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By Lutz Dümbgen1, Richard Samworth

and Dominic Schuhmacher1

University of Bern, University of Cambridge and University of Bern

We study the approximation of arbitrary distributions P on d-di-
mensional space by distributions with log-concave density. Approx-
imation means minimizing a Kullback–Leibler-type functional. We
show that such an approximation exists if and only if P has finite
first moments and is not supported by some hyperplane. Further-
more we show that this approximation depends continuously on P

with respect to Mallows distance D1(·, ·). This result implies consis-
tency of the maximum likelihood estimator of a log-concave density
under fairly general conditions. It also allows us to prove existence
and consistency of estimators in regression models with a response
Y = µ(X)+ ε, where X and ε are independent, µ(·) belongs to a cer-
tain class of regression functions while ε is a random error with log-
concave density and mean zero.

1. Introduction. Log-concave distributions, that is, distributions with
a Lebesgue density the logarithm of which is concave, are an interesting
nonparametric model comprising many parametric families of distributions.
Bagnoli and Bergstrom (2005) give an overview of many interesting prop-
erties and applications in econometrics. Indeed, these distributions have re-
ceived a lot of attention among statisticians recently as described in the
review by Walther (2009). The nonparametric maximum likelihood esti-
mator was studied in the univariate setting by Pal, Woodroofe and Meyer
(2007), Rufibach (2006), Dümbgen, Hüsler and Rufibach (2007), Balabdaoui,
Rufibach and Wellner (2009) and Dümbgen and Rufibach (2009). These ref-
erences contain characterizations of the estimators, consistency results and
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explicit algorithms. Extensions of one or more of these aspects to the mul-
tivariate setting are presented by Cule, Samworth and Stewart (2010), Cule
and Samworth (2010), Koenker and Mizera (2010), Seregin and Wellner
(2010) and Schuhmacher and Dümbgen (2010). Both Cule and Samworth
(2010) and Schuhmacher, Hüsler and Dümbgen (2009) show that multivari-
ate log-concave distributions are a very well-behaved nonparametric class.
For instance, moments of arbitrary order are continuous statistical function-
als with respect to weak convergence.

The first aim of the present paper is a deeper understanding of the ap-
proximation scheme underlying the maximum likelihood estimator of a log-
concave density. Let us put this into a somewhat broader context: let Q̂n
be the empirical distribution of independent random vectors X1, X2, . . . ,Xn

with distribution Q on a given open set X ⊆R
d. Suppose that Q has a den-

sity f belonging to a given class F of probability densities on X . The max-
imum likelihood estimator of f may be written as

f̂n = argmax
f∈F

∫

log(f)dQ̂n

(provided this exists and is unique). Even if Q fails to have a density within

F , one may view f̂n as an estimator of the approximating density

f(·|Q) := argmax
f∈F

∫

log(f)dQ.

In fact, if Q has a density g /∈ F on X such that the integral
∫

g(x) log g(x)dx
exists in R, one may rewrite f(·|Q) as the minimizer of the Kullback–Leibler
divergence,

DKL(f, g) =

∫

log(g/f)(x)g(x)dx,

over all f ∈ F . Note the well-known fact that DKL(f, g)> 0 unless f = g al-
most everywhere. Viewing a maximum likelihood estimator as an estimator
of an approximation within a given model is common in statistics [see, e.g.,
Pfanzagl (1990), Patilea (2001), Doksum et al. (2007) and Cule and Sam-
worth (2010)]. Pfanzagl (1990) and Patilea (2001) show that under suitable

regularity conditions on Q and F , the estimator f̂n is consistent with certain
large deviation bounds or rates of convergence, even in the case of misspec-
ified models. To the best of our knowledge, their results are not directly
applicable in the setting of log-concave densities, which is treated by Cule
and Samworth (2010). Our ambition is to identify the largest possible class
of distributions Q such that f(·|Q) is well defined and unique. Moreover, we
want to show that the mapping Q 7→ f(·|Q) is continuous on that class with
respect to a coarse topology, ideally the topology of weak convergence.
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With these goals in mind, let us tell a short success story about Grenan-
der’s estimator [Grenander (1956)], also a key example of Patilea (2001): let
Fmon be the class of all nonincreasing and left-continuous probability den-
sities on X = (0,∞). Then for any distribution Q on (0,∞), the maximizer

fmon(·|Q) := argmax
f∈Fmon

∫

(0,∞)
log f(x)Q(dx)

is well defined and unique. Namely, if G denotes the distribution function
of Q, then fmon(·|Q) is the left-sided derivative of the smallest concave ma-
jorant of G on (0,∞) [see Barlow et al. (1972)]. With this characterization
one can show that for any sequence of distributions Qn on (0,∞) converging
weakly to Q,

∫

(0,∞)
|fmon(x|Qn)− fmon(x|Q)|dx→ 0 (n→∞).

Since the sequence of empirical measures Q̂n converges weakly to Q almost

surely, this entails strong consistency of the Grenander estimator f(·|Q̂n) in
total variation distance.

In the remainder of the present paper we consider the class F of log-con-
cave probability densities on X =R

d. We will show in Section 2 that f(·|Q)
exists and is unique in L1(Rd) if and only if

∫

‖x‖Q(dx)<∞

and

Q(H)< 1 for any hyperplane H ⊂R
d.

Some additional properties of f(·|Q) will be established as well. We show
that the mapping Q 7→ f(·|Q) is continuous with respect to Mallows distance
[Mallows (1972)] D1(·, ·), also known as a Wasserstein, Monge–Kantorovich
or Earth Mover’s distance. Precisely, let Q satisfy the properties just men-
tioned, and let (Qn)n be a sequence of probability distributions converging
to Q in D1; in other words,

Qn →w Q and

∫

‖x‖Qn(dx)→

∫

‖x‖Q(dx)(1)

as n→∞. Then f(·|Qn) is well defined for sufficiently large n and

lim
n→∞

∫

|f(x|Qn)− f(x|Q)|dx= 0.

This entails strong consistency of the maximum likelihood estimator f̂n,
because (Q̂n)n converges almost surely to Q with respect to Mallows distance
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D1(·, ·). In addition we show that Q 7→ maxf∈F
∫

log(f)dQ is convex and
upper semicontinuous with respect to weak convergence.

In Section 3 we apply these results to the following type of regression
problem: suppose that we observe independent real random variables Y1,
Y2, . . . , Yn such that

Yi = µ(xi) + εi

for given fixed design points x1, x2, . . . , xn in some set X , some unknown
regression function µ :X → R and independent, identically distributed ran-
dom errors εi with unknown log-concave density f and mean zero. We will
show that a maximum likelihood estimator of (µ, f) exists and is consistent
under certain regularity conditions in the following two cases: (i) X = R

q

and µ is affine (i.e., affine linear); (ii) X =R and µ is nondecreasing. These
methods are illustrated with a real data set.

Many proofs and technical arguments are deferred to Section 4. A longer
and more detailed version of this paper is the technical report by Dümbgen,
Samworth and Schuhmacher (2010), referred to as [DSS 2010] hereafter. It
contains all proofs, additional examples and plots, a detailed description
of our algorithms and extensive simulation studies. There we also indicate
potential applications to change-point analyses.

2. Log-concave approximations. For a fixed dimension d ∈ N, let Φ =
Φ(d) be the family of concave functions φ :Rd → [−∞,∞) which are upper
semicontinuous and coercive in the sense that

φ(x)→−∞ as ‖x‖→∞.

In particular, for any φ ∈ Φ there exist constants a and b > 0 such that
φ(x)≤ a− b‖x‖, so

∫

eφ(x) dx is finite. Further let Q=Q(d) be the family of
all probability distributions Q on R

d. Then we define a log-likelihood-type
functional

L(φ,Q) :=

∫

φdQ−

∫

eφ(x) dx+1

and a profile log-likelihood

L(Q) := sup
φ∈Φ

L(φ,Q).

If, for fixed Q, there exists a function ψ ∈Φ such that L(ψ,Q) =L(Q) ∈R,
then it will automatically satisfy

∫

eψ(x) dx= 1.
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To verify this, note that φ+ c ∈Φ for any fixed function φ ∈Φ and arbitrary
c ∈R, and

∂

∂c
L(φ+ c,Q) = 1− ec

∫

eφ(x) dx,

if L(φ,Q) ∈R. Thus L(φ+ c,Q) is minimal for c=− log
∫

eφ(x) dx.

