . . , S(nC+1)·(nT +1)

)
. Now define

α∗
k = α∗

(
k⋃

l=1

Sl

)
, (5)

which denotes the maximal actual level of the rejection region
⋃k

l=1 Sl of the
”k” smallest values in S with respect to the ordering induced by πmin. Finally,
the critical region CR is defined by

arg max
k

{α∗
k ≤ α} . (6)

2.4 Chan’s test

In an approach recommended by Chan (1998), the test statistic of Farrington
and Manning (1990) is used to construct an unconditional exact test. Far-
rington and Manning introduced an asymptotic method based on the normal
approximation of the observed difference of the failure rates, where the vari-
ance is estimated with help of an ML-estimator restricted to pT = pC + ∆0.
An explicit solution of the maximum likelihood equation can be given as

p̃T =2

√
r2 − 3s

3
cos




1

3
arccos


−

2r3

27
− rs

3
+ t

2
(√

r2−3s
3

)3


+

4

3
π


− r

3
, (7)

p̃C = p̃T − ∆0,

where

r =−nT (1 + p̂T + 2∆0) + nC (1 + p̂C + ∆0)

nT + nC

,

s=
nT (p̂T + 2∆0p̂T + ∆0 + ∆2

0) + nC (p̂C + ∆0)

nT + nC

,

t=
−nT p̂T ∆0 (1 + ∆0)

nT + nC

.
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The critical region of Chan’s test is constructed in the same way as in the
πlocal approach. However, Farrington and Manning’s test statistic,

y
nT

− x
nC

− ∆0
√

p̃T (1 − p̃T )
nT

p̃C(1 − p̃C)
nC

,

is used as the ordering criterion, instead of πmin(x, y).

Röhmel and Mansmann (1999a) (letter to the editor) have remarked that
searching for the maximum at the boundary of H0 might be not correct here,
because Chan did not prove that his ordering criterion fulfills the condition
”C”- in contrast to Barnard’s test and the πlocal-test. However, Chan (author’s
reply) has given a heuristic argument that the condition is satisfied, which was
finally proved by Mart́ın Andrés and Herranz Tejedor (2003).

2.5 The exact likelihood ratio test

The likelihood ratio statistic for the testing problem (1) is given by

λ =λ(x, y, ∆0) =

sup
H0

Px,y(pC , pT )

sup
H0∪H1

Px,y(pC , pT )
(8)

=






1 if p̂T ≥ p̂C + ∆0

p̃C
x (1 − p̃C)nC−x p̃T

y (1 − p̃T )nT−y

p̂C
x (1 − p̂C)nC−x p̂T

y (1 − p̂T )nT−y if p̂T < p̂C + ∆0

, (9)

with p̃C and p̃T as in (7).

It can be shown that the asymptotic distribution of −2 ln (λ) is a 1
2
+ 1

2
χ2

1 -law
(work in preparation). However, the finite sample distribution of −2 ln (λ) for
sample sizes smaller than 100, say, differs significantly from the asymptotic
law and depends on the particular values of pC and pT , where pT − pC = ∆0.
Therefore, we extend an idea of Storer and Kim (1990) and suggest to con-
struct a test by estimating the values of pC and pT restricted to δ = ∆0 and
using these values as estimators for the parameters pC and pT of the exact dis-
tribution of λ. To this end for every possible pair of x and y the LR-statistic
λ and the probability of observing this outcome are computed. The probabili-
ties are calculated by inserting restricted ML-estimates (p̃C , p̃T ) for the failure
rates into P(x,y)(pC , pT ) (see equation (7)). With that, estimated p-values p∗
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are calculated for every outcome (x, y),

p∗ (x, y) =
∑

(a,b):λ(a,b,∆0)≤λ(x,y,∆0)

P(a,b) (p̃C , p̃T ) . (10)

In a second step these p-values are used as an ordering criterion. The critical
region for an unconditional exact version of the LR-statistic is constructed in
the same way as described for the πlocal-test. The estimated p-values p∗ (x, y)
are used to sort all possible outcomes in ascending order. Now consider (5),
where, again, Sj denotes the outcome with the ”j” smallest estimated p-value
based on (10). Finally, the points to be included into the critical region CR
are determined as in (6).

