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MOROZOV’S PRINCIPLE FOR THE AUGMENTED LAGRANGIAN
METHOD APPLIED TO LINEAR INVERSE PROBLEMS

KLAUS FRICK† , DIRK A. LORENZ‡ , AND ELENA RESMERITA§

Abstract. The Augmented Lagrangian Method as an approach for regularizing inverse problems
received much attention recently, e.g. under the name Bregman iteration in imaging. This work shows
convergence (rates) for this method when Morozov’s discrepancy principle is chosen as a stopping
rule. Moreover, error estimates for the involved sequence of subgradients are pointed out.

The paper studies implications of these results for particular examples motivated by applications
in imaging. These include the total variation regularization as well as `q penalties with q ∈ [1, 2].
It is shown that Morozov’s principle implies convergence (rates) for the iterates with respect to the
metric of strict convergence and the `q-norm, respectively.
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1. Introduction. A classical problem in optimization is the solution of

J(u)→ min subject to Ku = g , (1.1)

where J : H1 → R ∪ {∞} is a convex functional and K : H1 → H2 is a linear and
bounded operator between Hilbert spaces H1 and H2. Solutions of problem (1.1) are
called J-minimizing solutions of the equation Ku = g.

Of particular interest are ill-posed equations, that is, when the solution of Ku = g
does not depend continuously on the data g (as it is e.g. the case if K has non-closed
range). This becomes distinctly delicate if the data g is not available precisely but
only noise-affected observations gδ for which we assume that we have the additional
information

∥∥gδ − g∥∥ ≤ δ.
It is a natural question to ask: “When does a solution algorithm for the optimiza-

tion problem (1.1) applied to perturbed data gδ instead of g, constitute a regularization
method for the ill-posed equation Ku = g?” In [12] an affirmative answer was given
for the Augmented Lagrangian Method (ALM), which in the context of regularization
is also known as the Bregman iteration (see [20]). The ALM was introduced simulta-
neously by Hestenes [17] and Powell [21] as an iterative solution method for (1.1) and
reads as follows:

Algorithm 1 (the ALM). Let pδ0 ∈ H2 and choose a sequence {τn}n∈N of positive
parameters. For n = 1, 2, . . . compute

uδn ∈ argmin
u∈H1

(τn
2

∥∥Ku− gδ∥∥2
+ J(u)−

〈
pδn−1,Ku− gδ

〉)
and (1.2a)

pδn = pδn−1 + τn(gδ −Kuδn). (1.2b)

The name Augmented Lagrangian stems from the fact that the functional

L(u, p) = J(u)−
〈
p,Ku− gδ

〉
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is the Lagrangian for (1.1) and the additional term τn
2

∥∥Ku− gδ∥∥2
is an augmentation

of L that fosters the fulfillment of the constraint. Hence, in the limit, the augmentation
term is supposed to vanish and the variables pδn shall tend to a Lagrange multiplier
for the problem (1.1).

It is well known that the Karush-Kuhn-Tucker conditions are necessary and suf-
ficient regularity conditions for the solutions of (1.1), which guarantee existence of a
saddle point of L. Thus, if there exists u† ∈ H1 and p† ∈ H2 such that

Ku† = g and K∗p† ∈ ∂J(u†)

then, L(u†, p) ≤ L(u†, p†) ≤ L(u, p†). It was pointed out in [4] that this coincides
with the standard source conditions in regularization theory.

As in [12], we will consider the ALM as a regularization method, that is, for
stably computing approximations of solutions of (1.1) from perturbed data gδ. With
Rn : H2 → H1 and R∗n : H2 → H2 we denote the operators defined by

Rn(gδ) := uδn and R∗n(gδ) = pδn, respectively.

The paper [12] came up with a characterization of parameter choice rules Γ : (0,∞)×
H2 → N such that for each solution u† of (1.1)

RΓ(δk,gk)(gk)→ u† as ‖g − gk‖ =: δk → 0

in an appropriate sense. Under a standard source condition, it showed also conver-
gence rates for a class of stopping rules Γ(δ, yδ) for which Γ(δ, yδ)→∞, as δ → 0. We
pursue further that study and mainly show that Morozov’s discrepancy principle does
belong to the above mentioned class. Moreover, we investigate the degenerate case of
the discrepancy principle, that is when {Γ(δ, gδ)} has finite accumulation points. Note
that the complex challenge of choosing a right regularization parameter when dealing
with stabilization methods for improperly posed problems is frequently approached
via Morozov’s rule due to its natural heuristic motivation. Namely, this rule selects a
parameter by comparing the residual

∥∥Kuδn − gδ∥∥ with the presumably known noise
level δ - see, e.g. [11, Ch. 4].

In [12], the implications of general convergence analysis for the ALM were em-
phasized for the case of quadratic functionals J (cf. Example 1). In particular, the
authors pointed out that in this case the ALM is equivalent to the Tikhonov-Morozov
method (cf. [15]). Here, we will study in more detail two choices for J that are
especially appealing for inverse problems occurring in imaging :

i) Total-variation regularization (cf. [4, 5, 24]). Let H1 = L2(Ω) for a bounded
domain Ω ⊂ R2 and consider the function

J(u) =

{
|Du| (Ω) if u ∈ BV(Ω)

+∞ else.
(1.3)

Here, |Du| (Ω) denotes the total-variation of the (measure-valued) distributional
derivative of u.

ii) Sparse regularization (cf. [9, 13, 18]). Let H1 = `2 and

J(u) =

{∑
k∈N |uk|

q
if u ∈ `q

+∞ otherwise
(1.4)

with 1 ≤ q ≤ 2.
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This work is organized as follows. Section 2 presents the main notions and notation,
while Section 3 recalls several results in [12] and proposes some extensions of them.
For instance, upper bounds for the Bregman distance between the subgradients of
the objective functional J in (1.1) corresponding to the iterates and the solution,
respectively, are obtained. Section 4 shows that the ALM together with Morozov’s
discrepancy principle lead to stable approximations for the operator equation both in
the nondegenerate and degenerate cases. The results are applied for the total variation
setting in Section 5, by underlying strict convergence (rates) for the primal variables.
Section 6 summarizes the knowledge on the ALM for the sparsity regularization set-
ting, i.e. convergence rates for the primal variables with respect to the `q-norm and
for the subgradients of these variables with respect to Bregman distances (1 ≤ q ≤ 2)
and dual norms (1 < q < 2).

2. Basic Definitions and some Notation.

2.1. Basic Assumptions. Throughout this paper we will assume that H1 and
H2 are separable Hilbert spaces with inner products 〈·, ·〉 and norms ‖·‖ (not further
specified since the meaning is always clear from the context). We will frequently make
use of Young’s inequality, which states that for all u, v ∈ H1 and γ > 0 one has that

|〈u, v〉| ≤ 1

2γ
‖u‖2 +

γ

2
‖v‖2 .

We assume further that K : H1 → H2 is a linear and bounded operator and that
J : H1 → R = R ∪ {∞} is convex, lower semi-continuous (l.s.c.) and proper, that is,
the domain

D(J) = {u ∈ H1 : J(u) <∞}

is non-empty. In order to guarantee that J-minimizing solutions of Ku = g exist and
that Algorithm 1 is well defined, we need to impose additional restrictions (cf. [12,
Lem. 3.1]):

Assumption 1. The sub-level sets of the functional

u 7→ ‖Ku‖2 + J(u)

are sequentially pre-compact with respect to the weak topology on H1. That is, for
every c ∈ R, every sequence {un}n∈N contained in the sub-level set

Λ(c) =
{
u ∈ H1 : ‖Ku‖2 + J(u) ≤ c

}
has a weakly convergent subsequence in H1.