2.1. Existence, uniqueness and basic properties. The next theorem pro-
vides a complete characterization of all distributions Q ∈Q with real profile
log-likelihood L(Q). To state the result we first define the convex support
of a distribution Q ∈Q and collect some of its properties.

Lemma 2.1 (DSS 2010). For any Q ∈Q, the set

csupp(Q) :=
⋂

{C :C ⊆R
d closed and convex,Q(C) = 1}

is itself closed and convex with Q(csupp(Q)) = 1. The following three proper-

ties of Q are equivalent:

(a) csupp(Q) has nonempty interior;

(b) Q(H)< 1 for any hyperplane H ⊂R
d;

(c) with Leb denoting Lebesgue measure on R
d,

lim
δ↓0

sup{Q(C) :C ⊂R
d closed and convex,Leb(C)≤ δ}< 1.

Theorem 2.2. For any Q ∈Q, the value of L(Q) is real if and only if
∫

‖x‖Q(dx)<∞ and interior(csupp(Q)) 6=∅.

In that case, there exists a unique function

ψ = ψ(·|Q) ∈ argmax
φ∈Φ

L(φ,Q).

This function ψ satisfies
∫

eψ(x) dx= 1 and

interior(csupp(Q))⊆ dom(ψ) := {x ∈R
d :ψ(x)>−∞}⊆ csupp(Q).

Remark 2.3 [Moment (in)equalities]. Let Q ∈Q satisfy the properties
stated in Theorem 2.2. Then the log-density ψ = ψ(·|Q) satisfies the follow-
ing requirements: L(ψ,Q) =

∫

ψdQ ∈R, and for any function ∆ :Rd→R,
∫

∆dQ≤

∫

∆(x)eψ(x) dx if ψ+ t∆ ∈Φ for some t > 0.(2)

This follows from

lim
t↓0

t−1(L(ψ + t∆,Q)−L(ψ,Q)) =

∫

∆dQ−

∫

∆(x)eψ(x) dx.
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Let P be the approximating probability measure with P (dx) = eψ(x) dx.
It satisfies the following (in)equalities:

∫

hdP ≤

∫

hdQ for any convex h :Rd→ (−∞,∞],(3)

∫

xP (dx) =

∫

xQ(dx).(4)

To verify (3), let v ∈ R
d be a subgradient of h at 0, that is, h(x) ≥ h(0) +

v⊤x for all x ∈R
d. Since ψ(x)≤ a− b‖x‖ for arbitrary x ∈ R

d and suitable
constants a and b > 0, the function ∆ :=−h satisfies the requirement that
ψ + t∆ ∈ Φ whenever 0 < t < b/‖v‖. Hence the asserted inequality follows
from (2). The equality for the first moments follows by setting h(x) :=±v⊤x
for arbitrary v ∈R

d.

In what follows let

Q1 =Q1(d) :=

{

Q ∈Q :

∫

‖x‖Q(dx)<∞

}

,

Qo =Qo(d) := {Q ∈Q : interior(csupp(Q)) 6=∅}.

Thus L(Q) ∈ R if and only if Q ∈ Qo ∩ Q1. Moreover, the proof of Theo-
rem 2.2 shows that

L(Q) =

{

−∞, for Q ∈Q \Q1,
+∞, for Q ∈Q1 \Qo.

Remark 2.4 (Affine equivariance). Suppose that Q ∈Qo∩Q1. For arbi-
trary vectors a ∈R

d and nonsingular, real d×d matrices B define Qa,B to be
the distribution of a+BX whenX has distribution Q. Then Qa,B ∈Qo∩Q1,
too, and elementary considerations reveal that

L(Qa,B) = L(Q)− log|detB|

and

ψ(x|Qa,B) = ψ(B−1(x− a)|Q)− log|detB| for x ∈R
d.

Remark 2.5 (Convexity, DSS 2010). The profile log-likelihood L is con-
vex on Q1. Precisely, for arbitrary Q0,Q1 ∈Q1 and 0< t < 1,

L((1− t)Q0 + tQ1)≤ (1− t)L(Q0) + tL(Q1).

The two sides are equal and real if and only if Q0,Q1 ∈ Qo ∩ Q1 with
ψ(·|Q0) = ψ(·|Q1).
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Remark 2.6 (Concave majorants, DSS 2010). Let ψ = ψ(·|Q) for a dis-
tribution Q ∈ Qo ∩Q1. For any open set U ⊂ R

d there exists a (pointwise)
minimal function ψU ∈Φ such that ψU ≥ ψ on R

d \U . In particular, ψU ≤ ψ
with equality on R

d \U . One can also show that ψU is the pointwise infimum
of all affine functions φ such that φ≥ ψ on R

d \U . If supp(Q) denotes the
smallest closed set A⊆R

d with Q(A) = 1, then

ψ = ψRd\supp(Q).

Furthermore, suppose that Q has a density g on an open set U such that
ψ > log g on this set. Then

ψ = ψU .

2.2. The one-dimensional case. For the case of d= 1 one can generalize
Theorem 2.4 of Dümbgen and Rufibach (2009) as follows: for a function
φ ∈Φ(1) let

S(φ) := {x ∈ dom(φ) :φ(x)> 2−1(φ(x− δ) + φ(x+ δ)) for all δ > 0}.

The log-concave approximation of a distribution on R can be characterized
in terms of distribution functions only:

Theorem 2.7. Let Q be a nondegenerate distribution on R with finite

first moment and distribution function G. Let F be a distribution function

with log-density φ ∈Φ. Then φ= ψ(·|Q) if and only if
∫ ∞

−∞
(F (t)−G(t))dt= 0

and
∫ x

−∞
(F (t)−G(t))dt

{

≤ 0, for all x ∈R,

= 0, for all x ∈ S(φ).

Remark 2.8 (DSS 2010). One consequence of this theorem is that the
c.d.f. F of ψ(·|Q) follows the c.d.f. G of Q quite closely in that

G(x−)≤ F (x)≤G(x) for arbitrary x ∈ S(ψ(·|Q)).

Example 2.9. Let Q be a rescaled version of Student’s distribution t2
with density and distribution function

g(x) = 2−1(1 + x2)−3/2 and G(x) = 2−1(1 + (1 + x2)−1/2x),

respectively. The best approximating log-concave distribution is the Laplace
distribution with density and distribution function

f(x) = 2−1e−|x| and F (x) =

{

f(x), for x≤ 0,
1− f(x), for x≥ 0,
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respectively. To verify this claim, note that by symmetry it suffices to show
that

∫ x

−∞
(F (t)−G(t))dt

{

≤ 0, for x≤ 0,
= 0, for x= 0.

Indeed the integral on the left-hand side equals

2−1(exp(x)− x− (1 + x2)1/2)

for all x≤ 0. Clearly this expression is zero for x= 0, and elementary con-
siderations show that it is nonpositive for all x≤ 0. Numerical calculations
reveal that |F −G| is smaller than 0.04 everywhere.

Remark 2.10. Let Q ∈Qo∩Q1 such that Q(a, b) = 0 for some bounded
interval (a, b) ⊂ csupp(Q). Then ψ = ψ(·|Q) is linear on [a, b]. This follows
from Remark 2.6, applied to U = (a, b). Note that ψ(a) > −∞ and ψ(b) >
−∞, because otherwise ψ ≡−∞ on (−∞, a] or on [b,∞). But this would be
incompatible with

∫

ψdQ ∈R, because both Q((−∞, a]) and Q([b,∞)) are
positive.

Remark 2.11 (DSS 2010). Suppose that Q has a continuous but not
log-concave density g. Nevertheless one can say the following about the
approximating log-density ψ = ψ(·|Q):

(i) Suppose that log g is concave on an interval (−∞, a] with g(a) > 0
and ψ(a) ≤ log g(a). Then there exists a point a′ ∈ [−∞, a] such that ψ is
linear on (a′, a] and ψ = log g on (−∞, a′].

