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COALESCENCE IN A RANDOM BACKGROUND

BY N. H. BARTON,1 A. M. ETHERIDGE1,2 AND A. K. STURM3

University of Edinburgh, University of Oxford and Technical University Berlin

We consider a single genetic locus which carries two alleles, labelled
P and Q. This locus experiences selection and mutation. It is linked to a
second neutral locus with recombination rate r . If r = 0, this reduces to the
study of a single selected locus. Assuming a Moran model for the population
dynamics, we pass to a diffusion approximation and, assuming that the allele
frequencies at the selected locus have reached stationarity, establish the joint
generating function for the genealogy of a sample from the population and
the frequency of the P allele. In essence this is the joint generating function
for a coalescent and the random background in which it evolves. We use this
to characterize, for the diffusion approximation, the probability of identity
in state at the neutral locus of a sample of two individuals (whose type at
the selected locus is known) as solutions to a system of ordinary differential
equations. The only subtlety is to find the boundary conditions for this
system. Finally, numerical examples are presented that illustrate the accuracy
and predictions of the diffusion approximation. In particular, a comparison is
made between this approach and one in which the frequencies at the selected
locus are estimated by their value in the absence of fluctuations and a classical
structured coalescent model is used.

1. Introduction. The coalescent process was introduced by Kingman (1982)
as a simple and elegant description of the genealogical relationships amongst a set
of neutral genes. Although the two theories have developed largely independently,
the coalescent is closely related to the classical concept of identity by descent
introduced independently by Cotterman and Malécot [see Nagylaki (1989) for
a survey]. The original coalescent applies to the case of a single panmictic
population of constant size, but it extends naturally to describe populations that
vary with time or to structured populations in which genes may be found in
different places or embedded in different genetic backgrounds. By considering
the ancestral selection graph, various forms of selection can also be incorporated
[Krone and Neuhauser (1997) and Donnelly and Kurtz (1999)]. However, as the
genetic sophistication increases, not only are analytic results unattainable but
also the approach becomes increasingly computationally intensive. Moreover, the
powerful results of Donnelly and Kurtz rest upon exchangeability of the sample.
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This means that they lend themselves to describing the genealogy of a random
sample from the population. In the problem that we are concerned with here, the
sample is not random.

The particular problem that we are concerned with is the following. Suppose
that selection acts on a single locus which carries two alleles labelled P and Q.
There is also a strictly positive mutation rate between these two alleles so that
neither becomes fixed in the population. The selected locus is linked to a second
neutral locus with recombination rate r . One can then ask about the genealogy
of a sample from the neutral locus. If we know the type of each individual in
the sample at the selected site, then we have a sample from known locations in a
structured population, with two demes (determined by the P or Q allele) in which
the population size fluctuates randomly. Recombination and mutation from P to
Q both contribute to migration between the demes, while mutation and selection
determine the population sizes. Setting the recombination rate r = 0 we recover
the case of a single selected locus.

For certain forms of selection (directional and balancing) one can address this
problem using the ancestral selection graphs of Krone and Neuhauser (1997). Such
graphs trace the lineages of “potential ancestors” of a sample from the selected
locus. As one traces backwards in time lineages can “branch” as well as “coalesce.”
On reaching the most recent common ancestor of all such potential lineages, one
then traces back through the graph culling those that in fact did not contribute to the
sample. However, this method restricts the form of the selection and, as observed
in Przeworski, Charlesworth and Wall (1999), is also computationally demanding,
especially if selection is strong, because of the proliferation of potential lineages.

In fact the most common approach to our problem is to assume that fluctuations
are sufficiently small that we can approximate the allele frequencies at the
selected locus by their value in the absence of fluctuations and then model the
genealogy at the neutral locus by the structured coalescent with constant deme
sizes [Kaplan, Darden and Hudson (1988), Notohara (1990), Herbots (1997) and
Nordborg (1997)]. One might expect this procedure to give good approximations
to quantities such as the mean time to the most recent common ancestor of the
sample, which is very robust, but not to the variance of the same quantity. In fact,
in Section 7 we illustrate that for some parameter values even the mean time to
coalescence for a sample of size two can be ill-approximated by this procedure.

Here we adopt an alternative approach, more akin to the classical one. We
retain the stochastic fluctuations in the two deme sizes. Although we first establish
a coalescent-like diffusion approximation for the genealogy of the sample, we
actually express the quantities that we are interested in as solutions to a system
of ordinary differential equations and our numerical examples will all be obtained
by numerically solving this system. In Lemma 3.1 we identify the appropriate
“coalescent.” There are no surprises here, the model being entirely analogous to
a structured coalescent with two demes, but now the jump rates in the coalescent
are governed by the Wright–Fisher diffusion that determines the population sizes
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in each deme. What is surprising is the range of parameter values for which
the coalescent approximation is valid. One might expect that the mutation rates
between alleles P and Q need to be large enough that the allele frequencies stay
away from the margins where the diffusion approximation should break down. As
we see in Theorem 5.1, in fact we have convergence to the diffusion approximation
provided that the mutation rates between the selected alleles are nonzero.

In order to exploit the diffusion approximation, we use it to write down a system
of ordinary differential equations for the probability of identity in state for a sample
of size two from the neutral site (Theorem 6.1). Predictions of this model are
compared not only to those of the Wright–Fisher model that it is approximating,
but also to those of the constant deme size model in Section 7. We see in particular
that the fluctuations in allele frequency have a significant effect on the probabilities
of identity.