Moreover, we will assume that {τn}n∈N in Algorithm 1 is a fixed sequence of posi-
tive regularization parameters which can be considered as step-sizes for the iterations.
We will make use of the quantity

tn :=

n∑
k=1

τk.

The case of constant parameter τn = τ is known as stationary augmented Lagrangian
method and leads to tn = nτ . We will only require that

lim
n→∞

tn = +∞ and sup
k∈N

τk =: τ̄ <∞, (2.1)
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i.e., the τn’s do not decay too quickly and stay bounded.
Finally, we will assume that g ∈ H2 is an attainable element, that is, there exists

a u ∈ D(J) such that Ku = g. By gδ ∈ H2 we always denote a perturbed version of
g satisfying

∥∥gδ − g∥∥ ≤ δ. For k ∈ N, we will abbreviate gk := gδk with δk → 0 as
k →∞.

2.2. Convex Analysis. In the course of this paper we will frequently use some
tools from convex analysis. A standard reference in this respect is [10].

The subdifferential (or generalized derivative) ∂J(u) of J at u is the set of all
elements ξ ∈ H1 satisfying

J(v)− J(u)− 〈ξ, v − u〉 ≥ 0.

The domain D(∂J) of the subgradient consists of all u ∈ H1 for which ∂J(u) 6= ∅.
Finally, we define the graph of ∂J as

Gr(∂J) := {(u, ξ) ∈ H1 ×H1 : ξ ∈ ∂J(u)} .

According to [10, Chap. I Cor. 5.1], the set Gr(∂J) is sequentially closed with respect
to the weak-strong topology on H1 × H1. That is, if the sequence {(un, vn)}n∈N of
elements in Gr(∂J) satisfies that un converges weakly to u and vn converges strongly
to v, then (u, v) ∈ Gr(∂J).

The functional J∗ : H1 → R denotes the Legendre-Fenchel transform (or the dual
functional) of J , which is defined by

J∗(v) := sup
u∈H1

(〈v, u〉 − J(u)).

Since J∗ is the pointwise supremum of affine functions it is convex, l.s.c. and
proper [10, Chap. I, Prop. 3.1]. Moreover, one has [10, Chap. I, Cor. 5.2.]

v ∈ ∂J(u)⇔ u ∈ ∂J∗(v).

Furthermore, it follows from the definition of the subgradient that

u ∈ ∂J∗(K∗p)⇒ Ku ∈ ∂(J∗ ◦K∗)(p).

For u ∈ D(∂J) and v ∈ D(J), the Bregman distance of J between u and v with
respect to ξ ∈ ∂J(u) is defined by

Dξ
J(v, u) = J(v)− J(u)− 〈ξ, v − u〉 .

We will skip the superscript ξ, if the choice of the subgradient is obvious. If addition-
ally v ∈ D(∂J) and η ∈ ∂J(v), we further define the symmetric Bregman distance,
by

Dsym
J (v, u) = DJ(v, u) +DJ(u, v) = 〈η − ξ, v − u〉 .

Note that the convexity of J implies that DJ and Dsym
J are always non-negative.

Example 1. Let H be a Hilbert space and L : D(L) ⊂ H1 → H be a linear and
closed operator with dense domain D(L). Then, the quadratic functional

J(u) =

{
1
2 ‖Lu‖

2
if u ∈ D(L)

+∞ else.
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is convex, lower semi-continuous and proper. Moreover, for u ∈ D(∂J) = D(L∗L)
the subgradient ∂J(u) coincides with the set {L∗Lu} (cf. [12, Lem. 2.4]). This finally
implies that

Dsym
J (v, u) = ‖L(v − u)‖2 .

2.3. Source Condition. It is well known, that regularization methods for the
reconstruction of a solution u† of (1.1) in general converge arbitrarily slow, unless
further regularity is imposed on u† [11]. In the general setup presented in this paper,
this is usually done in terms of the standard source condition [4], that is, there exists
an element p† ∈ H2 (the source element) such that

K∗p† ∈ ∂J(u†). (2.2)

3. Summary and extensions of previous results. In this section we sum-
marize the results on regularization by means of the ALM as presented in [12]. We
further derive an extended error estimate that allows for convergence rates of the
sequence K∗pδn in the Bregman-distance associated with the Fenchel conjugate J∗.

The dual characterization of the ALM by the proximal point method plays a
central role in the convergence analysis in [12]. This observation dates back to the
work of Rockafellar in [23]. In the current context, defining G : H2 ×H2 → R by

G(p, g) = J∗(K∗p)− 〈p, g〉 , (3.1)

it holds (cf. [12, Prop. 4.2])

pδn = argmin
p∈H2

(
1

2

∥∥p− pδn−1

∥∥2
+ τnG(p; gδ)

)
. (3.2)

The basis of the results in [12] is the following estimate on the iterates in (3.2) which
was established by Güler in [16, Lem. 2.2]:

Proposition 3.1. For all n ∈ N and all p ∈ H2 one has

G(pδn, g
δ)−G(p, gδ) ≤

∥∥p− pδ0∥∥2

2tn
−
∥∥p− pδn∥∥2

2tn
−
tn
∥∥pδn − pδn−1

∥∥2

2τ2
n

. (3.3)

This result leads to the general convergence result [12, Thm. 5.3]:
Theorem 3.2. Assume that the stopping rule Γ : (0,∞)×H2 → N satisfies

lim
k→∞

δ2
ktΓ(δk,gk) = 0 and lim

k→∞
tΓ(δk,gk) = +∞. (3.4)

Then, the sequence
{
RΓ(δk,gk)(gk)

}
k∈N is bounded and each weak cluster point is

a J-minimizing solution of Ku = g. Additionally, with ξk = K∗R∗Γ(δk,gk)(gk) ∈
∂J(RΓ(δk,gk)(gk)) it holds

lim
k→∞

J(RΓ(δk,gk)(gk)) = J(u†) and lim
k→∞

Dξk
J (u†,RΓ(δk,gk)(gk)) = 0, (3.5)

and the residuum satisfies the rate∥∥KRΓ(δk,gk)(gk)− g
∥∥ = O(t

−1/2
Γ(δk,gk)). (3.6)
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As indicated in Section 2.3, the speed of convergence in (3.5) can be arbitrarily slow,
unless one imposes regularity restrictions on the true solutions of Ku = g. We recall
below Theorem 6.3 from [12] in this respect.

Theorem 3.3. Assume that the stopping rule Γ : (0,∞) × H2 → N satisfies
limk→∞ tΓ(δk,gk) = +∞. Then the following two conditions are equivalent:

(i) There exists a J-minimizing solution u† of Ku = g that satisfies the source
condition (2.2) with source element p† ∈ H2 and there exists C ∈ R such that

δktΓ(δk,gk) ≤ C. (3.7)

(ii) For k →∞, one has∥∥KRΓ(δk,gk)(gk)− g
∥∥ = O(t−1

Γ(δk,gk)) and
∥∥∥R∗Γ(δk,gk)(gk)

∥∥∥ = O(1). (3.8)

Additionally, if (i) or (ii) holds, then

DK∗p†

J (RΓ(δk,gk)(gk), u†) = O(t−1
Γ(δk,gk))

and each cluster point of
{
R∗Γ(δk,gk)(gk)

}
is a minimizer of G(·, g).