(ii) Suppose that log g is differentiable everywhere, convex on a bounded
interval [a, b] and concave on both (−∞, a] and [b,∞). Then there exist
points a′ ∈ (−∞, a] and b′ ∈ [b,∞) such that ψ is linear on [a′, b′] while
ψ = log g on (−∞, a′]∪ [b′,∞).

(iii) Suppose that log g is convex on an interval (−∞, a] such that −∞<
log g(a)≤ ψ(a). Then ψ is linear on (−∞, a].

Example 2.12. Let us illustrate part (ii) of Remark 2.11 with a numeri-
cal example. Figure 1 shows the bimodal density g (green/dotted line) of
the Gaussian mixture Q= 0.7 · N (−1.5,1) + 0.3 · N (1.5,1) together with its
log-concave approximation f = f(·|Q) (blue line). As predicted, there exists
an interval [a′, b′] such that f = g on R \ (a′, b′) and log f is linear on [a′, b′].

2.3. Continuity in Q. For the applications to regression problems to fol-
low we need to understand the properties of both Q 7→ L(Q) and Q 7→ ψ(·|Q)
on Q1∩Qo. Our first hope was that both mappings would be continuous with
respect to the weak topology. It turned out, however, that we need a some-
what stronger notion of convergence, namely, convergence with respect to
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Fig. 1. Density of a Gaussian mixture and its log-concave approximation.

Mallows distance D1 which is defined as follows: for two probability distri-
butions Q,Q′ ∈Q1,

D1(Q,Q
′) := inf

(X,X′)
E‖X −X ′‖,

where the infimum is taken over all pairs (X,X ′) of random vectors X ∼Q
and X ′ ∼ Q′ on a common probability space. It is well known that the
infimum in D1(Q,Q

′) is a minimum. The distance D1 is also known as
Wasserstein, Monge–Kantorovich or Earth Mover’s distance. An alternative
representation due to Kantorovič and Rubinštĕın (1958) is

D1(Q,Q
′) = sup

h∈HL

∣

∣

∣

∣

∫

hdQ−

∫

hdQ′

∣

∣

∣

∣

,

where HL consists of all h :Rd → R such that |h(x) − h(y)| ≤ ‖x − y‖ for
all x, y ∈R

d. Moreover, for a sequence (Qn)n in Q1, it is known that (1) is
equivalent to D1(Qn,Q)→ 0 as n→∞ [Mallows (1972), Bickel and Freed-
man (1981)]. In case of d= 1, the optimal coupling of Q and Q′ is given by
the quantile transformation: if G and G′ denote the respective distribution
functions, then

D1(Q,Q
′) =

∫ 1

0
|G−1(u)−G′−1

(u)|du=

∫ ∞

−∞
|G(x)−G′(x)|dx.

A good starting point for more detailed information on Mallows distance is
Chapter 7 of Villani (2003).

Before presenting the main results of this section we mention two useful
facts about the convex support of distributions.
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Lemma 2.13. Given a distribution Q ∈Q, a point x ∈R
d is an interior

point of csupp(Q) if and only if

h(Q,x) := sup{Q(C) :C ⊂R
d closed and convex, x /∈ interior(C)}< 1.

Moreover, if (Qn)n is a sequence in Q converging weakly to Q, then

lim sup
n→∞

h(Qn, x)≤ h(Q,x) for any x ∈R
d.

This lemma implies that the set Qo is an open subset of Q with respect
to the topology of weak convergence. The supremum h(Q,x) is a maximum
over closed halfspaces and is related to Tukey’s halfspace depth [Donoho
and Gasko (1992), Section 6]. For a proof of Lemma 2.13 we refer to [DSS
2010]. Now we are ready to state the main results of this section.

Theorem 2.14 (Weak upper semicontinuity). Let (Qn)n be a sequence

of distributions in Qo converging weakly to some Q ∈Qo. Then

lim sup
n→∞

L(Qn)≤ L(Q).

Moreover, lim infn→∞L(Qn)<L(Q) if and only if

lim sup
n→∞

∫

‖x‖Qn(dx)>

∫

‖x‖Q(dx).

This result already entails continuity of L(·) on Qo ∩ Q1 with respect
to Mallows distance D1. The next theorem extends this result to L :Q1 →
(−∞,∞]:

Theorem 2.15 (Continuity with respect to Mallows distance D1). Let

(Qn)n be a sequence of distributions in Q1 such that limn→∞D1(Qn,Q) = 0
for some Q ∈Q1. Then

lim
n→∞

L(Qn) =L(Q).

In case of Q ∈Qo∩Q1, the probability densities f := exp ◦ψ(·|Q) and fn :=
exp ◦ ψ(·|Qn) are well defined for sufficiently large n and satisfy

lim
n→∞,x→y

fn(x) = f(y) for all y ∈R
d \ ∂{f > 0},

lim sup
n→∞,x→y

fn(x)≤ f(y) for all y ∈ ∂{f > 0},

lim
n→∞

∫

|fn(x)− f(x)|dx= 0.
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Remark 2.16 (Stronger modes of convergence). The convergence of
(fn)n to f in total variation distance may be strengthened considerably.
It follows from recent results of Cule and Samworth (2010) or Schuhmacher,
Hüsler and Dümbgen (2009) that (fn)n → f uniformly on arbitrary closed
subsets of Rd \ disc(f), where disc(f) is the set of discontinuity points of
f . The latter set is contained in the boundary of the convex set {f > 0},
hence a null set with respect to Lebesgue measure. Moreover, there exists
a number ε(f)> 0 such that

lim
n→∞

∫

eε(f)‖x‖|fn(x)− f(x)|dx= 0.

More generally,

lim
n→∞

∫

eA(x)|fn(x)− f(x)|dx= 0

for any sublinear function A :Rd→R such that lim‖x‖→∞ eA(x)f(x) = 0.

3. Applications to regression problems. Now we consider the regres-
sion setting described in the Introduction with observations Yi = µ(xi) + εi,
1 ≤ i ≤ n, where the xi ∈ X are given fixed design points, µ :X → R is an
unknown regression function, and the εi are independent random errors with
mean zero and unknown distribution Q on R such that ψ = ψ(·|Q) is well
defined. The regression function µ is assumed to belong to a given family
M with the property that

m+ c ∈M for arbitrary m ∈M, c ∈R.

3.1. Maximum likelihood estimation. We propose to estimate (ψ,µ) by
a maximizer of

Λ̂(φ,m) :=
1

n

n
∑

i=1

φ(Yi −m(xi))−

∫

eφ(x) dx+ 1

over all (φ,m) ∈Φ×M. Note that Λ̂(φ,m) remains unchanged if we replace
(φ,m) with (φ(·+ c),m+ c) for an arbitrary c ∈R. For fixed m, the maxi-

mizer φ̂= φ̂m of Λ̂(·,m) over Φ will automatically satisfy
∫

exp(φ̂(x))dx=

1 and
∫

x exp(φ̂(x))dx = n−1
∑n

i=1(Yi −m(xi)). Thus if (φ̂, m̂) maximizes

Λ̂(·, ·) over Φ×M, then

(ψ̂, µ̂) := (φ̂(·+ c), m̂+ c) with c :=
1

n

n
∑

i=1

(Yi− m̂(xi))

maximizes Λ̂(φ,m) over all (φ,m) ∈ Φ ×M satisfying the additional con-
straint that exp ◦ φ defines a probability density with mean zero.
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Define x := (xi)
n
i=1 and m(x) := (m(xi))

n
i=1. Then we may write

Λ̂(φ,m) =L(φ, Q̂m(x))

with the empirical distributions

Q̂v :=
1

n

n
∑

i=1

δYi−vi

for v= (vi)
n
i=1 ∈R

n. Thus our procedure aims to find

(φ̂, m̂) ∈ argmax
(φ,m)∈Φ×M

L(φ, Q̂m(x)),

and this representation is our key to proving the existence of (ψ̂, µ̂). Before
doing so we state a simple inequality of independent interest, which follows
from Jensen’s inequality and elementary considerations:

Lemma 3.1 (DSS 2010). For any distribution Q ∈Q1(1),

L(Q)≤− log

(

2

∫

|x−Med(Q)|Q(dx)

)

≤− log

(
∫

|x− µ(Q)|Q(dx)

)

,

where Med(Q) is a median of Q while µ(Q) denotes its mean
∫

xQ(dx).