This approach was first suggested by Kaplan, Darden and Hudson (1988, 1989)
who essentially wrote down the same coalescent approximation, although they
did not address mathematical questions of existence of the corresponding process
or convergence to the limit. They also wrote down the system of differential
equations that determine the total length of the ancestral tree of a sample under this
approximation. These are of exactly the same form as the equations for probability
of identity that we obtain here. Because of the singular nature of the coefficients
and the difficulty in assigning boundary conditions to the system, they develop
a novel numerical solution scheme. However, this has not been exploited in the
literature. Here we have been able to identify the boundary conditions for the
system and as a result our numerical techniques are based on standard software.
They are described in detail in the companion paper Barton and Etheridge (2004).

A particular strength of our approach is that it applies to very general forms
of selection with essentially no additional computational effort. Numerically it is
considerably more efficient than simulations based on the ancestral selection graph
and moreover, in contrast to such simulations, the computational efficiency does
not decrease as the strength of selection increases. Although we concentrate on the
simple setting of a sample of size two embedded in a genetic background with just
two possible states, the approach is easily extended to larger samples and more
complex genetic backgrounds (albeit at the expense of increased computational
complexity); see Remark 6.2. As we see in Section 7, even the simplest context
provides considerable scope for investigation of important biological issues. We do
not explore it here, but we also see the ordinary differential equations as offering
a valuable analytic route to a perturbation analysis of identities in fluctuating
backgrounds.

Our primary motivation is the desire to investigate the effects of the selection
on the coalescence times for the neutral site. However, we also regard this as an
important step in understanding more general versions of the structured coalescent
in randomly fluctuating backgrounds. This is crucial to understanding populations
with complex spatial or genetic structure where the number of individuals in each
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background is not sufficiently large that fluctuations can be ignored [see Barton,
Depaulis and Etheridge (2002), Barton and Navarro (2002) and references therein].

The rest of the paper is laid out as follows. In Section 2 we describe our
model for the (forward in time) evolution of the proportions of the P and Q

alleles. Our starting point is a version of the Wright–Fisher model. For later
comparison with the diffusion approximation, we obtain a system of algebraic
equations for the probabilities of identity in state for a sample of size two from
such a population. As we explain above Definition 2.1, to obtain the diffusion
approximation it is convenient to work with the continuous time counterpart
of the Wright–Fisher model, the Moran model. For such a model, assuming
that the frequencies of the selected alleles, P and Q, have reached stationarity,
we write down the generator of the process {(p(1)(t), n

(1)
1 (t), n

(1)
2 (t))}t≥0 that

encodes the backward in time evolution of the selected allele frequencies and
the numbers of ancestors of the sample of neutral alleles alive at time t before
the present, labeled according to their background (P or Q). In Section 3 we
rescale the parameters in our model and establish the form of the generator of
the corresponding diffusion approximation. The existence of a stochastic process
with this generator and convergence of the rescaled processes to this limit are
established in Sections 4 and 5, respectively. In Section 6 we write down a
system of differential equations for the distribution of coalescence times and
hence, for the probability of identity in state in a sample of size two. We establish
an iterative solution to the system and indicate the extension to larger samples
and more complex genetic backgrounds. In the final section, Section 7, we
illustrate, in the case of balancing selection, the extremely good agreement with
the probabilities of identity established via the Wright–Fisher model of Section 2.
Although in biological applications one is typically concerned with a neutral linked
locus, we concentrate on the selected locus (r = 0) for easy comparison with
alternative approaches. We conclude by comparing the predictions of the model
to those obtained by assuming that the frequency of alleles at the selected site
is deterministic for different strengths of balancing selection. A full discussion
of the biological implications can be found in the companion paper Barton and
Etheridge (2004).

2. The model. In this section we describe the underlying model. First
consider the evolution of frequencies at the selected locus. We write p and
q = 1 − p for the proportions of P and Q alleles respectively. Our starting point
is a Wright–Fisher model with selection and mutation between types. We assume
a diploid population of size N . Thus each individual has type PP, PQ or QQ and
we write P11, P12 and P22 for the corresponding proportions of each type. Then

p = P11 + 1
2P12,

q = P22 + 1
2P12.
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During the reproductive process, each individual has a large (effectively infinite)
number of germ cells (cells of the same genotype) that split into gametes (cells
containing just one chromosome from each pair). The gametes then fuse at random
to form the next generation. We assume that there is selection in favor of certain
genotypes. Further there is mutation from type P to Q and vice versa.

Suppose that immediately before the reproductive step, the proportion of type P

is p. For simplicity we assume multiplicative selection. That is, relative fitnesses
of PP : PQ : QQ can be expressed in the form u2 : uv : v2. This means that we
can model selection as acting on haploids, so that after selection the proportion of
type P will be

p∗ = p(1 + s)

1 + sp

for some s. In the case of directional selection, s is just a constant, but by taking
s to be frequency dependent (i.e., a function of p) we can approximate more
complicated selection acting on the diploid population. For example, balancing
selection is modeled by assuming that s = s0(p0 − p) for some 0 < p0 < 1
and constant s0. If the population size is sufficiently large, this is close to
a model of overdominance with relative diploid fitnesses PP : PQ : QQ of
1 − s0q0 : 1 : 1 − s0p0, where q0 = 1 − p0.