Theorem 3.4 and Corollary 3.6 below provide quantitative estimates for the primal
and dual iterates of the ALM in case that the source condition (2.2) holds. These
results extend [12, Thm. 6.2].

Theorem 3.4. Assume that u† is a J-minimizing solution of Ku = g which
satisfies the source condition (2.2) with source element p† ∈ H2. Then, for any γ > 0

Du†

J∗(K
∗pδn,K

∗p†) +
tn
4

∥∥Kuδn − g∥∥2
+
γ − 1

2γtn

∥∥pδn − p†∥∥2 ≤
∥∥p† − pδ0∥∥2

2tn
+

(1 + γ)tn
2

δ2.

(3.9)

Proof. Since u† satisfies the source condition, we have that K∗p† ∈ ∂J(u†) which
is equivalent to u† ∈ ∂J∗(K∗p†). This leads to

G(pδn, g
δ)−G(p†, gδ) = G(pδn, g)−G(p†, g) +

〈
pδn − p†, g − gk

〉
= J∗(K∗pδn)− J∗(K∗p†)−

〈
pδn − p†, g

〉
+
〈
pδn − p†, g − gδ

〉
= J∗(K∗pδn)− J∗(K∗p†)−

〈
K∗pδn −K∗p†, u†

〉
+
〈
pδn − p†, g − gδ

〉
= Du†

J∗(K
∗pδn,K

∗p†) +
〈
pδn − p†, g − gδ

〉
.

Therefore, the last inequality together with Proposition 3.1 and Young’s inequality
gives for an arbitrary γ > 0

Du†

J∗(K
∗pδn,K

∗p†) = G(pδn, g
δ)−G(p†, gδ) +

〈
pδn − p†, gδ − g

〉
≤
∥∥p† − pδ0∥∥2

2tn
−
(
γ − 1

γ

) ∥∥p† − pδn∥∥2

2tn
−
tn
∥∥pδn − pδn−1

∥∥2

2τ2
n

+
γ

2
δ2tn (3.10)

Using (1.2b) together with the inequality
∥∥Kuδn − g∥∥2 ≤ 2

∥∥Kuδn − gδ∥∥2
+ 2δ2 and

the previous estimate show the assertion.
Lemma 3.5. Let a, b > 0. Then,

inf
γ>1

(
γ

γ − 1
a+

γ2

γ − 1
b

)
=
(√

b+
√
a+ b

)2

.
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Proof. With elementary calculus it is straightforward to deduce that the function
f(γ) = (γ − 1)−1(γa+ γ2b) attains its minimum among all γ > 1 at

γ∗ = 1 +

√
1 +

a

b
.

Then, γ∗/(γ∗ − 1) = (
√
b+
√
a+ b)/

√
a+ b and hence

f(γ∗) =
γ∗

γ∗ − 1
(a+ γ∗b) =

γ∗
γ∗ − 1

(
a+ b+

√
b
√
a+ b

)
=
(√

b+
√
a+ b

)2

.

Corollary 3.6. Let the assumptions of Theorem 3.4 hold.
i) If 0 < α < 1/2, then

αDsym
J (uδn, u

†) +Du†

J∗(K
∗pδn,K

∗p†) ≤ 1− α
1− 2α

δ2tn +

∥∥p† − pδ0∥∥2

2tn
.

ii) It holds

Dsym
J (uδn, u

†) ≤
∥∥Kuδn − g∥∥(δtn +

√
δ2t2n +

∥∥pδ0 − p†∥∥2
)
.

Proof. From Young’s inequality it follows that

αDsym
J (uδn, u

†) = α
〈
pδn − p†,Kuδn − g

〉
≤ α

tn

∥∥pδn − p†∥∥2
+
tn
4

∥∥Kuδn − g∥∥2
.

Hence the first inequality follows from Theorem 3.4 with γ = 1/(1− 2α), due to the
fact that α < 1/2.

In order to prove ii) we observe from (3.10) that for all γ > 1∥∥pδn − p†∥∥2 ≤ γ

γ − 1

∥∥pδ0 − p†∥∥2
+

γ2

γ − 1
δ2t2n.

Hence, Lemma 3.5 with a =
∥∥pδ0 − p†∥∥2

and b = δ2t2n leads to

∥∥pδn − p†∥∥2 ≤
(
δtn +

√
δ2t2n +

∥∥pδ0 − p†∥∥2
)2

.

Finally, the assertion follows from

Dsym
J (uδn, u

†) =
〈
pδn − p†,K(uδn − u†)

〉
≤
∥∥Kuδn − g∥∥∥∥pδn − p†∥∥ .

Remark 3.7.
i) Obviously, the best possible rates with respect to the estimates in Theorem 3.3

and Corollary 3.6 i) are obtained when tΓ(δ,gδ) ∼ δ−1. However, if one only has

δtΓ(δ,gδ) ≤ C,

for some C > 0, then Corollary 3.6 ii) shows that the symmetric Bregman distance
behaves at least as well as the residual:

Dsym
J (uδn, u

†) = O
(∥∥Kuδn − g∥∥) .
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ii) Since K∗pδn ∈ ∂J(uδn) and K∗p† ∈ ∂J(u†) is equivalent to uδn ∈ ∂J∗(K∗pδn) and
u† ∈ ∂J∗(p†) respectively, it follows that

Dsym
J∗ (K∗pδn,K

∗p†) = Du†

J∗(K
∗pk,K

∗p†) +Duk
J∗(K

∗p†,K∗pk)

=
〈
uk − u†,K∗pk −K∗p†

〉
= Dsym

J (uδn, u
†).

Hence, all estimates for the primal variables
{
uδn
}
n∈N automatically hold also for{

K∗pδn
}
n∈N.

4. Morozov’s discrepancy principle. In this section we analyze the discrep-
ancy principle as an a posteriori stopping rule. In order to apply the convergence
(rate) results in Theorems 3.2, 3.3, and 3.4, a given stopping rule Γ : (0,∞)×H2 → N
has to satisfy (3.4) and (3.7), respectively. We verify these estimates for the particu-
lar situation where the stopping index is chosen according to Morozov’s discrepancy
principle: Choose ρ > 1 and define

Γ(δ, gδ) := min
{
n ∈ N :

∥∥Kuδn − gδ∥∥ < ρδ
}
. (4.1)

That is, we take the first iterate uδn for which the residual
∥∥Kuδn − gδ∥∥ falls below a

number which is a constant ρ times the noise level δ.
Proposition 4.1. The stopping rule (4.1) is well defined.
Proof. It follows from [12, Cor. 5.2] that there exists a constant C > 0 such that

1

2

∥∥Kuδn − gδ∥∥2 ≤ C

tn
+
δ2

2

This implies that for all ρ > 1 there exists an index n0 ∈ N for which
∥∥Kuδn0

− gδ
∥∥ <

ρδ. Thus, Γ(δ, gδ) <∞ is ensured.
Our analysis is structured as follows: In Section 4.1, we derive convergence rates

(based on Corollary 3.6 ii)) for the symmetric Bregman-distance between the primal
iterates

{
uδn
}
n∈N and J-minimizing solutions ofKu = g, under the hypothesis that the

source condition holds. Here, we make no other assumption on Γ(δ, gδ) except (4.1).
In Section 4.2 we then point out that the convergence results in Theorems 3.2 and 3.3
apply for the parameter choice rule (4.1) if additionally one requires limδ→0 Γ(δ, gδ) =
∞. We refer to this situation as the non-degenerate case. Finally in Section 4.3 we
treat the degenerate case, i.e., where {Γ(δ, gδ)}δ has finite accumulation points.