Theorem 3.2 (Existence in regression). Suppose that the set M(x) :=
{m(x) :m ∈ M} ⊂ R

n is closed and does not contain Y := (Yi)
n
i=1. Then

there exists a maximizer (φ̂, m̂) of Λ̂(φ,m) over all (φ,m) ∈Φ×M.

The constraint Y /∈ M(x) excludes situations with perfect fit. In that
case, the Dirac measure δ0 would be the most plausible error distribution.

Example 3.3 (Linear regression). Let X =R
q, and let M consist of all

affine functions on R
q. Then M(x) is the column space of the design matrix

X=

[

1 1 · · · 1
x1 x2 · · · xn

]⊤

∈R
n×(q+1),

hence a linear subspace of Rn. Consequently there exists a maximizer (φ̂, m̂)

of Λ̂ over Φ×M, unless Y ∈M(x).

Example 3.4 (Isotonic regression). Let X be some interval on the real
line, and let M consist of all isotonic functions m :X → R. Then the set
M(x) is a closed convex cone in R

n. Here the condition that Y /∈M(x) is
equivalent to the existence of two indices i, j ∈ {1,2, . . . , n} such that xi ≤ xj
but Yi >Yj .
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Fisher consistency. The maximum likelihood estimator (ψ̂, µ̂) need not
be unique in general. Nevertheless we will prove it to be consistent under
certain regularity conditions. A key point here is Fisher consistency in the
following sense: note that the expectation measure of the empirical distri-
bution Q̂m(x) equals

EQ̂m(x) =
1

n

n
∑

i=1

Q ⋆ δµ(xi)−m(xi) =Q⋆R(µ−m)(x)

with

Rv :=
1

n

n
∑

i=1

δvi .

But

L(Q ⋆R(µ−m)(x))≤L(Q)

with equality if and only if µ−m is constant on {x1, x2, . . . , xn}. This follows
from a more general inequality which is somewhat reminiscent of Anderson’s
lemma [Anderson (1955)]:

Theorem 3.5. Let Q ∈ Qo(d) ∩ Q1(d) and R ∈ Q1(d). Then Q ⋆ R ∈
Qo ∩Q1 and

L(Q ⋆R)≤ L(Q).

Equality holds if and only if R= δa for some a ∈R
d.

3.2. Consistency. In this subsection we consider a triangular scheme of
independent observations (xni, Yni), 1≤ i≤ n, with fixed design points xni ∈
Xn and

Yni = µn(xni) + εni,

where µn is an unknown regression function in Mn and εn1, εn2, . . . , εnn
are unobserved independent random errors with mean zero and unknown
distribution Qn ∈Qo(1) ∩Q1(1). Two basic assumptions are:

(A.1) Mn(xn) is a closed subset of Rn for every n ∈N;
(A.2) D1(Qn,Q)→ 0 for some distribution Q ∈Qo(1)∩Q1(1).

We write (ψ̂n, µ̂n) for a maximizer of L(φ, Q̂n,m) over all pairs (φ,m) ∈

Φ×Mn such that
∫

eφ(x) dx= 1 and
∫

xeφ(x) dx= 0, where Q̂n,m stands for
the empirical distribution of the residuals Yni −m(xni), 1≤ i≤ n. We also
need to consider its expectation measure

Qn,m := EQ̂n,m =Qn ⋆ R(µn−m)(xn).
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Furthermore we write

‖v‖n :=
1

n

n
∑

i=1

|vi| for v= (vi)
n
i=1 ∈R

n.

It is also convenient to metrize weak convergence. In Theorem 3.6 below we
utilize the bounded Lipschitz distance: for probability distributions Q,Q′ on
the real line let

DBL(Q,Q
′) := sup

h∈HBL

∣

∣

∣

∣

∫

hd(Q−Q′)

∣

∣

∣

∣

,

where HBL is the family of all functions h :R→ [−1,1] such that |h(x) −
h(y)| ≤ |x− y| for all x, y ∈R.

Theorem 3.6 (Consistency in regression). Let assumptions (A.1) and

(A.2) be satisfied. Suppose further that:

(A.3) for arbitrary fixed c > 0,

sup
m∈Mn : ‖(m−µn)(xn)‖n≤c

DBL(Q̂n,m,Qn,m)→p 0.

Then, with fn := exp ◦ψ(·|Qn) and f̂n := exp ◦ ψ̂n, the maximum likelihood

estimator (f̂n, µ̂n) of (fn, µn) exists with asymptotic probability one and sat-

isfies
∫

|f̂n(x)− fn(x)|dx→p 0, ‖(µ̂n − µn)(xn)‖n →p 0.

We know already that assumption (A.1) is satisfied for multiple linear
regression and isotonic regression. Assumption (A.2) is a generalization of
assuming a fixed error distribution for all sample sizes. The crucial point, of
course, is assumption (A.3). In our two examples it is satisfied under mild
conditions:

Theorem 3.7 (Linear regression). Let Mn be the family of all affine

functions on Xn :=R
q(n). If assumption (A.2) is satisfied, then (A.3) follows

from

lim
n→∞

q(n)/n= 0.

Theorem 3.8 (Isotonic regression). Let Mn be the set of all nonde-

creasing functions on an interval Xn ⊆ R. If assumption (A.2) holds true,

then (A.3) follows from

‖µn(xn)‖n =O(1).
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The proof of Theorem 3.7 is given in Section 4. For the proof of Theo-
rem 3.8, which uses similar ideas and an additional approximation argument,
we refer to [DSS 2010].

3.3. Algorithms and numerical results. Computing the maximum likeli-
hood estimator (ψ̂, µ̂) from Section 3.1 turns out to be a rather difficult task,

because the function Λ̂ can have multiple local maxima. In [DSS 2010] we
discuss strengths and weaknesses of three different algorithms, including an
alternating and a stochastic search algorithm. The third procedure, which
is highly successful in the case of linear regression, is global maximization of

the profile log-likelihood Λ̂(θ) := maxφ∈Φ Λ̂(φ,mθ), where mθ(x) = θ⊤x for
every x ∈R

q, by means of differential evolution [Price, Storn and Lampinen
(2005)].

Extensive simulation studies in [DSS 2010] suggest that (ψ̂, µ̂) provides
rather accurate estimates even if n is only moderately large. For various
skewed error distributions, µ̂ may be considerably better than the corre-
sponding least squares estimator. As an example consider the simple linear
regression model with observations

Yi = c+ θXi+ εi, 1≤ i≤ n := 100,

where X1, . . . ,Xn are independent design points from the Unif[0,3] distri-
bution and ε1, . . . , εn are independent errors from a centered gamma distri-
bution with shape parameter r and variance 1. Note that the distribution
of (ψ̂, θ̂− θ) does not depend on c or θ. Monte Carlo estimation of the root
mean squared error based on 1000 simulations of this model gives 0.023 for
the estimator θ̂ versus 0.118 for the least squares estimator of θ if r = 1, and
0.095 versus 0.113 for the same comparison if r = 3.

3.4. A data example. A familiar task in econometrics is to model expen-
diture (Y ) of households as a function of their income (X). Not only the
mean curve (Engel curve) but also quantile curves play an important role.
A related application are growth charts in which, for instance, X is the age
of a newborn or infant and Y is its height or weight.

We applied our methods to a survey of n= 7125 households in the United
Kingdom in 1973 (data courtesy of W. Härdle, HU Berlin). The two variables
we considered were annual income (Xraw) and annual expenditure for food
(Yraw). Figure 2 shows scatter plots of the raw and log-transformed data. To
enhance visibility we only show a random subsample of size n′ = 1000. In
addition, isotonic quantile curves x 7→ q̂β(x) are added for β = 0.1, 0.25, 0.5,
0.75, 0.9 (based on all observations). These pictures show clearly that the raw
data are heteroscedastic, whereas for the log-transformed data, (Xi, Yi) =
(log10Xraw,i, log10 Yraw,i), an additive model seems appropriate.
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Fig. 2. UK household data, raw (left) and log-transformed (right), with isotonic quantile
curves.