We now account for mutation between P and Q. Suppose that in each
generation a mutation from P to Q has probability µ1 and from Q to P has
probability µ2. After the mutation step, the proportion of type P is then

p∗∗ = (1 − µ1)p
∗ + µ2(1 − p∗).

Finally 2N gametes are chosen at random to form the next generation. (These
fuse at random into N diploid pairs.) The resulting number of type P chromosomes
in the population will then be binomially distributed with 2N trials and success
probability p∗∗.

Now consider the neutral locus. This is on the same chromosome as the selected
locus, but we allow for the possibility of recombination or crossover events. This
happens during meiosis (the process of splitting into gametes). We assume that
with probability r there is a recombination event between the selected and neutral
sites. The result is that the two gametes exchange a portion of chromosome that
includes the selected site, but not the neutral site. Consequently, if such an event
occurs, for each of the two gametes the portion of the chromosome that includes
the neutral locus and that segment including the selected locus come from different
parental chromosomes. From the point of view of the neutral locus, the two
chromosomes swap types at the selected locus. By this mechanism (as well as by
mutation) an individual from the sample at the neutral locus can be in a different
genetic background from her parent.

So that we can later numerically test the accuracy of the diffusion approxima-
tion, we now use the Wright–Fisher model to calculate the probabilities of identity
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in state at the neutral locus of a sample of two genomes whose type at the selected
locus is known. (We shall refer to “individuals” in the sample to mean the ancestors
of an allele at the neutral locus, as opposed to an individual in the diploid popu-
lation. Since the transitions of the model can be interpreted as acting on haploids,
this should cause no confusion.) The probability of identity will depend on the past
history of the population. If we knew that history then we could calculate the iden-
tities by iterating backwards in time. We can still make progress if we assume that
the population is drawn from a stationary distribution. The Wright–Fisher model
described above is just a finite state space Markov chain. The probability of going
from i copies of P at time t to j at time t + 1 is given by

Pij =
(

2N

j

)
(p∗∗)j (1 − p∗∗)2N−j .

Provided that it has a nondegenerate stationary distribution {ψi}2N
i=1 (which is true

provided that the mutation rates µ1 and µ2 are strictly positive), then we can
reverse the process. The transition probabilities for the backwards in time evolution
of the number of type P genomes in the population are given by the prescription

�ji = ψi

ψj

Pij .

In following the history of the sample at the neutral locus we must decide whether
each individual was associated with a type P or a type Q at the selected locus in the
previous generation. This association can change from parent to child as a result of
mutation or of recombination. Following through the reproductive process above
we see that after the selection and mutation, the proportion of the P -population
that has arisen by mutation is

mP = µ2q
∗

(1 − µ1)p
∗ + µ2q

∗ ,

where we have used the notation q∗ = 1 − p∗. Similarly, the proportion of the
Q-gametes that have arisen by mutation is

mQ = µ1p
∗

(1 − µ2)q∗ + µ1p∗ .

Recall that the probability of a recombination event between the selected and
neutral sites in one generation is r . We need to know the probability, m̃P , that
a neutral locus currently associated with a type P background was associated
with a type Q background before the effects of mutation and recombination.
First observe that if there is a recombination event, the chance that it is with an
individual that is type Q after the mutation step and also with one of type Q before
the mutation step is (1 − mQ)(1 − p∗∗). If there is either no recombination event
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or a recombination with an individual whose type after the mutation step is P , then
we require that the type P arose by mutation. Thus, writing q∗∗ = 1 − p∗∗,

m̃P = r(1 − mQ)q∗∗ + (1 − rq∗∗)mP .

Similarly,

m̃Q = rp∗∗(1 − mP ) + (1 − rp∗∗)mQ.

We now have all the information that we require to write down recursions for
the quantities of interest at the neutral site. In particular, we are in a position
to write down recursive equations for the probability of identity in allelic state
for a sample from the neutral locus. (It is this quantity that we shall concentrate
on in our numerical examples of Section 7.) We assume that in each generation
mutation to a novel allele at the neutral locus occurs with probability ν and also
that the frequencies at the selected locus have reached stationarity. We then write
{fPP,i, fPQ,i, fQQ,i} for the probabilities of identity in state of a sample of two
gametes given that the current number of copies of the P allele in the population
is i. The subscripts PP, PQ and QQ designate the type at the selected locus of the
two individuals in our sample. Writing {f ∗

PP,i, f
∗
PQ,i, f

∗
QQ,i} for the probability of

identity after selection, mutation and recombination at the selected site we have,
for 1 < j < 2N − 1,

f ∗
PP,j = ∑

i

�ji

(
fQQ,im̃

2
P + 2fPQ,im̃P (1 − m̃P ) + fPP,i (1 − m̃P )2)

,

f ∗
PQ,j = ∑

i

�ji

(
fQQ,i (1 − m̃Q)m̃P

+ fPQ,i

(
m̃P m̃Q + (1 − m̃Q)(1 − m̃P )

)
+ fPP,im̃Q(1 − m̃P )

)
,

f ∗
QQ,j = ∑

i

�ji

(
fQQ,i (1 − m̃Q)2 + 2fPQ,im̃Q(1 − m̃Q) + fPP,im̃

2
Q

)
.