4.1. Convergence rates.. We will state a qualitative estimate for the Bregman
distance between the primal variables in the ALM and solutions of (1.1) if the source
condition is satisfied and if the Morozov stopping rule is applied. In particular, this
analysis sheds some light on the role of ρ in (4.1).

Lemma 4.2. Let u† be a J-minimizing solution of Ku = g that satisfies the
source condition with source element p† and assume that Γ is chosen according to the
stopping rule (4.1). Then,

δtΓ(δ,gδ) ≤
∥∥p† − pδ0∥∥√

ρ− 1
+ δτ̄ . (4.2)

In particular, (3.7) is satisfied.
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Proof. Let gδ ∈ H2 and set δ :=
∥∥g − gδ∥∥ as well as n∗ = Γ(δ, gδ) − 1. Then, it

follows from (4.1) that ∥∥Kuδn∗ − gδ∥∥ ≥ ρδ.
This together with (3.3) yields∥∥p− pδn∗∥∥2

2tn∗
+
ρδ2tn∗

2
≤ G(p, gδ)−G(pδn∗ , g

δ) +

∥∥p− pδ0∥∥2

2tn∗

for all p ∈ H2 (recall that
∥∥Kuδn − gδ∥∥ = τ−1

n

∥∥pδn − pδn−1

∥∥ by (1.2b)). From the defini-

tion of G it follows that G(p, gδ)−G(pδn∗ , g
δ) = G(p, g)−G(pδn∗ , g)+

〈
p− pδn∗ , g − g

δ
〉
.

After applying Young’s inequality to the inner product we get, for every p ∈ H2 and
η > 0,∥∥p− pδn∗∥∥2

2tn∗
+
ρδ2tn∗

2
≤ G(p, g)−G(pδn∗ , g) +

∥∥p− pδn∗∥∥2

2η
+
η
∥∥g − gδ∥∥2

2
+

∥∥p− pδ0∥∥2

2tn∗
.

Setting η = tn∗ hence gives

(ρ− 1)δ2tn∗
2

≤ G(p, g)−G(pδn∗ , g) +

∥∥p− pδ0∥∥2

2tn∗
. (4.3)

Since u† satisfies the source condition with source element p†, it follows from [12,
Prop. 6.1] that G(p†, g) ≤ G(p, g) for all p ∈ H2. Moreover, using p† instead of p in
(4.3) shows

(ρ− 1)δ2tn∗
2

≤
∥∥p† − pδ0∥∥2

2tn∗

or in other words

δtΓ(δ,gδ) ≤
∥∥p† − pδ0∥∥√

ρ− 1
+ δτ̄ .

With this preparation we are ready to state the announced estimate for the primal
variables.

Theorem 4.3. Let the assumptions of Lemma 4.2 be satisfied. Then,

Dsym
J (RΓ(δ,gδ)(g

δ), u†) ≤
(

1 +O(
√
δ)
) ρ(
√
ρ+ 1)

√
ρ− 1

∥∥pδ0 − p†∥∥ δ. (4.4)

Proof. From (4.2) it follows that

δ2t2Γ(δ,gδ) +
∥∥p† − pδ0∥∥2 ≤ 1

ρ− 1

∥∥p† − pδ0∥∥2
+

2δτ̄√
ρ− 1

∥∥p† − pδ0∥∥+ δ2τ̄2 +
∥∥p† − pδ0∥∥2

=
ρ

ρ− 1

∥∥p† − pδ0∥∥2
+ δ

(
2τ̄√
ρ− 1

∥∥p† − pδ0∥∥+ δτ̄2

)
=

ρ

ρ− 1

∥∥p† − pδ0∥∥2
+O(δ).
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This together with (4.2) and the fact that
√
a+ b ≤

√
a+
√
b for all a, b > 0 implies

δtΓ(δ,gδ) +
√
δ2t2

Γ(δ,gδ)
+
∥∥p† − pδ0∥∥2 ≤

√
ρ+ 1
√
ρ− 1

∥∥p† − pδ0∥∥+O(
√
δ).

Since by construction in (4.1)∥∥KRΓ(δ,gδ)(g
δ)− gδ

∥∥ < ρδ,

the assertion follows from Corollary 3.6 ii).
Remark 4.4. The function

f(ρ) :=
ρ(
√
ρ+ 1)

√
ρ− 1

which appears in the right hand side of (4.4) is minimal for ρ∗ ' 1.6404 with f(ρ∗) '
4.6753. Hence, after setting ρ = ρ∗ in the stopping rule (4.1), Theorem 4.3 implies
the following rough estimate

Dsym
J (RΓ(δ,gδ)(g

δ), u†) < 5
∥∥pδ0 − p†∥∥ δ

as δ → 0.

4.2. The nondegenerate case. In this section we will show that the assump-
tions of Theorems 3.2 and 3.3 are satisfied for the stopping rule (4.1), if additionally
one requires

lim
k→∞

Γ(δk, gk) =∞. (4.5)

From Lemma 4.2 it already follows that (3.7) holds which implies applicability of
Theorem 3.3. Moreover, we find

Lemma 4.5. Assume that Γ is chosen according to the stopping rule (4.1) and that
(4.5) holds. Then, Γ(δk, gk) satisfies (3.4), i.e. δ2

ktΓ(δk,gk) → 0 and tΓ(δk,gk) → +∞,
as k →∞.

Proof. Let ε > 0 and choose pε ∈ H2 such that G(pε, g) ≤ infq∈H2
G(q, g)+ε (note

that, due to [12, Lem. 4.1], the right hand side is finite whenever g is attainable).
This together with the estimate (4.3) in the proof of Theorem 4.3 shows

(ρ− 1)δ2tn∗
2

≤ ε+

∥∥pε − pδ0∥∥2

2tn∗
.

According to (2.1), the conditions τk ≤ τ̄ for all k ∈ N, and limk→∞ Γ(δk, gk) = ∞
imply limk→∞ tΓ(δk,gk) = +∞. Hence, substituting gk for gδ, δk for δ, and Γ(δk, gk)−1
for n∗ shows

lim sup
k→∞

δ2
ktΓ(δk,gk) ≤ lim sup

k→∞

(
2ε

ρ− 1
+

∥∥pε − pδ0∥∥2

2tΓ(δk,gk)−1
+ δ2

k τ̄

)
=

2ε

ρ− 1
.

Since ε is arbitrary, this proves the statement.
Combining the above results with Theorem 3.2 yields results on convergence for

Morozov’s discrepancy principle as a stopping rule:
Corollary 4.6. Assume that Γ is chosen as in (4.1) and that (4.5) holds.