Hence, our method differs from the above mentioned tests by basing the de-
cision on which points to be included in CR on a cumulative likelihood ratio
criterion.

Remark 4 To our knowledge it is not possible to prove Barnard’s condition
”C” (mentioned in Section 2.1) for the exact LR-test. Therefore, the actual
level α∗ has to be determined by maximizing over the entire null space, in
principle. Nevertheless we found numerically that it is feasible to restrict the
calculation of the maximum to the boundary of the null space for all parameter
settings in Section 3. This was feasible, since we checked condition ”C” after
sorting the outcomes for every parameter setting without finding any violation.

We mention that the LR-statistics without estimating the unknown parame-
ters pC and pT in P (pC , pT ) leads to a rather conservative test and cannot be
recommended. Hence, the cumulative LR function in (10) has been used.

The idea to estimate the unknown nuisance parameters themselves in order
to improve the accuracy dates back to Storer and Kim (1990) for the classic
null hypothesis H0 : pC = pT . They calculate approximate p-values by using
a standardized Z statistic with the pooled variance estimate for the nuisance
parameter. This idea was carried on to shifted hypotheses like (1) by Kang
and Chen (2000), who suggested an approximate unconditional test, which
does not keep the nominal level exactly. Note that the exact likelihood ratio
test keeps its level exactly.

Remark 5 The exact LR-test as well as Chan’s test and the πlocal-test are
numerically stable, since no grid search is needed for sorting the outcomes.
This is in contrast to Barnard’s test (cf. Sect. 2.2). Note that for the afore
mentioned tests also a numerical maximization step is required in order to
compute α∗

i in (5). This is, however, numerically feasible.
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2.6 Computational time

Finally, we briefly comment on the computational time in order to compute
the critical region and a p-value, respectively. As an example, on a PC using
a Pentium IV processor we have found that Chan’s rejection region requires
about 10 seconds to be computed when n1 = n2 = 70, ∆0 = 0.15 and α = 0.05.
The πlocal-test requires about 30 seconds for the same setting, whereas the
exact LR-test takes about 50 seconds, which is due to the additional effort to
compute the estimated p-values accordingly. For all these tests a grid width
of 1/1000 was chosen to determine the maximum level in (5). Computation of
Barnard’s test is much more time consuming. It requires about 8 minutes for a
grid width of 1/1000. Increasing the grid width increases the computing time
linearly, of course. Hence, for a grid width of 1/2000 about 16 minutes are
required. To reduce the computational effort, Mart́ın Andrés and Silva Mato
(1994) have introduced a modification of Barnard’s test for ∆0 = 0, where
the restricted ML-estimators are used to approximate α∗ in (4). Note that
this modification will not solve the numerical problems of Barnard’s test, as
described in Sect. 2.2.

3 POWER INVESTIGATIONS - NUMERICAL STUDY

All tests under investigation aim at keeping the nominal level exactly. However,
we will see that they differ with respect to the actual level and power. To
investigate the exact levels (see (3)), we have calculated these as a function of
the nuisance parameter pC on the boundary of H0, i.e. when pT − pC = ∆0.
Generally, for the exact LR-test, Chan’s test and the πlocal-test we used a grid
width of 1/1000. In Figure 2 the actual level of all four tests is displayed for
two parameter constellations, nC = nT = 100, ∆0 = 0.1, and nC = nT = 50,
∆0 = 0.15. The Barnard test was computed using a grid width of 1/1000.