(1)

After taking into account random sampling and mutation at the neutral locus, the
identities become

fPP,j = (1 − ν)2
(
f ∗

PP,j + (1 − f ∗
PP,j )

j

)
,

fPQ,j = (1 − ν)2f ∗
PQ,j ,(2)

fQQ,j = (1 − ν)2
(
f ∗

QQ,j + (1 − f ∗
QQ,j )

2N − j

)
,

with fPP,1 = 1, fQQ,2N−1 = 1.
Armed with these equations, numerical calculation of probability of identity

now amounts to iterating matrix equations to find a fixed point. However, there
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is an obstruction to studying this system of equations analytically. Although with
strictly positive mutation rates the Wright–Fisher model must have a stationary
distribution, it is not known explicitly and consequently, neither are the transition
probabilities �ij . In our simulations of Section 7 these are calculated numerically.
The numerical estimates show that the Wright–Fisher model is not reversible (that
is �ij does not coincide with Pij ). In the next section we write down a diffusion
approximation for the Moran version of this model. The distinction between the
Moran and Wright–Fisher models is that in the Moran model we have overlapping
generations. This has the advantage that the frequency of P -alleles will then
be a generalized birth death process and consequently has a unique invariant
measure and this invariant measure is reversible. The backward in time transition
probabilities for the proportion of type P are then known: they are just given
by the forward in time transition probabilities. From Ethier and Kurtz [(1986),
Chapter 10, Section 2] we can check that the diffusion approximations for the
Wright–Fisher model and that found here for the Moran model are the same.
Moreover, since both models are exchangeable, the genealogies of a sample from
the population predicted by the two models will coincide in the diffusion limit [see
Kingman (1982a)].

To identify the appropriate Moran version of our model, consider again a diploid
population, but now evolving according to a continuous time Markov chain so
that, in particular, generations overlap. A single step of the chain corresponds to
the death of one (diploid) individual and its replacement by another. Such deaths
occur at exponential rate N and each individual in the population is equally likely
to die. The reproductive step follows the same sequence as before. Writing, as
before, p∗ and q∗ for the proportions of the two types of gamete after the action of
selection, and p∗∗, q∗∗ for the corresponding proportions after both selection and
mutation, we have Table 1.

For convenience, we write (1 + s)/(2 + s) = (1 + S)/2. Since in the Wright–
Fisher model an individual chooses her parents at random, we see that the natural
continuous time analogue of our Wright–Fisher model for the evolution of allele
frequencies at the selected site is the following version of the Moran model.

DEFINITION 2.1 (The Moran model). The Moran model of a population of
size 2N is a continuous time Markov chain. At exponential rate N , a pair of
individuals is chosen at random from the population. One dies and the other

TABLE 1

Type to die p∗ p∗∗

PP 1 (1 − µ1)

PQ (1 + s)/(2 + s) (1 − µ1)p∗ + µ2q∗
QQ 0 µ2
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reproduces. If the pair chosen consists of one type P and one type Q individual,
then the probability that it is the P individual that reproduces is (1 + S)/2.
A type P parent produces a type P offspring with probability 1 − µ1, otherwise
her offspring is type Q. Similarly, a type Q parent has type Q offspring with
probability 1 − µ2, otherwise her offspring is type P .

REMARK 2.2. (i) As before, we can take the parameter s, and consequently S,
to be frequency dependent.

(ii) We are assuming that the sampling at each birth/death event is with
replacement. This simplifies the expressions for the transition probabilities of the
process of allele frequencies at the selected locus, but the price that we pay is that
it will somewhat complicate those for the transition probabilities for the sample as
we trace backwards in time. Whether we sample with or without replacement will
not change the diffusion limit.

In order to keep track of the type at the selected locus of individuals in
our sample from the neutral locus, we must also incorporate the effects of
recombination. As before, we suppose that at each birth/death event there is a
probability r of a recombination event. The type at the selected locus of the
offspring of such an event is then inherited not from her parent, but from the
individual that died. By this mechanism, as well as by mutation at the selected
site, we see migration between the two genetic backgrounds.

Suppose then that we have a sample of individuals from our population and
that the type at the selected locus of each individual in our sample is known. We

write n
(1)
1 (0) for the number of individuals in the sample in background P and

n
(1)
2 (0) for the number in background Q. We are concerned with the ancestry of

the sample. (We superimpose the effects of mutation to a novel type at the neutral
locus later.) Thus we write n

(1)
1 (t) for the number of ancestors associated with

type P at the selected locus and n
(1)
2 (t) for the number of ancestors associated

with type Q at time t before the present. We write p(1)(t) for the proportion of the
whole population that are type P at that time.

Our final task in this section is to write down the generator of the (backward
in time) process {(p(1)(t), n

(1)
1 (t), n

(1)
2 (t))}t≥0. We suppose that p(1)(0) is drawn

from the stationary distribution of {p(1)(t)}t≥0 and (n
(1)
1 (0), n

(1)
2 (0)) is arbitrary.

The generator will be a very cumbersome object. Mercifully, things will be greatly
simplified when we pass to a diffusion approximation.