Interestingly, neither linear nor quadratic nor cubic regression yield con-
vincing fits to these data. Polynomial regression of degree four or cubic
splines with knot points at, say, 4.1, 4.3, 4.5, 4.7, 4.9 seem to fit the data
quite well. Moreover, exact Monte Carlo goodness-of-fits test, assuming the
regression function to be a cubic spline and based on a Kolmogorov–Smirnov
statistic applied to studentized residuals, revealed the regression errors εi to
be definitely non-Gaussian.

Figure 3 shows the data and estimated β-quantile curves for β = 0.1,
0.25, 0.5, 0.75, 0.9, based on our additive regression model. Note that the
estimated β-quantile curve is simply the estimated mean curve plus the
β-quantile of the estimated error distribution. On the left-hand side, we

Fig. 3. Log-transformed UK household data with isotonic fits (left) and spline fits (right)
from our additive model.



LOG-CONCAVE APPROXIMATIONS 17

only assumed µ to be nondecreasing, on the right-hand side we fitted the
aforementioned spline model. In both cases the fitted quantile curves are
similar to the quantile curves in Figure 2 but with fewer irregularities such
as big jumps which may be artifacts due to sampling error.

4. Proofs. For the proof of Theorem 2.2 we need an elementary bound
for the Lebesgue measure of level sets of log-concave distributions:

Lemma 4.1 (DSS 2010). Let φ ∈Φ be such that
∫

eφ(x) dx= 1. For real t
define the level set Dt := {x ∈R

d :φ(x)≥ t}. Then for r <M ≤maxx∈Rd φ(x),

Leb(Dr)≤ (M − r)de−M
/

∫ M−r

0
tde−t dt.

Another key ingredient for the proofs of Theorems 2.2 and 2.15 is a lemma
on pointwise limits of sequences in Φ:

Lemma 4.2 (DSS 2010). Let φ̄ and φ1, φ2, φ3, . . . be functions in Φ such

that φn ≤ φ̄ for all n ∈N. Further suppose that the set

C :=
{

x ∈R
d : lim inf

n→∞
φn(x)>−∞

}

is nonempty. Then there exist a subsequence (φn(k))k of (φn)n and a function

φ ∈Φ such that C ⊆ dom(φ) = {φ >−∞} and

lim
k→∞,x→y

φn(k)(x) = φ(y) for all y ∈ interior(dom(φ)),

lim sup
k→∞,x→y

φn(k)(x)≤ φ(y)≤ φ̄(y) for all y ∈R
d.

Proof of Theorem 2.2. Suppose first that
∫

‖x‖Q(dx) = ∞. Since
any φ ∈Φ is majorized by x 7→ a− b‖x‖ for suitable constants a and b > 0,
this entails that L(Q) =−∞.

Second, suppose that
∫

‖x‖Q(dx) <∞ but interior(csupp(Q)) = ∅. Ac-
cording to Lemma 2.1, the latter fact is equivalent to Q(H) = 1 for some hy-
perplane H ⊂R

d. For c ∈R define a function φc ∈Φ via φc(x) := c−‖x‖ for
x ∈H and φc(x) :=−∞ for x /∈H . Then L(φc,Q) = c−

∫

‖x‖Q(dx)+1→∞
as c→∞.

For the remainder of this proof suppose that
∫

‖x‖Q(dx) <∞ and that
csupp(Q) has nonempty interior. Since the concave function h(x) = −‖x‖
satisfies

∫

hdQ>−∞, we have L(Q)>−∞. When maximizing L(φ,Q) over
all φ ∈Φ we may and do restrict our attention to functions φ ∈Φ such that
∫

eφ(x) dx = 1 (see end of Section 1) and dom(φ) = {φ > −∞} ⊆ csupp(Q).
For if dom(φ) 6⊂ csupp(Q), replacing φ(x) with −∞ for all x /∈ csupp(Q)
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would also increase L(φ,Q) strictly. Let Φ(Q) be the family of all φ ∈ Φ
with these properties.

Now we show that L(Q)<∞. Suppose that φ ∈Φ(Q) is such that M :=
maxx∈Rd φ(x)> 0. With Dt := {φ≥ t} and for c > 0 we get the bound

L(φ,Q) =

∫

φdQ≤−cMQ(Rd \D−cM) +MQ(D−cM )

=−(c+ 1)M

(

c

c+1
−Q(D−cM )

)

.

According to Lemma 4.1,

Leb(D−cM )≤ (1 + c)dMde−M
/

∫ (1+c)M

0
tde−t dt

= (1+ c)dMde−M/(d! + o(1))→ 0

as M →∞ for any fixed c > 0. But Lemma 2.1 entails that for sufficiently
large c and sufficiently small δ > 0,

sup{Q(C) :C ⊂R
d closed and convex,Leb(C)≤ δ}<

c

c+1
,

whence

L(φ,Q)→−∞ as max
x∈Rd

φ(x)→∞.

Note also that L(φ,Q)≤maxx∈Rd φ(x) for any φ ∈ Φ(Q). These considera-
tions show that L(Q) is finite and, for suitable constants Mo <M∗, equals
the supremum of L(φ,Q) over all φ ∈Φ(Q) such thatMo ≤maxx φ(x)≤M∗.

Next we show the existence of a maximizer φ ∈Φ(Q) of L(·,Q). Let (φn)n
be a sequence of functions in Φ(Q) such that −∞ < L(φn,Q) ↑ L(Q) as
n→∞, where Mn := maxx∈Rd φn(x) ∈ [Mo,M∗] for all n≥ 1. Now we show
that

inf
n≥1

φn(xo)>−∞ for any xo ∈ interior(csupp(Q)).(5)

If φn(xo) <Mn, then xo is not an interior point of the closed, convex set
{φn ≥ φn(xo)}. Hence

∫

φn dQ≤ φn(xo) + (Mn − φn(xo))Q{φn ≥ φn(xo)}

≤ φn(xo) + (Mn − φn(xo))h(Q,xo)

≤ φn(xo)(1− h(Q,xo)) +max(Mn,0)

with h(Q,xo)< 1 defined in Lemma 2.13. In the case of φn(xo) =Mn these
inequalities are true as well. Thus

φn(xo)≥−
max(Mn,0)−L(φn,Q)

1− h(Q,xo)
≥−

max(M∗,0)−L(φ1,Q)

1− h(Q,xo)
,
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which establishes (5). Combining (5) with φn ≤M∗, we may deduce from
Lemma 3.3 of Schuhmacher, Hüsler and Dümbgen (2009) that there exist
constants a and b > 0 such that

φn(x)≤ a− b‖x‖ for all n ∈N, x ∈R
d.(6)

The inequalities (5) and (6) and Lemma 4.2 with C ⊃ interior(csupp(Q))
and φ̄(x) := a− b‖x‖ imply existence of a function ψ ∈Φ and a subsequence
(φn(k))k of (φn)n such that ψ =−∞ on R

d \ csupp(Q) and

limsup
k→∞

φn(k)(x)≤ ψ(x)≤ a− b‖x‖ for all x ∈R
d,

lim
k→∞

φn(k)(x) = ψ(x)>−∞ for all x ∈ interior(csupp(Q)).

Since the boundary of csupp(Q) has Lebesgue measure zero, it follows from
dominated convergence that

∫

eψ(x) dx= 1. Moreover, applying Fatou’s lem-
ma to the nonnegative functions x 7→ a− b‖x‖ − φn(k)(x) yields

lim sup
k→∞

∫

φn(k) dQ≤

∫

ψdQ.