Then, the sequence
{
RΓ(δk,gk)(gk)

}
k∈N is bounded and each weak cluster point u† is

a J-minimizing solution of Ku = g. Additionally, (3.5) and (3.6) hold.
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If additionally the source condition is satisfied, Lemma 4.5 and Theorem 3.3 imply
Corollary 4.7. Let the assumptions of Corollary 4.6 be satisfied and assume

that there exists a solution u† of (1.1) which verifies the source condition with source

element p†. Then, (3.8) holds and each weak cluster point of
{
R∗Γ(δk,gk)(gk)

}
k∈N

is a

minimizer of G(·, g).
Remark 4.8. From Schauder’s Theorem and from ran(K) = ker(K∗)⊥ it follows

that for each compact K with dense range, the adjoint operator K∗ is compact and
injective and hence

lim
k→∞

K∗R∗Γ(δk,gk)(gk) = K∗p̄

strongly, where p̄ is a minimizer of G(·, g). If the condition on the range of K is not
satisfied, then strong convergence hold on subsequences.

4.3. The degenerate case. We will finally discuss the case when the stopping
index chosen by Morozov’s discrepancy principle degenerates, that is, when there
exists an N ∈ N such that

lim sup
δ→0+

Γ(δ, gδ) = N. (4.6)

In this case, the assumption (4.5) is not satisfied and the results of Section 4.2 do not
apply in general.

The following result shows, however, that a degenerate stopping rule as in (4.6)
already implies that the true solutions of (1.1) satisfy the source condition (2.2) and
hence the results in Section 4.1 hold. Moreover, the convergence (on subsequences)
of the dual sequence also follows.

Theorem 4.9. Let Γ : (0,∞) × H2 → N be as in (4.1) and assume that (4.6)
holds. Then, the following assertions are true:

i) The set
{
pδN
}
δ>0

is bounded and each of its weak cluster points is a minimizer

of G(·, g).
ii) The set

{
uδN
}
δ>0

is bounded and each of its weak cluster points is a J-minimizing
solution of Ku = g.

iii) All J-minimizing solutions of Ku = g satisfy the source condition with a source
element p†.

iv) ∥∥KuδN − g∥∥ < (ρ+ 1)δ and Dsym
J (uδN , u

†) = O(δ). (4.7)

Proof. The definition of Γ(δ, gδ) in (4.1) and the monotonicity of the residual∥∥Kuδn − gδ∥∥ (cf. [12, Cor. 3.3]) imply∥∥KuδN − gδ∥∥ ≤ ρδ, for all δ > 0. (4.8)

In particular, this yields
∥∥KuδN − g∥∥ ≤ (ρ+ 1)δ.

It was shown in the proof of [12, Thm 5.3] (by using Güler’s estimate (3.3) and
Young’s inequality) that∥∥p− pδN∥∥2 ≤ 2

∥∥p− pδ0∥∥2
+ 4t2Nδ

2 + 4tN (G(p, g)− inf
q∈H2

G(q, g)) for all p ∈ H2.

Choosing an arbitrary p such that G(p, g) < 0 implies

lim sup
δ→0+

∥∥pδN∥∥ =: A <∞.
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Now, let {δk}k∈N be such that δk → 0+ and that pδkN ⇀ p̂ ∈ H2. Due to the dual

characterization (3.2) and to the equality pδN−1− pδN = τN (KuδN − gδ), it follows that

KuδkN − gδk ∈ ∂G(·, gδk)(pδkN ). Since G(p, g) = G(p, gδk) +
〈
p, gδk − g

〉
for all p ∈ H2,

one has

KuδkN − g ∈ ∂G(·, g)(pδkN ).

Recall that the graph of the subgradient of a convex and lower semi-continuous func-
tional is weakly-strongly closed. Therefore, inequality (4.8) yields

0 = lim
k→∞

KuδkN − g ∈ ∂G(·, g)(w -lim
k→∞

pδkN ) = ∂G(·, g)(p̂).

This proves i).
From the definition of uδN in (1.2a) and the fact that pδN−1−pδN = τN (KuδN − gδ)

it follows (for δ small enough)

τN
2

∥∥KuδN − gδ∥∥+ J(uδN ) ≤ τN
2
δ2 + J(u†) +

〈
pδN−1, g −KuδN

〉
≤ τN

2
δ2 + J(u†) +A(ρ+ 1)δ + τNρ(ρ+ 1)δ2.

In other words, J(uδN ) − J(u†) = O(δ) as δ → 0+. This together with (4.8) shows
that supδ>0

{
J(uδN ) +

∥∥KuδN∥∥} < ∞ and consequently, according to Assumption 1,

that
{
uδN
}
δ>0

is weakly compact and hence bounded. Thus, ii) follows from (4.8) and
the lower semi-continuity of J .

Let p† be a minimizer of G(·, g), which exists according to i). This and the
definition of G(p, g) in (3.1) implies

G(p†, g)−G(pδN , g
δ) ≤ δ

∥∥pδN∥∥ .
Moreover, we deduce from the optimality condition of (1.2a) that K∗pδN ∈ ∂J(uδN ),
which in turn implies that KuδN ∈ ∂(J∗ ◦ K∗)(pδN ). Using the definition of the
subgradient and some rearrangements give

G(p†, g)−G(pδN , g
δ) ≥ −δ

(∥∥p†∥∥+
∥∥pδN∥∥) .

Since
{∥∥pδN∥∥}δ>0

is bounded according to ii), the previous two estimates result in

lim
δ→0+

J∗(K∗pδN )−
〈
pδN , g

δ
〉

= lim
δ→0+

G(pδN , g
δ) = G(p†, g) = J∗(K∗p†)−

〈
p†, g

〉
. (4.9)

Using once more the relation K∗pδN ∈ ∂J(uδN ) shows that J∗(K∗pδN ) + J(uδN ) =〈
K∗pδN , u

δ
N

〉
and consequently

J∗(K∗pδN )−
〈
pδN , g

δ
〉

+ J(uδN ) =
〈
KuδN − gδ, pδN

〉
.

Now, let u† be a J-minimizing solution of Ku = g which exists according to ii).
Taking the limit δ → 0+ in the previous equality, using (4.8), (4.9), as well as the
boundedness of

{
pδN
}
δ>0

and the fact that J(uδN )→ J(u†) result in

J(u†) + J∗(K∗p†) =
〈
p†, g

〉
=
〈
K∗p†, u†

〉
that is, K∗p† ∈ ∂J(u†). This proves iii).
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Statement iv) follows from i), iii) and Corollary 3.6 ii) together with the first
inequality in (4.7).

Remark 4.10. As {Γ(δ, gδ)}δ>0 has finite accumulation points, without restrict-
ing generality, we can consider that this is a constant subsequence. This yields that
for all δ sufficiently small, one has to stop the algorithm at the same iteration.

A degenerate case is discussed for the Landweber method for nonlinear equations
in the book [11, p. 284]. It is shown there that limδ→0 u

δ
N = uN where uN is the

N -th iterate in the exact data case and is a solution of the operator equation as well.
This means that in the exact data case the Landweber algorithm reaches the solution
after N steps, with N being the stopping index in the noisy data case.

For the ALM analyzed here, we could not show that limδ→0 u
δ
N = uN where uN

is the N -th iterate in the exact data case because the implicit feature of the method
makes the analysis more difficult. However, we could establish that the accumula-
tion points of {uδN}δ>0 are J - minimizing solutions with additional smoothness, i.e.,
satisfying the source condition.