As we remarked above, the stationary distribution for the Moran model is
reversible, so the backwards in time dynamics of the allele frequency, {p(1)(t)}t≥0,
are the same as the forwards in time ones described in Definition 2.1. We are going
to need the transition probabilities for this process.
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LEMMA 2.3. Consider the probabilities in the jump chain of {p(1)(t)}t≥0.
Suppose that—looking backward in time—the proportion of the population
of type P immediately before and after an arbitrary birth/death event are
pm and pm+1, respectively. Writing Pp,p̃ = P[pm+1 = p̃|pm = p], we have

Pp,p = p2(1 − µ1) + (1 − p)2(1 − µ2)
(3)

+ 2p(1 − p)

(
1 + S

2
µ1 + 1 − S

2
µ2

)
,

Pp,p−1/(2N) = p

(
pµ1 + 2(1 − p)

1 − S

2
(1 − µ2)

)
,(4)

Pp,p+1/(2N) = (1 − p)

(
(1 − p)µ2 + 2p

1 + S

2
(1 − µ1)

)
.(5)

We can now write down the generator of the triple {(p(1)(t), n
(1)
1 (t), n(1)

2 (t))}t≥0.
We write

p− = p − 1

2N
, p+ = p + 1

2N
,

q− = (1 − p−), q = (1 − p), q+ = (1 − p+).

LEMMA 2.4. The generator, A(1), of the process {(p(1)(t), n
(1)
1 (t), n

(1)
2 (t))}t≥0

is given by

A(1)f (p,n1, n2)

= N(1 − r)c−
{ ( n1

2

)
( 2Np

2

)p−q−(1 + S−)(1 − µ1) + n1n2

4N2pq
q−qµ2

}

× (
f (p−, n1 − 1, n2) − f (p,n1, n2)

)
+ Nc−

{
n1(2Nq − n2)

4N2pq
q−qµ2

+ rn1

2Np
p−q−(1 + S−)(1 − µ1) + n1

2Np
q−

1

2N
µ2

}

× (
f (p−, n1 − 1, n2 + 1) − f (p,n1, n2)

)
+ (NPp,p−1/(2N) − R1 − R2)

(
f (p−, n1, n2) − f (p,n1, n2)

)

+ N(1 − r)c+
{ ( n2

2

)
( 2Nq

2

)p+q+(1 − S+)(1 − µ2) + n1n2

4N2pq
p+pµ1

}

× (
f (p+, n1, n2 − 1) − f (p,n1, n2)

)
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+ Nc+
{
n2(2Np − n1)

4N2pq
p+pµ1

+ rn2

2Nq
p+q+(1 − S+)(1 − µ2) + n2

2Nq
p+

1

2N
µ1

}

× (
f (p+, n1 + 1, n2 − 1) − f (p,n1, n2)

)
+ (NPp,p+1/(2N) − R4 − R5)

(
f (p+, n1, n2) − f (p,n1, n2)

)

+ N(1 − r)

{ ( n1
2

)
( 2Np

2

)pp−(1 − µ1) + n1n2

4N2pq
pq(1 − S)µ2

}

× (
f (p,n1 − 1, n2) − f (p,n1, n2)

)

+ N(1 − r)

{ ( n2
2

)
( 2Nq

2

)qq+(1 − µ2) + n1n2

4N2pq
pq(1 + S)µ1

}

× (
f (p,n1, n2 − 1) − f (p,n1, n2)

)
+ N(1 − r)

n1(2Nq − n2)

4N2pq
pq(1 − S)µ2

× (
f (p,n1 − 1, n2 + 1) − f (p,n1, n2)

)
+ N(1 − r)

n2(2Np − n1)

4N2pq
pq(1 + S)µ1

× (
f (p,n1 + 1, n2 − 1) − f (p,n1, n2)

)
,

where

S = S(p) = s(p)

2 + s(p)
, S− = S(p−), S+ = S(p+),

c− = Pp,p−
Pp−,p

= p(pµ1 + (1 − p)(1 − S)(1 − µ2))

(1 − p−)((1 − p−)µ2 + p−(1 + S−)(1 − µ1))
,

c+ = Pp,p+
Pp+,p

= (1 − p)((1 − p)µ2 + p(1 + S)(1 − µ1))

p+(p+µ1 + (1 − p+)(1 − S+)(1 − µ2))

and Ri denotes the rate in the ith term of the above expression.

PROOF. Conditional on the changes in p, we calculate the probabilities of the
possible changes in (n1, n2). A backward in time birth/death event corresponds to
a forward in time one. To establish the genealogy of our sample, we need to know
the role of individuals in the sample in this forward transition. Viewed backward
in time the possible transitions of the sample are “migrations,” in which the type
of the parent of an individual in the sample differs from that of her offspring, and
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“coalescences,” in which two individuals in the sample arise from the splitting of
an individual in the previous generation. Although when we pass to the diffusion
limit these processes will not happen in a single step (so that two individuals
in the sample of different types will not coalesce), here we cannot exclude that
possibility.

First observe that exactly three individuals are involved in the (forward in time)
birth/death event: the individual that died, the one that split (i.e., gave birth) and
her offspring. We write (i, j, k) with i, j, k ∈ {P,Q} for the event that the types
of these three individuals are respectively i, j, k. Because we have assumed that
we are sampling with replacement, the individual that died can coincide with the
one that split. In this case, we write (i, j, k) as (i, k). Let us write p̂m, p̂m+1 for
the forwards in time process immediately before and after an arbitrary birth/death
event. From Bayes’ rule,

P[(i, j, k)|pm+1 = p̃,pm = p] = P[(i, j, k)|p̂m = p̃, p̂m+1 = p]
= P[(i, j, k) ∩ {p̂m+1 = p}|p̂m = p̃]

Pp̃,p

= P[(i, j, k)|p̂m = p̃]
Pp̃,p

χ(i,j,k),p̃,p,

where χ(i,j,k),p̃,p is one if the event (i, j, k) results in a (forward in time) change
in the proportion of type P from p̃ to p and zero otherwise.