Hence

L(Q)≥L(ψ,Q)≥ lim sup
k→∞

L(φn(k),Q) = L(Q)

and thus L(ψ,Q) =L(Q).
Uniqueness of the maximizer ψ follows essentially from strict convexity

of the exponential function: if ψ̃ ∈ Φ(Q) with L(ψ̃,Q) > −∞, then L((1−
t)ψ + tψ̃,Q) is strictly concave in t ∈ [0,1], unless Leb{ψ 6= ψ̃}= 0. But for
ψ, ψ̃ ∈Φ(Q), the latter requirement is equivalent to ψ = ψ̃ everywhere. �

In our proofs of Theorems 2.7 and 2.15 we utilize a special approximation
scheme for functions in Φ:

Lemma 4.3 (DSS 2010). For any function φ ∈Φ with nonempty domain

and any parameter ε > 0 set

φ(ε)(x) := inf
(v,c)

(v⊤x+ c)

with the infimum taken over all (v, c) ∈ R
d × R such that ‖v‖ ≤ ε−1 and

φ(y) ≤ v⊤y + c for all y ∈ R
d. This defines a function φ(ε) ∈ Φ which is

real-valued and Lipschitz-continuous with constant ε−1. Moreover, it satisfies

φ(ε) ≥ φ with equality if and only if φ is real-valued and Lipschitz-continuous

with constant ε−1. In general, φ(ε) ↓ φ pointwise as ε ↓ 0.
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Proof of Theorem 2.7. Let P be the distribution corresponding to F .
Suppose first that φ= ψ(·|Q). Then it follows from (4) and Fubini’s theorem
that

0 =

∫

R

x(Q−P )(dx)

=

∫

R

∫

R

(1{0< t< x} − 1{x≤ t≤ 0})dt(Q− P )(dx)

=

∫

R

(1{0< t}(F −G)(t)− 1{t≤ 0}(G− F )(t))dt

=

∫

R

(F −G)(t)dt.

Moreover, for any x ∈R, the function s 7→ (s−x)+ is convex so that (3) and
Fubini’s theorem yield

0≤

∫

R

(s− x)+(Q−P )(ds) =−

∫ x

−∞
(F −G)(t)dt.

It remains to be shown that
∫ x
−∞(F −G)(t)dt≥ 0 for x ∈ S(φ). Suppose

first that x ∈ interior(dom(φ)). Note that φ′ := φ′(·+) is nonincreasing on
the interior of dom(φ) with

φ(x2)−φ(x1) =

∫ x2

x1

φ′(u)du for x1, x2 ∈ interior(dom(φ)) with x1 <x2.

Moreover, x ∈ S(φ) implies that φ′(x− δ)> φ′(x+ δ) for all δ > 0 satisfying
x± δ ∈ interior(dom(φ)). For such δ > 0 we define

Hδ(s) :=

∫ s

−∞
H ′
δ(u)du

with

H ′
δ(u) :=















0, for u≤ x− δ,
φ′(x− δ)− φ′(u)

φ′(x− δ)− φ′(x+ δ)
, for x− δ < u≤ x+ δ,

1, for u≥ x+ δ.

One can easily verify that φ + tHδ is upper semicontinuous and concave
whenever 0< t≤ φ′(x− δ)−φ′(x+ δ). In case of t <− infu∈R φ

′(u) it is also
coercive. Thus it follows from (2) that

0≤

∫

R

Hδ(s)(P −Q)(ds)→

∫

R

(s− x)+(P −Q)(ds) (δ ↓ 0)

=

∫ x

−∞
(F −G)(t)dt.
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When x ∈ S(φ) is the left or right endpoint of dom(φ), we define ∆(s) :=
(s− x)+ and conclude analogously that

∫ x
−∞(F −G)(t)dt≥ 0.

Now suppose that the distribution function F with log-density φ ∈ Φ
satisfies the integral (in)equalities stated in Theorem 2.7. Let ∆ :R→R be
Lipschitz-continuous with constant L, so for arbitrary x, y ∈R with x < y,

∆(y)−∆(x) =

∫ y

x
∆′(t)dt

with ∆′ :R→ [−L,L] measurable. Then
∫

∆d(Q− P ) =

∫

R

∆′(t)(F −G)(t)dt.

Since
∫

(F −G)(t)dt= 0, we may continue with
∫

∆d(Q−P ) =

∫

R

(∆′(t) +L)(F −G)(t)dt

=

∫

R

∫ L

−L
1{s <∆′(t)}ds(F −G)(t)dt

=

∫ L

−L

∫

A(∆′,s)
(F −G)(t)dt ds

with A(∆′, s) := {t ∈ R :∆′(t) > s}. Now we apply this representation
to the function ∆ := φ(ε) for some ε > 0, that is, L = ε−1. Here one can
show that A(∆′, s) equals either ∅ or R or a half-line with right endpoint
a(φ, s) =min{t ∈R :φ′(t+)≤ s}. But this entails that a(φ, s) ∈ S(φ), whence
∫

A(∆′,s)(F −G)(t)dt= 0 for all s ∈ (−L,L). Consequently,
∫

φ(ε) d(Q−P ) = 0.

If we consider ∆ := ψ(ε) with ψ := ψ(·|Q), the sets A(∆′, s) are still half-lines
with right endpoint or empty or equal to R. Thus

∫

A(∆′,s)(F −G)(t)dt≤ 0

for all s ∈ (−L,L), whence
∫

ψ(ε) d(Q−P )≤ 0.

Since φ(ε) ↓ φ and ψ(ε) ↓ ψ as ε ↓ 0, and since
∫

φdP and
∫

ψdQ exist in R, we
can deduce from monotone convergence that

∫

φd(Q− P ) = 0≥
∫

ψd(Q−

P ). Since
∫

eφ(x) dx=
∫

eψ(x) dx= 1, this entails that

L(φ,Q) = L(φ,P )≥ L(ψ,P )≥ L(ψ,Q),

where the first displayed inequality follows from log-concavity of P with
log-density φ. Thus φ= ψ. �
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Theorem 2.14 and the second part of Theorem 2.15 are a consequence of
the following result:

Theorem 4.4. Let (Qn)n be a sequence of distributions in Qo such that

Qn →w Q ∈ Qo, L(Qn) → λ ∈ [−∞,∞] and
∫

‖x‖Qn(dx) → γ ∈ [0,∞] as

n→∞. Then γ ≥
∫

‖x‖Q(dx), and λ >−∞ if and only if γ <∞. Moreover,

λ











<L(Q), if γ >

∫

‖x‖Q(dx),

= L(Q) ∈R, if γ =

∫

‖x‖Q(dx)<∞.

In the latter case, the densities f := exp ◦ ψ(·|Q) and fn := exp ◦ ψ(·|Qn)
are well defined for sufficiently large n and satisfy

lim
n→∞,x→y

fn(x) = f(y) for all y ∈R
d \ ∂{f > 0},

lim sup
n→∞,x→y

fn(x)≤ f(y) for y ∈ ∂{f > 0},

lim
n→∞

∫

|fn(x)− f(x)|dx= 0.

Before presenting the proof of this result, let us recall two elementary
facts about weak convergence and unbounded functions:

Lemma 4.5. Suppose that (Qn)n is a sequence in Q converging weakly

to some distribution Q. If h is a nonnegative and continuous function on R
d,

then

lim inf
n→∞

∫

hdQn ≥

∫

hdQ.

If the stronger statement limn→∞

∫

hdQn =
∫

hdQ<∞ holds, then

lim
n→∞

∫

f dQn =

∫

f dQ

for any continuous function f on R
d such that |f |/(1 + h) is bounded.

Proof of Theorem 4.4. The asserted inequality γ ≥
∫

‖x‖Q(dx) fol-
lows from the first part of Lemma 4.5 with h(x) := ‖x‖.

Suppose that γ <∞. Then with φ(x) :=−‖x‖,

λ≥ lim
n→∞

L(φ,Qn) =−γ −

∫

e−‖x‖ dx+1>−∞.

In other words, λ=−∞ entails that γ =∞.
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From now on suppose that λ > −∞, and without loss of generality let
L(Qn)>−∞ for all n ∈N. We have to show that γ <∞ and that λ≤ L(Q)
with equality if and only if γ =

∫

‖x‖Q(dx). To this end we analyze the
functions ψn := ψ(·|Qn) and their maximaMn := maxx∈Rd ψn(x). First of all,

(Mn)n is bounded.(7)

This can be verified as follows: since L(Qn) =
∫

ψn dQn ≤Mn, the sequence
(Mn)n satisfies lim infn→∞Mn ≥ λ. With similar arguments as in the proof
of Theorem 2.2 one can deduce that (Mn)n is bounded from above, provided
that

lim sup
n→∞

Qn(Cn)< 1

for any sequence of closed and convex sets Cn ⊂R
d with limnLeb(Cn) = 0.