The results for the two cases are briefly summarized in the following corollary.
Corollary 4.11. Let Γ : (0,∞) × H2 → N be chosen according to Morozov’s

rule (4.1). Then, as δ → 0, the stopping index Γ either increases and leads to weak
convergence of the ALM algorithm on subsequences to solutions of the operator equa-
tion or is constant, in which case the corresponding ALM iterates converge weakly on
subsequences to a solution of the equation satisfying the source condition.

5. Iterative total variation regularization. The ALM method in the case of
J being the total variation seminorm (1.3) is also known as Bregman iteration [20].
It was shown in [20] that Morozov’s discrepancy principle yields weak∗ convergence
in BV(Ω) of the iterative method. The expected but missing convergence there was
the one with respect to the total variation seminorm, in the sense

lim
k→∞

J(uk) = J(u). (5.1)

As a consequence of the analysis based on the augmented Lagrangian method tools,
it became clear that this convergence does hold. Moreover, linear convergence rates
with respect to the Bregman distance associated with the total variation seminorm
were established in [5] first for the noise free case. According to [4] and due to the
symmetric Bregman distance estimates pointed out in this work, such convergence
rates provide information on the fine structure of the iterates, that is, the variation
of the iterates is concentrated around the discontinuities set of the true solution. In
the noisy data case, an a posteriori stopping rule was proposed in [20]:

n∗(δ, g
δ) = max

{
n ∈ N : ‖Kuδn − gδ‖ ≥ ρδ

}
, ρ > 1.

Although convergence was shown there for the net {uδn∗(δ,gδ)} as δ → 0, no convergence

rate was obtained for it. This section aims to point out such a convergence rate. Note
that the a posteriori rule (4.1) employed here relates to the above mentioned one by

Γ(δ, gδ) = n∗(δ, g
δ) + 1.

Still, the question on how to quantify the weak∗ convergence is not answered.
A possible answer could be given by taking into account that weak∗ convergence in
BV(Ω) together with convergence in the sense (5.1) is equivalent to so-called strict
convergence. Thus, one can obtain convergence rates with respect to a related metric,
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as shown below. Recall [2, page 125] that {uk}k∈N ⊂ BV(Ω) converges strictly to u if
it converges with respect to the metric

d̃(u, v) = ‖u− v‖L1 + |J(u)− J(v)|. (5.2)

In this section we consider the linear and bounded operator K : L2(Ω) → L2(Ω),
where Ω ⊂ R2 is open and bounded.

Proposition 5.1. Let {gk}k∈N ⊂ L2(Ω) be such that ‖g − gk‖ ≤ δk → 0 as
k → ∞. Let Γ be chosen according to the Morozov’s rule (4.1) and assume that
limk→∞ Γ(δk, gk) = ∞. Then, the sequence

{
RΓ(δk,gk)(gk)

}
k∈N satisfies (3.5) and

(3.6). Moreover, it has a subsequence which converges strictly to a J-minimizing
solution of Ku = g.

Proof. The first assertions result from Corollary 4.6. Let further denote uk =
RΓ(δk,gk)(gk). According to Corollary 4.6, the sequence {uk}k∈N is bounded in L2(Ω)
and supk∈N J(uk) <∞. Hence we find that

sup
k∈N
‖uk‖BV = sup

k∈N
‖u‖L1 + J(uk) <∞.

Theorem 2.5 in [1] implies that {uk}k∈N is strongly L1-compact and thus there is a

subsequence, indexed by k′, which converges to some u∗ strongly in L1(Ω). Since each
L2-weak cluster point of {uk}k∈N is a J-minimizing solution of Ku = g according to

Corollary 4.6, the same holds for u∗. Finally, it follows from (3.5) that d̃(uk′ , u
∗)→ 0.

Clearly, error estimates in terms of the L1-norm are desirable, but not easy to
derive. In order to show convergence rates for strict convergence of the iterates, we
need to employ another metric, which appears naturally in the analysis, namely

d(u, v) = ‖Ku−Kv‖L2 + |J(u)− J(v)| . (5.3)

The following lemma points out the relation between the two metrics described
above.

Lemma 5.2. Assume that K : L1(Ω)→ L2(Ω) is continuous and can be extended
by continuity to L2(Ω). Then, convergence of a sequence with respect to the metric
d̃ defined by (5.2) implies convergence of the sequence with respect to the metric d
defined by (5.3). If additionally the linear bounded operator K : L2(Ω) → L2(Ω) is
injective, then the two metrics are equivalent.

Proof. The first part follows immediately from ‖Ku‖L2 ≤ ‖K‖ ‖u‖L1 for any
u ∈ L1(Ω).

Assume now that d(uk, u) → 0 as k → ∞ and that K is injective. Then, K in
particular does not annihilate constant functions and it follows from [1, Lemma 4.1]
that u 7→ ‖Ku‖L2 + J(u) is BV-coercive. Hence boundedness of {‖Kuk‖L2}k∈N and
{J(uk)}k∈N, which follows from d(uk, u) → 0, yields boundedness of {‖uk‖BV}k∈N.
Thus, there exists a subsequence {uk′}k′∈N which converges to some v ∈ BV(Ω)

strongly in L1(Ω) and weakly in L2(Ω) to v due to compact and bounded embedding
respectively (cf. [1, Theorem 2.5]). These yield strong convergence of the subsequence
in L1(Ω) to v, as well as weak convergence in L2(Ω) of {Kuk′}k′ to Kv. Since the
weak limit is unique, it follows that Ku = Kv and consequently, since K is injective,
that u = v.

Moreover, the entire sequence {uk}k∈N converges strongly in L1(Ω) to u, which

completes the proof. Note that the continuity of the operator K from L1(Ω) into
L2(Ω) is not necessary for proving the second part of the lemma.
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Now we are able to show the convergence rate in terms of the metric d:
Proposition 5.3. Let {gk}k∈N ⊂ L2(Ω) be such that ‖g − gk‖ ≤ δk → 0 as k →

∞. Let Γ be chosen according to rule (4.1) and assume that limk→∞ Γ(δk, gk) = ∞.
If u† is a J-minimizing solution of Ku = g that satisfies the source condition (2.2)
with source element p† ∈ H2, then the following convergence rate holds:

d(RΓ(δk,gk)(gk), u†) = ‖KRΓ(δk,gk)(gk)−Ku†‖+ |J(RΓ(δk,gk)(gk))− J(u†)| = O(δk).

Proof. From the definition of rule (4.1) it follows that ‖KRΓ(δk,gk)gk −Ku†‖ =
O(δk).

In order to establish an error estimate for |J(RΓ(δk,gk)(gk))−J(u†)|, we use The-
orem 4.3. Indeed, since the symmetric Bregman distance is larger than the Bregman
distance, one has

J(u†)− J(RΓ(δk,gk)(gk)) ≤〈
R∗Γ(δk,gk)(gk), g −KRΓ(δk,gk)(gk)

〉
+Dsym

J (RΓ(δk,gk)(gk), u†).

Using the Cauchy-Schwarz inequality and again Corollary 3.6 we see that

J(u†)− J(RΓ(δk,gk)(gk)) = O(δk).

Similarly one can show

J(RΓ(δk,gk)(gk))− J(u†) = O(δk)

which ends the proof.