We find that the actual levels of Barnard’s test and the exact LR-test are
above the levels of Chan’s and the πlocal-test, uniformly over the entire null
hypothesis. In particular, when pC is close to zero or to 1 − ∆0, this becomes
a quite drastic difference. The differences between Barnard’s and the exact
LR-test are surprisingly small. Nevertheless, both tests outperform each other
in different regions of the parameter space. These figures are somewhat typ-
ical. We have computed a broad scenario of various other settings, including
unequal sample sizes and other values of ∆0:

• Boundary of hypothesis: We chose ∆0 ∈ {0.05, 0.1, 0.15, 0.2, 0.25}.
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Fig. 2. Exact level of all four tests as a function of pC for two different parameter
constellations

• Sample size: We chose balanced sample sizes nT =nC ∈{20, 25, 30, 35, 40, 50,
60, 80, 100} and unbalanced settings (nT , nC) ∈ {(30, 20), (40, 20), (50, 25),
(60, 30), (60, 40), (80, 40), (80, 50), (80, 60), (100, 50), (100, 60), (100, 80)}.

• Nuisance parameter: We chose pC ∈ {0.1, 0.2, 0.3, 0.5, 0.8, 0.9}.

This gives 600 different parameter configurations. Configurations were omit-
ted in case of non-feasible settings (i.e. pC ≥ 1 − ∆0). We have chosen the
parameter pT ≤ pC for every configuration such that the resulting power is
larger than 0.8, at least for one of the tests compared. Of course, for small
sample sizes and small ∆0 there exist parameter constellations, for which no
test achieves a power larger than 0.8. On the other hand, for large sample
sizes and large ∆0 some parameter constellations result in a power larger than
0.9 for all tests. These cases were omitted, too. Finally, 407 parameter con-
stellations were extracted. The resulting values of the power function were
calculated exactly for all tests under investigation by computing the exact
binomial probabilities (2) for all (x, y) ∈ CR.

Observe finally, that for Barnard’s test, for the computation of the critical re-
gion we have determined that grid, where the test with the best performance
results (grid width 1/1000). For other settings we found quite different grid
widthes. This is a very cumbersome proceeding and cannot be done automat-
ically.

It is found that in general the power differences between the exact LR-test
and its competitors are small. Nevertheless, the power of the exact LR-test
tends to be larger. In order to illustrate this, the differences of the exact
LR-test’s power and the power of its competitors are displayed in Figure 3.
From this figure we can draw several conclusions. First, the exact LR-test
outperforms the πlocal-test, and this difference can be quite substantial. For a
fixed type II error we found numerically that this leads to differences in the
required sample size up to 25%. Barnard’s test and the LR-test outperform
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Fig. 3. Boxplot (whiskers are the 5% and 95% quantiles) for the power differences
(times 100) between the exact LR test and its competitors.

each other for different parameter constellations, whereas the LR-test slightly
outperforms Chan’s test in some cases, but in most cases no differences were
found.

The most extreme power differences and the corresponding parameter con-
stellations are displayed in Table 1. More precisely, those values are displayed
where the power of the exact LR-test differs by more than 2% from Barnard’s
test, more than 3% from Chan’s test, or by more than 5% from the πlocal-test.

4 SAMPLE SIZE DETERMINATION

In this section we briefly discuss various issues encountered with the sample
size determination when planning a non-inferiority trial in order to control the
type II error. One might think at a first glance that this will be in general
achieved for equal sample sizes, nT = nC . This is, however, not true, and
we will provide in a forthcoming paper tables for optimal allocations of the
sample size, when the total number of observations n = nC + nT is kept fixed.