We now use this prescription to calculate all nonzero conditional probabilities
of this form. Again we write pm,pm+1 for the proportions in the jump chain
backwards in time. First suppose that the gene frequency does not change:

P[(P,P,P )|pm = p,pm+1 = p] = p(p − 1/(2N))(1 − µ1)

Pp,p

,

P[(P,P )|pm = p,pm+1 = p] = (p/(2N))(1 − µ1)

Pp,p

,

P[(Q,Q,Q)|pm = p,pm+1 = p] = (1 − p)(1 − p − 1/(2N))(1 − µ2)

Pp,p

,

P[(Q,Q)|pm = p,pm+1 = p] = (1 − p)(1/(2N))(1 − µ2)

Pp,p

,

P[(P,Q,P )|pm = p,pm+1 = p] = p(1 − p)(1 − S)µ2

Pp,p

,

P[(Q,P,Q)|pm = p,pm+1 = p] = p(1 − p)(1 + S)µ1

Pp,p

.
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When a type P individual is lost (looking backward in time) we have

P

[
(Q,Q,P )

∣∣∣pm = p,pm+1 = p − 1

2N

]
= (1 − p + 1/(2N))(1 − p)µ2

Pp−1/(2N),p

,

P

[
(Q,P )

∣∣∣pm = p,pm+1 = p − 1

2N

]
= (1 − p + 1/(2N))1/(2N)µ2

Pp−1/(2N),p

,

P

[
(Q,P,P )

∣∣∣pm = p,pm+1 = p − 1

2N

]

= (p − 1/(2N))(1 − p + 1/(2N))(1 + S−)(1 − µ1)

Pp−1/(2N),p

.

Finally, if a type one individual is gained (looking backward in time) we have

P

[
(P,P,Q)

∣∣∣pm = p,pm+1 = p + 1

2N

]
= (p + 1/(2N))pµ1

Pp+1/(2N),p

,

P

[
(P,Q)

∣∣∣pm = p,pm+1 = p + 1

2N

]
= (p + 1/(2N))(1/(2N))µ1

Pp+1/(2N),p

,

P

[
(P,Q,Q)

∣∣∣pm = p,pm+1 = p + 1

2N

]

= (p + 1/(2N))(1 − p − 1/(2N))(1 − S+)(1 − µ2)

Pp+1/(2N),p

.

All that remains is to establish the probability that these birth/death events

involved individuals in the sample.
First we consider coalescence. A coalescence of two individuals associated with

type P occurs in the sample if the parent and offspring are both associated with
type P and both form part of the sample and there was no recombination. Thus
if pm = p, conditional on (P,P,P ) or (Q,P,P ), this happens with probability
(1 − r)

( n1
2

)
/
( 2Np

2

)
. Similarly for a coalescence of two individuals in the sample

associated with type Q. For individuals associated with type P and Q from
the sample to coalesce requires an event of the form (i,Q,P ) or (i,P ,Q)

(corresponding to parent and offspring having different type) and conditional on
one of these events happening, has probability (1 − r) n1n2

2Np(2N−2Np)
.

Now we consider “migration.” An individual in the sample can “migrate” from
one background to the other as a result of mutation or recombination. In either case
she must be the offspring of a birth/death event. If the parent and the individual that
die have different types, then a recombination combined with a mutation does not
lead to a change in background. Thus conditional on pm = p and a birth/death
event that involved mutation from type Q to P forward in time, an individual in
our sample will migrate from type P to Q (backward in time) with probability
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(1 − r)
n1(2N−2Np−n2)
2Np(2N−2Np)

if the individual that dies and the individual that split are

different types, n1(2N−2Np−n2)
2Np(2N−2Np)

if they are the same type but different individuals
and n1/(2Np) if the individual that dies is the parent. Similarly, conditional on
pm = p and a birth/death event involving a mutation from P to Q, an individual
in our sample migrates from type Q to P (backward in time) with probability
(1 − r)

n2(2Np−n1)
2Np(2N−2Np)

if the event is (Q,P,Q), with probability n2(2Np−n1)
2Np(2N−2Np)

if

the event is (P,P,Q) and with probability n2
2N−2Np

if the event is (P,Q). If
there is no mutation, an individual in the sample can still change type due to
recombination: conditional upon (Q,P,P ) with probability rn1

2Np
, a member of

the sample migrates from background P to Q and conditional on (P,Q,Q) with
probability rn2

2N−2Np
, an individual of the sample migrates from background Q to

background P .
Finally, recalling that events in the jump chain take place at an exponential

rate N , we obtain the claimed expression. �

3. The generator of the diffusion approximation. In this section we identify
the generator of the diffusion approximation corresponding to the backward in
time model of Section 2. Existence of a corresponding stochastic process and
convergence to the limit is deferred to the following sections, but our proofs will
require the following assumption on the selection coefficient.

ASSUMPTION. The selection coefficient, s : [0,1] → R is a Lipschitz contin-
uous function.