6. Sparse regularization. In the case of sparse regularization, the convex func-
tional (1.4) is considered with 1 ≤ q ≤ 2 (see [9]). The aim of the functional J is
to promote sparse solutions, i.e. solutions which have only a few (especially a finite
number of) nonzero entries. Tikhonov regularization based on this regularization
functional has been studied in great detail in [13, 18, 19]. The case q = 1 for the sta-
tionary augmented Lagrangian method has been treated in [5] also under the name
Bregman iteration. There, the authors obtained convergence of the method for noise-
free data for the Bregman distance and considered an a priori stopping rule for noisy
data. In this section we also treat the case q = 1 and derive both an enhanced con-
vergence rate for noisefree data in norm and also optimal convergence rates for noisy
data with the a posteriori rule given by Morozov’s discrepancy principle.

6.1. Convergence rates for δ → 0. We start with a result on convergence in
the noisy data case which holds for all q ∈ [1, 2]. Fulfillment of a source condition is
not needed here.

Theorem 6.1. Let K : `2 → H2 be linear and bounded, 1 ≤ q ≤ 2 and let J be
defined by (1.4). Moreover, let the parameter choice Γ obey (3.4). Then the sequence
{RΓ(δk,gk)(gk)} has a subsequence which converges strongly to a J-minimizing solution
of Ku = g.

Proof. By Theorem 3.2, the sequence {RΓ(δk,gk)(gk)} is bounded in `2 and
hence, has a subsequence which converges weakly in `2. Moreover, it follows from
Theorem 3.2 that J(RΓ(δk,gk)(gk)) → J(u†). By [9, Lemma 4.3] this shows that
J(RΓ(δk,gk)(gk)) also converges strongly. Note that the entire sequence of iter-
ates converges strongly to the unique J-minimizing solution of Ku = g in the case
q ∈ (1, 2].
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By Theorem 4.5, we also conclude that `q-regularization combined with Moro-
zov’s discrepancy principle gives rise to a (subsequentially) convergent regularization
method and, if additionally the source condition is fulfilled, leads to convergence rates
in the sense of Bregman distances.

Actually, in the latter case, we can strengthen the above result. More precisely,
we can derive convergence rates with respect to the `q norm for q ∈ [1, 2]. The two
cases q ∈ (1, 2] and q = 1 have to be treated separately.

In the case q ∈ (1, 2], we take advantage of the differentiability and the high
degree of convexity of the functional J to estimate even the distance between the
subgradients appearing in the iterative process.

The Fenchel conjugate of J is J∗(ξ) = 1
r ‖ξ‖

r
`r with r = q/(q − 1) > 2 (see, e.g.,

[10, Proposition 4.2, p. 19].
The following result, which will be useful in the sequel, was pointed out in [22,

Proposition 3.2]. We give here the proof for the sake of completeness.
Lemma 6.2. If q ∈ (1, 2] and J according to (1.4), then one has for all v ∈ `q

and u ∈ `2(q−1), u 6= 0,

DJ(v, u) ≥ cq ‖v − u‖2`q , (6.1)

for ‖v − u‖`q small enough, where cq = cq(u) is a positive number.
Proof. The inequality is obvious if q = 2. Let q ∈ (1, 2). Note that D(∂J) =

`2(q−1). In order to simplify the notation in the proof, we omit the subscript for the
`q norm. Now [6, Lemma 1.4.8] implies that for all v ∈ `q, u ∈ `2(q−1)

DJ(v, u) ≥ (t+ ‖u‖)q − ‖u‖q − qt‖u‖q−1, (6.2)

where t := ‖v − u‖. Let ϕ(t) := (t+ ‖u‖)q for t small enough. The Taylor expansion
of ϕ around 0 yields existence of an at ∈ (0, t) such that

ϕ(t) = ‖u‖q + qt‖u‖q−1 +
q(q − 1)t2

2
‖u‖q−2 +

q(q − 1)(q − 2)t3

6
(at + ‖u‖)q−3

.

This inequality and (6.2) imply

DJ(v, u) ≥ ϕ(t)− ‖u‖q − qt‖u‖q−1

=
q(q − 1)t2

2
‖u‖q−2 +

q(q − 1)(q − 2)t3

6
(at + ‖u‖)q−3

=
q(q − 1)t2

2
‖u‖q−2

[
1− (2− q)t

3
‖u‖2−q

(
at + ‖u‖q−3

)]
.

Note that at + ‖u‖ ≥ ‖u‖ and q − 3 < 0. Hence, (at + ‖u‖)q−3 ≤ ‖u‖q−3 and

DJ(v, u) ≥ q(q − 1)t2

2
‖u‖q−2

[
1− (2− q)t

3
‖u‖−1

]
. (6.3)

Let b ∈ (0, 1) and take t < 3(1−b)‖u‖
2−q . Then inequality (6.3) yields

DJ(v, u) ≥ cqt2,

with cq = bq(q−1)
2 ‖u‖q−2.

Proposition 6.3. Let K : `2 → H2 be linear and bounded, J be defined by (1.4)
with 1 < q ≤ 2. Let Γ be the parameter choice according to Morozov’s discrepancy
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principle (4.1). If the J-minimizing solution u† of Ku = g satisfies the source con-
dition (2.2) with a source element p†, then the following convergence rates hold for k
sufficiently large: ∥∥RΓ(δk,gk)(gk)− u†

∥∥
`q

= O(
√
δk),

∥∥∥K∗R∗Γ(δk,gk)(gk)−K∗p†
∥∥∥
`r

= O(δ
q−1
q

k ).

Proof. We apply inequality (6.1) for v = RΓ(δk,gk)(gk) and u = u† and obtain

DK∗p†

J (RΓ(δk,gk)(gk), u†) ≥ cq
∥∥RΓ(δk,gk)(gk)− u†

∥∥2

`q
,

for k sufficiently large. This and Theorem 4.3 imply the first assertion.
In order to show the estimate for the subgradients, note that (see, e,g., [6, Lemma

1.4.10])

DJ∗(ξ2, ξ1) ≥ cr ‖ξ2 − ξ1‖r`r

for any ξ1, ξ2 ∈ `rfor some positive constant cr depending on r ≥ 2. Consequently, it
follows from Remark 3.7 that∥∥∥K∗R∗Γ(δk,gk)(gk)−K∗p†

∥∥∥
`r

= O(δ
q−1
q

k )

and thus completes the proof.
Now we turn to the case of sparse regularization for q = 1. Here, one can derive

improved convergence rates in case the solution u† does not only fulfill the source
condition but also is indeed sparse. To be more precise, we define for a given set
I ⊂ N the projection PI by

(PIu)k =

{
uk, k ∈ I
0, k /∈ I.

and require the following
Assumption 2.

i) The solutions u† of (1.1) satisfy the source condition (2.2) with source element
p†.

ii) For K∗p† = ξ and I = {k | |ξk| = 1}, one has that the quantity θ = sup{|ξk| | k /∈
I} is strictly smaller than one.

iii) The operator KPI : `1 → H is injective in the sense that PIu 6= PIv implies
KPIu 6= KPIv.
We start with the following lemma which can be traced back to [13] (see also

[14]).
Lemma 6.4. Assume that Assumption 2 is satisfied. Then, there exist constants

β1, β2 > 0 such that

J(u)− J(u†) ≥ β1J(u− u†)− β2

∥∥K(u− u†)
∥∥ .
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Proof. Due to Assumption 2 iii) the operator KPI is injective and hence, there
exists c such that ‖KPIu‖ ≥ c ‖PIu‖`1 for all u ∈ `1. Now we estimate

J(u− u†) =
∥∥u− u†∥∥

`1
=
∥∥PI(u− u†)∥∥`1 + ‖PI{u‖`1

≤ 1
c

∥∥KPI(u− u†)∥∥+ ‖PI{u‖`1
≤ 1

c

∥∥K(u− u†)
∥∥+ (‖K‖+ 1) ‖PI{u‖`1 .