To this end we refer to the proof of Lemma 2.1 in [DSS 2010]: there exist
a simplex ∆̃ = conv(x̃0, . . . , x̃d) with positive Lebesgue measure and open
sets U0, U1, . . . ,Ud with Q(Uj) ≥ η > 0 for 0 ≤ j ≤ d, such that ∆̃ ⊂ C for
any convex set C with C ∩ Uj 6= ∅ for 0 ≤ j ≤ d. But lim infnQn(Uj) ≥

Q(Uj) ≥ η for all j. Hence Leb(Cn) < Leb(∆̃) entails that Qn(Cn) ≤ 1 −
min0≤j≤dQn(Uj)≤ 1− η+ o(1) as n→∞.

Another key property of the functions ψn is that

lim inf
n→∞

ψn(xo)>−∞ for any xo ∈ interior(csupp(Q)).(8)

For

L(Qn) =

∫

ψn dQn ≤ ψn(xo) + (Mn −ψn(xo))h(Qn, xo),

whence as n→∞,

ψn(xo)≥−
max(Mn,0)−L(Qn)

1− h(Qn, xo)
≥−

lim supℓ→∞max(Mℓ,0)− λ

1− h(Q,xo)
+ o(1)

by virtue of Lemma 2.13. Combining (5) with (7) we may again deduce that
there exist constants a and b > 0 such that

ψn(x)≤ a− b‖x‖ for all n ∈N, x∈R
d.(9)

As in the proof of Theorem 2.2 we can replace (Qn)n with a subsequence

such that for suitable constants a, b > 0 and a function ψ̃ ∈Φ the following
conditions are met: interior(csupp(Q))⊆ dom(ψ̃) and

ψn(y), ψ̃(y)≤ a− b‖y‖ for all y ∈R
d, n ∈N,

lim
n→∞,x→y

ψn(x) = ψ̃(y) for all y ∈ interior(dom(ψ̃)),

lim sup
n→∞,x→y

ψn(x)≤ ψ̃(y) for all y ∈R
d.
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In particular,

λ= lim
n→∞

∫

ψn dQn ≤ lim
n→∞

∫

(a− b‖x‖)Qn(dx) = a− bγ,

whence

γ <∞.

Moreover,
∫

exp(ψ̃(x))dx= limn→∞

∫

exp(ψn(x))dx= 1, by dominated con-
vergence.

By Skorohod’s theorem, there exists a probability space (Ω,A,P) with
random variables Xn ∼ Qn and X ∼ Q such that limn→∞Xn =X almost
surely. Hence Fatou’s lemma, applied to the random variables Hn := a −
b‖Xn‖ − ψn(Xn), yields

λ= lim
n→∞

∫

ψn dQn = lim
n→∞

(
∫

(a− b‖x‖)dQn − E(Hn)

)

≤ a− bγ −E

(

lim inf
n→∞

Hn

)

≤ a− bγ −E(a− b‖X‖ − ψ̃(X))

= b

(
∫

‖x‖Q(dx)− γ

)

+

∫

ψ̃(x)Q(dx)

≤ b

(
∫

‖x‖Q(dx)− γ

)

+L(Q).

Thus λ < L(Q) if γ >
∫

‖x‖Q(dx).

It remains to analyze the case γ =
∫

‖x‖Q(dx) <∞. Here λ≤ L(ψ̃,Q)≤

L(Q), and it remains to show that λ≥ L(Q) which would entail that ψ̃ equals
the unique maximizer ψ := ψ(·|Q). With the approximations ψ(1) ≥ ψ(ε) ≥ ψ,
0< ε≤ 1, introduced in Lemma 4.3, it follows from their Lipschitz-continuity
and Lemma 4.5 that λ= limn→∞L(ψn,Qn) is not smaller than

lim
n→∞

L(ψ(ε),Qn) =L(ψ(ε),Q) =

∫

ψ(ε) dQ−

∫

exp(ψ(ε)(x))dx+ 1.

By monotone convergence, applied to the functions ψ(1) − ψ(ε), and domi-
nated convergence, applied to exp ◦ ψ(ε),

λ≥ lim
ε↓0

L(ψ(ε),Q) = L(ψ,Q) =L(Q).

Note that the probability densities f = exp ◦ ψ and fn = exp ◦ ψn obvi-
ously satisfy

lim
n→∞,x→y

fn(x) = f(y) for all y ∈R
d \ ∂{f > 0},

lim sup
n→∞,x→y

fn(x)≤ f(y) for all y ∈ ∂{f > 0}.
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In particular, (fn)n converges to f almost everywhere w.r.t. Lebesgue mea-
sure, whence

∫

|fn(x)− f(x)|dx→ 0.
The only problem is that we established these properties only for a subse-

quence of the original sequence (Qn)n. But elementary considerations out-
lined in [DSS 2010] show that this is sufficient. �

Proof of Theorem 2.15. The assertions of this theorem are essen-
tially covered by Theorem 4.4 as long as Q ∈ Qo ∩ Q1. It only remains
to show that L(Qn) → ∞ if D1(Qn,Q) → 0 for some Q ∈ Q1 \ Qo. Thus
∫

‖x‖Q(dx) <∞ and Q(H) = 1 for a hyperplane H = {x ∈ R
d :u⊤x = r}

with a unit vector u ∈R
d and some r ∈R. For k ≥ 1 we define φk ∈Φ via

φk(x) :=−‖ak +Bkx‖+ log(k),

where Bk := I − uu⊤ + kuu⊤ is a real, d× d matrix and ak :=−kru. Note
that det(Bk) = k and φk(x) = log(k)− ‖x‖ for x ∈H . Thus

L(φk,Qn)→ L(φk,Q) = log(k)−

∫

‖x‖Q(dx) +

∫

e−‖x‖ dx.

Since the right-hand side may be arbitrarily large, limn→∞L(Qn) =∞. �

Proof of Theorem 3.2. Note that v 7→ Q̂v defines a continuous map-
ping from R

n into the space of probability distributions on R with finite first
moment, equipped with Mallows distance D1. Moreover, by our assumption
that Y /∈ M(x), none of the distributions Q̂m(x), m ∈ M, degenerates to

a Dirac measure. According to Theorem 2.15, the mapping v 7→ L(Q̂v) is
thus continuous from M(x) into R.

When proving existence of a maximizer, as explained in Section 3.1, we
may restrict our attention to the closed subset M(x, Ȳ ) := {v ∈M(x) : v̄ =
Ȳ } of M(x), where generally w̄ denotes the arithmetic mean n−1

∑n
i=1wi

for a vector w ∈R
n. But for v ∈M(x, Ȳ ),

∫

|x− µ(Q̂v)|Q̂v(dx) =
1

n

n
∑

i=1

|Yi − vi| ≥
1

n

n
∑

i=1

|vi| −
1

n

n
∑

i=1

|Yi|,

and the right-hand side tends to infinity as ‖v‖ →∞. Thus it follows from
Lemma 3.1 that

L(Q̂v)→−∞ as ‖v‖ →∞,v ∈M(x, Ȳ ),

and this coercivity, combined with continuity of v 7→ L(Q̂v) and M(x, Ȳ )
being closed, yields the existence of a maximizer. �
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Proof of Theorem 3.5. The proof that Q⋆R ∈Qo∩Q1 is elementary
and omitted here. By affine equivariance (Remark 2.4), we may and do
assume that

∫

yR(dy) = 0. Now let ψ := ψ(·|Q) and ψ̃ := ψ(·|Q ⋆R). Then

L(Q⋆R) =

∫ ∫

ψ̃(x+ y)Q(dx)R(dy) =

∫

ψ̃R dQ,

where

ψ̃R(x) :=

∫

ψ̃(x+ y)R(dy)≤ ψ̃(x)

by Jensen’s inequality. Hence

L(Q ⋆R)≤

∫

ψ̃ dQ=L(ψ̃,Q)≤ L(Q).