In order to illustrate this effect, in Figure 4 for each of the tests the allocations
of sample sizes where 40 ≤ nT , nC ≤ 80 are displayed, specifying ∆0 = 0.15,
α = 0.05 and pC = 0.1. The black dots indicate an allocation of sample sizes
for which the test results in a power larger than 80%. For the white dots
the power is less than 80%. From this figure the following conclusions can be
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Table 1
Exact power (times 100) for different values of the parameters, where α = 0.05.

nT nC ∆0 pC pT Barnard Chan πlocal exact LR

20 20 0.05 0.01 0.2 86.2 86.2 75 86.2

20 20 0.15 0.02 0.1 85.1 85.1 77 85.1

25 25 0.05 0.02 0.2 85.4 85.4 75.4 85.4

25 25 0.1 0.02 0.1 80.3 80.3 72.1 80.3

25 25 0.2 0.07 0.1 81.8 81.7 74 81.8

30 20 0.1 0.01 0.1 88.7 88.7 79.7 88.7

30 20 0.15 0.08 0.2 84.9 82.3 82.1 82.3

30 20 0.15 0.14 0.3 84 81.6 81.6 81.6

30 20 0.2 0.08 0.1 82.1 82.1 72.9 84.5

30 20 0.2 0.19 0.3 80.3 82.4 82.5 79.4

30 20 0.2 0.08 0.1 82.1 82.1 72.9 84.5

35 35 0.05 0.01 0.1 80.2 80.2 74.6 81.4

35 35 0.15 0.07 0.1 77.9 77 71.3 81.1

40 40 0.05 0.01 0.1 89 89 79.2 89

50 25 0.15 0.08 0.1 80.4 80.4 74.9 80.4

50 50 0.1 0.06 0.1 80.2 77 75.8 80.2

50 50 0.15 0.09 0.1 82.5 80 76.9 82.5

60 30 0.05 0.01 0.1 91.2 86.5 86.1 88.4

60 30 0.05 0.06 0.2 85.2 84.3 82.6 82.6

60 30 0.05 0.59 0.8 80 76.8 80.2 80.4

60 30 0.05 0.73 0.9 80.3 75.2 77.5 80.3

60 60 0.1 0.06 0.1 85.8 82.7 81.8 85.8

60 60 0.2 0.46 0.5 84 81.9 81.9 81.9

80 60 0.05 0.04 0.1 82.1 81.6 78.9 79.7

100 60 0.05 0.66 0.8 83.2 80 82.7 83.2

100 60 0.05 0.8 0.9 80.7 77.3 77.6 81.3

drawn.

(1) For all tests, the choice of equal sample sizes (displayed on the diagonal
nC = nT ) is not optimal in the sense that the total sample size can be

14



40

50

60

70

80

40 50 60 70 80

Chan

40

50

60

70

80

40 50 60 70 80

exact LR

40

50

60

70

80

40 50 60 70 80

plocal

40

50

60

70

80

40 50 60 70 80

Barnard

nC

nT

nC

nC nC

nT

nT nT

Fig. 4. Visualization of sample sizes (nT , nC), for which the power is larger (black
dots) or less (white dots) than 0.8, specifying ∆0 = 0.15, α = 0.05 and pC = 0.1

reduced for a different allocation.
In fact, Figure 4 shows that the total sample size n can be reduced

by overweighting the treatment group (i.e. nT /nC > 1). This was found
for various other values of pC . Except for the πlocal-test 56 patients per
group are needed for balanced allocation in order to achieve a power of
80%. For the πlocal-test 62 patients are needed, respectively. Minimizing
the total number of observations where the power of 80% is kept fixed
gives in this particular case for the Barnard, the exact LR and Chan’s
test the same result, (nT , nC) = (60, 40). Hence, the total sample size
can be reduced by 12, i.e. by about 10% of the total sample size using
a balanced design. For the πlocal-test we even obtain a reduction by an
amount of 18 observations.

(2) As described in Skipka and Trampisch (2001) and Finner and Strass-
burger (2001), exact tests do not have a monotone increasing power func-
tion, in general. In particular, Figure 4 shows that for all tests there are
pairs of (nT , nC), for which the power is larger than for (nT + 1, nC) or
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Fig. 5. Exact power of all four tests as a function of the sample size (balanced)

(nT , nC +1). This is found for all tests under investigation. Figure 5 shows
the exact power as a function of nT = nC .