As usual, we speed up time by a factor of diploid population size, N , and
correspondingly scale down the parameters in the model by the same factor. Thus
µi �→ µi/N and r �→ r/N . The selection coefficient, s, is also scaled by N . Notice
that

1 + s/N

2 + s/N
= 1

2

(
1 + s

2N

)
+ o

(
1

N

)
,

so that at the N th stage of the rescaling S = s/(2N) + o(1/N).
We write A(N) for the generator of Lemma 2.4 with parameters scaled in this

way.

LEMMA 3.1. Let E = [0,1]×{1, . . . , n1(0)+n2(0)}×{1, . . . , n1(0)+n2(0)}
and suppose that f (p,n1, n2) : E → R is twice continuously differentiable with
respect to p. Then for 0 < p < 1,

A(N)f (p,n1, n2) → Af (p,n1, n2) as N → ∞,
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where

Af (p,n1, n2)
(6)

= 1

2p

(
n1
2

) (
f (p,n1 − 1, n2) − f (p,n1, n2)

)

+ 1

2q

(
n2
2

)(
f (p,n1, n2 − 1) − f (p,n1, n2)

)
(7)

+ p

q
µ1

n2

2

(
f (p,n1 + 1, n2 − 1) − f (p,n1, n2)

)
(8)

+ q

p
µ2

n1

2

(
f (p,n1 − 1, n2 + 1) − f (p,n1, n2)

)
(9)

+ r
n2p

2

(
f (p,n1 + 1, n2 − 1) − f (p,n1, n2)

)
(10)

+ r
n1q

2

(
f (p,n1 − 1, n2 + 1) − f (p,n1, n2)

)
(11)

+ (−µ1p + µ2q + spq)
1

2
f ′(p,n1, n2) + 1

4
pqf ′′(p,n1, n2),(12)

and “ ′” denotes differentiation with respect to p.

REMARK 3.2. Note that µ1, the mutation rate for P → Q forward in time, is
involved in jumps Q → P in this backward in time generator (analogous for µ2).

PROOF OF LEMMA 3.1. Fix p > 0 and consider the generator A(N), which
is the generator A(1) of Lemma 2.4 with the parameters scaled as above. Notice
that c+ and c− tend to one as N → ∞ and that the effect of speeding up time is to
multiply the whole generator by a further factor of N .

Like A(1) the generator A(N) consists of ten terms corresponding to all possible
events. The first and seventh term sum to give

1

2p

(
n1
2

)(
f (p,n1 − 1, n2) − f (p,n1, n2)

) + O

(
1

N

)
.

The fourth and eighth terms sum to give

1

2q

(
n1
2

) (
f (p,n1, n2 − 1) − f (p,n1, n2)

) + O

(
1

N

)
.

Ignoring the part arising from recombination, the fifth and tenth terms sum to give

p

q
µ1

n2

2

(
f (p,n1 + 1, n2 − 1) − f (p,n1, n2)

) + O

(
1

N

)
.
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Ignoring the part arising from recombination, the second and ninth terms sum to
give

q

p
µ2

n1

2

(
f (p,n1 − 1, n2 + 1) − f (p,n1, n2)

) + O

(
1

N

)
.

The contribution to the second and fifth terms from recombination sum to give

r
n2p

2

(
f (p,n1 + 1, n2 − 1) − f (p,n1, n2)

)

+ r
n1q

2

(
f (p,n1 − 1, n2 + 1) − f (p,n1, n2)

) + O

(
1

N

)
.

This leaves the third and sixth terms. First observe that NRi for i = 1,2,4,5, are
all O(1), whereas N2Pp,p−1/(2N) and N2Pp,p+1/(2N) will both be O(N2). Using
smoothness of f as a function of p, we expand f (p−, n1, n2) and f (p+, n1, n2)

in a Taylor series about (p,n1, n2). The third and sixth terms then become

(N2Pp,p−1/(2N) − NR1 − NR2)

(
− 1

2N
f ′(p,n1, n2) + 1

8N2
f ′′(p,n1, n2)

)

+ (N2Pp,p+1/(2N) − NR4 − NR5)

(
1

2N
f ′(p,n1, n2) + 1

8N2
f ′′(p,n1, n2)

)

+ O

(
1

N

)
,

where we have again used “′” to denote differentiation with respect to p.
Substituting from Lemma 2.3 we obtain

N2p

(
p

µ1

N
+ q

(
1 − s

2N

)(
1 − µ2

N

))

×
(
− 1

2N
f ′(p,n1, n2) + 1

8N2
f ′′(p,n1, n2)

)

+ N2q

(
q

µ2

N
+ p

(
1 + s

2N

)(
1 − µ1

N

))

×
(

1

2N
f ′(p,n1, n2) + 1

8N2
f ′′(p,n1, n2)

)
+ O

(
1

N

)
,

which reduces to(
−p2µ1 + pqs

2
+ µ2pq

)
1

2
f ′(p,n1, n2)

+
(
q2µ2 + pqs

2
− µ1pq

)
1

2
f ′(p,n1, n2) + 1

4
pqf ′′(p,n1, n2) + O

(
1

N

)

= (−µ1p + µ2q + spq)
1

2
f ′(p,n1, n2) + 1

4
pqf ′′(p,n1, n2) + O

(
1

N

)
.