Now suppose that L(Q ⋆ R) = L(Q), so in particular, ψ̃ = ψ. It follows
from ψ̃R ≤ ψ̃ ∈ Φ and Fatou’s lemma that ψ̃R ∈ Φ with

∫

exp(ψ̃R(x))dx ≤
∫

exp(ψ̃(x))dx= 1. Thus

L(Q) = L(Q⋆R)≤L(ψ̃R,Q)≤ L(Q),

that is, ψ̃R = ψ = ψ̃ and

ψ(x) =

∫

ψ(x+ y)R(dy) for all x ∈R
d.(10)

It remains to be shown that (10) entails R = δ0. Note that K := {x ∈
R
d :ψ(x) =Mo} with Mo := maxy∈Rd ψ(y) defines a compact set. Hence for

any unit vector u ∈ R
d there exists a vector x(u) ∈K such that u⊤x(u) ≥

u⊤x for all x ∈K. But then ψ(x(u) + y)<Mo for all y ∈R
d with u⊤y > 0.

Hence

Mo = ψ(x(u)) =

∫

ψ(x(u) + y)R(dy)

implies that R{y :u⊤y > 0} = 0. Since u is an arbitrary unit vector, this
entails that csupp(R) = {0}, that is, R= δ0. �

Proof of Theorem 3.6. Assumptions (A.2) and (A.3) imply that

the empirical distribution Q̂n := Q̂n,µn of the true errors εni satisfies both

DBL(Q̂n,Q)→p 0 and
∫

|t|Q̂n(dt)→p

∫

|t|Q(dt). Thus D1(Q̂n,Q)→p 0.
To verify the assertions of the theorem it suffices to consider a sequence of

fixed vectors εn = (εni)
n
i=1 ∈R

n such that for a constant c > 0 to be specified
later,

D1(Q̂n,Q) + sup
m∈M : ‖(m−µn)(xn)‖n≤c

DBL(Q̂n,m,Qn,m)→ 0.(11)
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Our goal is to show that (f̂n, µ̂n), viewed as a function of εn and thus fixed,
too, is well defined for sufficiently large n with

∫

|f̂n(x)− f(x)|dx→ 0 and ‖(µ̂n − µn)(xn)‖n → 0.(12)

Note that we replaced fn with f = exp ◦ ψ(·|Q) because
∫

|fn(x)− f(x)|dx
tends to 0.

We know already that we have to restrict our attention to the set M̂n of all
m ∈Mn such that

∫

tQ̂n,m(dt) = 0, that is,
∫

tR(µn−m)(xn)(dt) =−
∫

tQ̂n(dt)

converges to 0. Since {m(xn) :m ∈ M̂n} is a closed subset of Rn by (A.1), we

may argue as in the proof of Theorem 3.2 that a maximizer µ̂n of L(Q̂n,m)

over all m ∈ M̂n does exist. It is possible that L(Q̂n,µ̂n) =∞, but if we can

show that D1(Q̂n,µ̂n ,Q)→ 0, then f̂n exists for sufficiently large n, too. Thus
we may rephrase (12) as

D1(M̂n,Q)→ 0 and

∫

|t|R̂n(dt)→ 0,(13)

where M̂n := Q̂n,µ̂n and R̂n :=R(µn−µ̂n)(xn).

Note first that µ̌n := µn +
∫

tQ̂n(dt) belongs to M̂n, whence

L(M̂n)≥L(Q̂n,µ̌n) = L(Q̂n)→ L(Q)(14)

by Theorem 2.15. On the other hand
∫

|t|M̂n(dt) =
1

n

n
∑

i=1

|εni + (µn − µ̂n)(xni)| ≥

∫

|t|R̂n(dt)−

∫

|t|Q̂n(dt).

Thus, by Lemma 3.1, µ̂n satisfies
∫

|t|R̂n(dt)≤ c for sufficiently large n ∈N,
provided that c is larger than

∫

|t|Q(dt) + exp(−L(Q)). In particular,

DBL(M̂n,Qn ⋆ R̂n) =DBL(M̂n,Qn,µ̂n)→ 0.

Since DBL(Qn ⋆ R̂n,Q ⋆ R̂n)≤DBL(Qn,Q)→ 0, we know that even

DBL(M̂n,Q ⋆ R̂n)→ 0.

Since (R̂n)n is tight, to verify (13) we may consider a subsequence (R̂n(k))k

that converges weakly to some distribution R as k→∞. Then M̂n(k) →w

Q ⋆R, so

lim sup
k→∞

L(M̂n(k))≤ L(Q ⋆R)≤L(Q)

by Theorems 2.14 and 3.5. Because of (14) we even know that L(M̂n(k))→
L(Q ⋆R) = L(Q) as k→∞. Consequently, we may deduce from Theorems
2.14 and 3.5 that

lim
k→∞

D1(M̂n(k),Q ⋆ R) = 0 and R= δa for some a ∈R.
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It remains to be shown that a= 0 and limk→∞

∫

|t|R̂n(k)(dt) = 0. Elemen-
tary arguments reveal that for arbitrary r > 0 and n ∈N,

∫

|t|M̂n(dt)≥

∫

min(|t|, r)M̂n(dt) +

∫

|t|R̂n(dt)

−

∫

min(|t|,2r)R̂n(dt)−

∫

(|t| − r)+Q̂n(dt).

Hence
∫

|t|R̂n(k)(dt) is not greater than
∫

min(|t|,2r)R̂n(k)(dt) +

∫

(|t| − r)+M̂n(k)(dt) +

∫

(|t| − r)+Q̂n(k)(dt)

→

∫

min(|t|,2r)R(dt) +

∫

(|t| − r)+Q⋆R(dt) +

∫

(|t| − r)+Q(dt)

as k→∞. As r ↑∞, the limit on the right-hand side converges to
∫

|t|R(dt) =

|a|. Consequently, limk→∞D1(R̂n(k),R) = 0. But then 0 = limk→∞

∫

tR̂n(k)(dt)

coincides with
∫

tR(dt) = a. �

In our proofs of Theorems 3.7 and 3.8 we utilize a simple inequality for the
bounded Lipschitz distance in terms of the Kolmogorov–Smirnov distance,

DKS(Q,Q
′) := sup

t∈R
|(Q′ −Q)((−∞, t])|,

of two distributions Q,Q′ ∈Q(1):

Lemma 4.6 (DSS 2010). Let Q and Q′ be distributions on the real line.

Then for arbitrary r > 0,

DBL(Q,Q
′)≤ 4Q(R \ (−r, r]) + 4(r+1)DKS(Q,Q

′).

Proof of Theorem 3.7. A key insight is that the empirical distribu-
tions Q̂n,m are close to their expectations Qn,m with respect to Kolmogorov–
Smirnov distance, uniformly over all m ∈Mn. Namely,

sup
m∈Mn,r∈R

|(Q̂n,m −Qn,m)((−∞, r])|

= sup
b∈Rq(n),s∈R

∣

∣

∣

∣

∣

1

n

n
∑

i=1

(1{Yni − b⊤xni ≤ s} −Pr(Yni − b⊤xni ≤ s))

∣

∣

∣

∣

∣

≤ sup
H∈Hn

|(M̂n −Mn)(H)|,

where Hn denotes the family of all closed half-spaces in R
q(n)+1 while M̂n

is the empirical distribution of the random vectors (Yni, x
⊤
ni)

⊤ ∈ R
q(n)+1,
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1≤ i≤ n, andMn := EM̂n. Now we utilize well-known results from empirical
process theory: Hn is a Vapnik–Červonenkis class with VC-dimension q(n)+

3, and M̂n is the arithmetic mean of n independent random probability
measures. Thus

E sup
m∈Mn

DKS(Q̂n,m,Qn,m)≤C

√

q(n) + 3

n

for some universal constant C [see Pollard (1990), Theorems 2.2 and 3.5,
and van der Vaart and Wellner (1996), Theorem 2.6.4 and Lemma 2.6.16].

Since for fixed c > 0 the family {Qn,m :n ∈N,m ∈Mn with ‖(m− µn)×
(xn)‖n ≤ c} is tight, the previous finding, combined with Lemma 4.6, implies
that

lim
n→∞

E sup
m∈Mn : ‖(m−µn)(xn)‖n≤c

DBL(Q̂n,m,Qn,m) = 0.
�
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