Due to the lack of monotonicity of the power function of these tests it is com-
putationally extremely intensive to determine the optimal allocation of sample
size. A way out of this problem might consist in asymptotic considerations.
However, we will not pursue this topic here and leave it as a challenging task
for further research.

5 EXAMPLE

In this section we re-analyze the randomized controlled trial from Chouela
et al. (1999) for the treatment of human scabies (cf. Example 1). We draw
from Chouela et al. (1999) that 29 days after the treatments were adminis-
tered, 18 of 19 patients treated with ivermectin (5.3% failure rate) and 23 of
24 patients who received lindane (4.2% failure rate) were healed from their
scabies. Chouela et al. (1999) used Blackwelder’s test (Blackwelder, 1982) with
∆0 = 0.2, which results in a p-value of 0.002. The nominal level was α = 0.05.

In Figure 6 the exact levels of the tests of Blackwelder, Barnard, and Chan, and
of the exact likelihood ratio test are displayed for the situation in Chouela et al.
(1999). Figure 6 shows that the actual level of Blackwelder’s test is heavily
exceeded for small and large values of pC (up to twice of the nominal level),
hence this test is not appropriate here. For example, if we equate the observed
failure rate 0.042 with the exact one, the actual level of Blackwelder’s test is
to be expected as 0.09. Barnard’s test has a maximum actual level of 0.05, the
exact LR-test has a maximum actual level of 0.049. Finally, the p-value for the
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Fig. 6. Exact level as a function of pC for the parameter constellation of the example
(sec. 5)

data in Chouela et al. (1999) of Barnard’s test is 0.0092, which is slightly larger
than the p-value of the exact LR-test (p-value = 0.0087). The p-values for the
πlocal-test (0.0152) and Chan’s test (0.0172) are somewhat larger. In summary
all, of these tests show a significant therapeutic equivalence of ivermectin and
lindane.

Remark 6 Therapeutic equivalence would had been demonstrated too for ∆0 =
0.15, which gives the following p-values: Barnard 0.0305, exact LR 0.0309,
Chan 0.04, and πlocal 0.0434. Even if the equivalence margin is chosen smaller,
∆0 = 0.13, say, the exact LR-test and Barnard’s test give a significant (α =
0.05) result (p-value = 0.0493, respectively). However, Chan’s test (p-value
= 0.0544) and the πlocal-test (p-value = 0.0677) do not claim equivalence for
∆0 = 0.13.

6 CONCLUSION

In this paper we have compared four exact tests, Barnard’s test, Chan’s test,
πlocal-test, and an exact version of the likelihood ratio test, which is similar
in spirit to the approximate unconditional test of Kang and Chen (2000) and
relies on an idea by Storer and Kim (1990). We found that the exact LR-
test and Barnard’s test are comparable with respect to power, and that the
exact LR-test slightly outperforms Chan’s test. Barnard’s test suffers from
the fact that its computation depends sensitively on the chosen grid width of
the probabilities pC in order to compute the actual level. Hence, this test has
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to be used with great caution and cannot be applied fully automatically in
practice. In contrast, the exact LR-test is computationally much more feasible
and stable.

Overall, Chan’s test seems to be a good compromise between a simple and
efficient procedure, whereas the test by Röhmel and Mansmann is inferior to
all competitors with respect to power. An advantage of this test as well as
of the LR-test, however, consists in its generality, because it can easily be
transferred to other measures of non-inferiority, such as the odds ratio.

The tests proposed by Chan and Röhmel & Mansmann are simpler and faster
to compute than the LR-test. The ratio of computation time is approximately
1:3:5 (Chan : πlocal : exact LR).

In contrast to asymptotic tests, the exact computation of required sample size
is very time consuming due to the non-monotonicity of the power of all tests.
This will be investigated in detail elsewhere.

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft DFG grant
TR 471/1. We are indebted to A. Mart́ın Andrés, S. Lange, J. Röhmel and
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