Since u†k = 0 for k /∈ I, Assumption 2 i) and ii) implies

‖PI{u‖`1 =
∑
k/∈I

|uk|

≤ 1

1− θ

(∑
k/∈I

|uk| −
∣∣∣u†k∣∣∣− ξk(uk − u†k)

)
≤ 1

1− θ

(∑
k

|uk| −
∣∣∣u†k∣∣∣− ξk(uk − u†k)

)
=

1

1− θ

(
J(u)− J(u†)−

〈
ξ, u− u†

〉)
≤ 1

1− θ

(
J(u)− J(u†) +

∥∥p†∥∥∥∥K(u− u†)
∥∥).

Combining both estimates gives

J(u− u†) ≤
(

1
c +

∥∥p†∥∥ ‖K‖+ 1

1− θ
) ∥∥K(u− u†)

∥∥+
‖K‖+ 1

1− θ
(J(u)− J(u†))

which yields the assertion with

β1 =
1− θ
‖K‖+ 1

, β2 =
1− θ

(‖K‖+ 1)c
+
∥∥p†∥∥ .

Remark 6.5. We remark on Assumption 2: Statement ii) is related to the notion
of “strict sparsity pattern” in [3]. To get a practically relevant condition, one may
replace this with the assumption that the range of K∗ is contained in some `p with
p < ∞ (since in this case the sequence ξ has to tend to zero). This also implies
that I is finite. Alternatively one may also work with K : `2 → H (which implies
K∗ : H → `2).

Assumption iii) is a restricted injectivity condition. Since one needs to know the
set I to verify this in advance, one often uses the “finite basis injectivity property”
(FBI property) from [3, 18] which states that KPI is injective for all finite sets I.
This condition can be checked in advance and hence, it seems more practical.

Now we treat the case of noisy data and show that the application of Morozov’s
discrepancy principle leads to optimal convergence rates.

Theorem 6.6. Let u† be a J-minimizing solution of Ku = g and assume that
Γ is the parameter choice according to Morozov’s discrepancy principle (4.1). Then,
one has ∥∥RΓ(δk,gk)gk − u†

∥∥
`1

= O(δk).
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Proof. We estimate the symmetric distance from below using Lemma 6.4. To this
end, set uk = RΓ(δk,gk)(gk) and observe that

Dsym
J (uk, u

†) ≥ DJ(uk, u
†)

= J(uk)− J(u†) +
〈
K∗p†, uk − u†

〉
≥ β1J(uk − u†)− β2 ‖Kuk − g‖ −

〈
p†,Kuk − g

〉
.

Rearranging and using the Cauchy-Schwartz inequality leads to

β1J(uk − u†) ≤ Dsym
J (uk, u

†) +
(
β2 +

∥∥p†∥∥) ‖Kuk − g‖ .
From the definition of Morozov’s discrepancy principle (4.1) and Theorem 4.3 we
finally conclude the proof.

6.2. Convergence rate for n → ∞ in the noisefree case. Another conse-
quence of our analysis of the ALM is that we can prove convergence rates of the ALM
iteration with noisefree data which are superior to previous results.

Proposition 6.7. Let J be according to (1.4) with q = 1, u† be a J-minimizing
solution of Ku = g and p0 = 0. Then there exists a constant C > 0 such that the
iterates un of the ALM fulfill ∥∥un − u†∥∥`1 ≤ C

tn
.

Proof. Since K∗pn ∈ ∂J(un), one has

J(un)− J(u†) ≤ −
〈
K∗pn, u

† − un
〉

= −〈pn, g −Kun〉
≤ ‖pn‖ ‖g −Kun‖

Now we use Lemma 6.4 to obtain

β1J(un − u†) ≤ J(un)− J(u†) + β2 ‖Kun − g‖
≤ (‖pn‖+ β2) ‖Kun − g‖ .

Theorem 3.4 (with δ = 0) gives

J(un − u†) ≤
(γ + β2)

∥∥p†∥∥
β1tn

which proves the assertion.
This proposition shows that the ALM can calculate approximate solutions to the

so-called Basis Pursuit problem [8] of finding minimal `1-norm solutions of underde-
termined linear systems and also gives an estimate on the speed of convergence of the
objective value.

6.3. Implications for Compressed Sensing. Finally we remark on the rela-
tion of our results to the theory of compressed sensing: Linear convergence rates for
the variational regularization with `1-norm has been shown in [13, 14] under a source
condition and some assumptions on the operator K. A similar result has been proven
(see [7]) in the finite dimensional setting of compressed sensing, by using the restricted
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isometry property condition. In the latter setting, [14] established the following con-
nection between the above mentioned conditions - see [14, part of Proposition 5.3 and
Theorem 4.7] :

Proposition 6.8. Assume that Ku† = g. Assume that K satisfies the s-
restricted isometry property and let u† be an s-sparse solution of the equation. Then
u† satisfies the source condition and KPI is injective, with I given by Lemma 6.4.

Based on this result and on the ones in this section, one can immediately state
the following:

Proposition 6.9. Assume that K satisfies the s-restricted isometry property
and let u† be an s-sparse solution of the equation. Then linear convergence rates hold
for Bregman iterations in the noisy-free case and in the noisy data case when the
discrepancy principle is employed.

7. Conclusion. In this work we showed that Morozov’s discrepancy principle
(4.1) applied to the Augmented Lagrangian Method (ALM) 1 leads to a regularization
method for linear inverse problems Ku = g. This gives a theoretical justification for
the observation that the discrepancy principle provides useful results in practical
situations.

We used a dual characterization of the ALM in order to derive explicit error
bounds for the Bregman distance between the iterates and a true J-minimizing solu-
tion u† of Ku = g, if u† satisfies the source condition

K∗p† ∈ ∂J(u†)

for a source element p†. In this case, also error bounds for the Bregman distance
(with respect to J∗) between the dual iterates in the ALM and p† were obtained.
We also showed that a sufficient condition for the source condition to hold is the
existence of finite accumulation points in the sequence of stopping indices chosen by
the discrepancy principle.

We applied our general results to particular situations which have a special appeal
for problems arising in imaging.

Firstly, we considered the case of total variation regularization where we were
able to show that the ALM converges strictly in BV(Ω) and to establish convergence
rates with respect to an equivalent metric.

Secondly, we studied sparse regularization on `2, more precisely when J coincides
with the `q-norm (q ∈ [1, 2]). Aside to

√
δ-rates in the `q-norm for q > 1, we were

able to prove linear convergence rates for the particular interesting case of `1 (under
suitable regularity conditions on u†). The sequence of dual iterates in the ALM in
the latter case carries important information on the support of the solution. The
conjugate function J∗ of the `1-norm, however, degenerates to an indicator function.
As a consequence, the general estimates for the dual variables do not reveal much
insight in their convergence behavior. It is still an open issue whether one can obtain
more relevant estimates for the dual variables.
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