Letting N → ∞ in the above expressions completes the proof. �
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REMARK 3.3. There are no surprises in the form of this generator. If we
think of our population as subdivided into two demes according to the type at
the selected site, then we should expect the genealogy of the sample to be given by
a structured coalescent. Thus the terms (6) and (7) correspond to the coalescence
of individuals in the same deme, which happens at a rate inversely proportional
to the population size within that deme. The terms (8) and (9) reflect migration
between demes as a result of mutation. The rates must be scaled by the ratio of the
population sizes in the different demes, just as in the structured coalescent. The
terms (10) and (11) reflect migration due to recombination. Evidently these rates
must be proportional to the proportion of the population that is of the opposite type.
(Recombining with an individual of one’s own type has no net effect.) Finally the
term (12) is simply the generator of the diffusion approximation to our Moran
model for allele frequencies.

4. Existence of the diffusion approximation. It is not immediately obvious
that there should be a stochastic process with generator given by (6)–(12). The
immediate problem is that the coalescence and migration rates for the sample
become unbounded as the allele frequency p tends to zero or one. This means that,
in principle, we could see an infinite number of jumps in finite time. However,
what we shall see is that this does not happen because the process jumps away
from the “bad region” in a finite number of jumps.

First let us define “bad” (or rather “good” regions) for the process. Evidently we
want to keep away from regions where p is small and n1 	= 0 or where q is small
and n2 	= 0. We therefore define

U(k) =
[
0,

1

k

]
× {0} × {0,1, . . . , n1(0) + n2(0)}

∪
[
1 − 1

k
,1

]
× {0,1, . . . , n1(0) + n2(0)} × {0}

∪
(

1

k
,1 − 1

k

)
× {0,1,2, . . . , n1(0) + n2(0)}{0,1,2, . . . , n1(0) + n2(0)}.

Notice that the sets U(k) are open subsets of the state space E.
The first, straightforward, task is to show that the process exists until its exit

time from U(k) for each k. In an obvious notation, we write An for the portion
of the generator corresponding to the terms (6)–(11) and Ap for the portion
corresponding to the generator of the allele frequencies, namely (12).

LEMMA 4.1. We write C2(E) for bounded functions f :E → R which are
twice continuously differentiable with respect to p. Define

A(k)
p f (p,n1, n2) = χU(k)

(
(p,n1, n2)

)
Apf (p,n1, n2),

A(k)
n f (p,n1, n2) = χU(k)

(
(p,n1, n2)

)
Anf (p,n1, n2).
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Then the closure of{(
f,A(k)f

)
:f ∈ C2(E)

} ≡ {(
f,A(k)

p f + A(k)
n f

)
:f ∈ C2(E)

}
generates a Feller semigroup.

PROOF. This is standard. First consider A
(k)
p applied to functions f ∈

C2([0,1]). Then from, for example, Ethier and Kurtz [(1986), Chapter 8,
Theorem 2.8], the closure of {(f,Apf ) :f ∈ C2([0,1])} generates a Feller
semigroup on the continuous functions on [0,1]. (It is here that we have used that
the selection coefficient, s, is a Lipschitz continuous function.) We also know that,
for fixed p ∈ [0,1], A

(k)
n generates a Feller semigroup on continuous functions on

{0,1, . . . , n1(0)+n2(0)} × {0,1, . . . , n1(0)+n2(0)} (since the state space is finite
and the jump rates are all bounded). Evidently both generators can be regarded as
acting on E and they are Feller generators on continuous functions on E.

Now observe that∥∥A(k)
n f

∥∥∞ ≤ (
n1(0)2 + n2(0)2 + (2k + r)

(
n1(0) + n2(0)

))‖f ‖∞

and so A(k) is a bounded perturbation of A
(k)
p and hence also generates a strongly

continuous contraction semigroup [see Ethier and Kurtz (1986), Chapter 1,
Section 7]. That the resulting semigroup is positive and conservative is an easy
consequence of the Trotter product formula and the proof is complete. �

We can think of the processes constructed in Lemma 4.1 as solutions to
a stopped martingale problem. Let τk = inf{t ≥ 0 : (p(t), n1(t), n2(t)) /∈ U(k)}.
Then, for f in the domain of A,

f
(
p(t), n1(t), n2(t)

) −
∫ t∧τk

0
A(k)f

(
p(s), n1(s), n2(s)

)
ds

= f
(
p(t), n1(t), n2(t)

) −
∫ t∧τk

0
Af

(
p(s), n1(s), n2(s)

)
ds

(13)

is a martingale. We remark that this stopped martingale problem is well posed since
it is associated with a Feller generator [see Ethier and Kurtz (1986), Chapter 4,
Theorem 4.1].

To establish existence of the process corresponding to the generator A on the
whole of E, we shall use the following result [Ethier and Kurtz (1986), Chapter 4,
Theorem 6.3].

THEOREM 4.2. Let (E,d) be a complete and separable metric space and let
A ⊂ C(E) × B(E). Let U1 ⊂ U2 ⊂ · · · be open subsets of E. Fix ν ∈ P (E) and
suppose that for each k there exists a unique solution Xk of the stopped martingale
problem for (A, ν,Uk) with sample paths in DE[0,∞). Setting

τk = inf
{
t :Xk(t) /∈ Uk or Xk(t−) /∈ Uk

}
,
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suppose that for each t > 0,

lim
k→∞ P{τk ≤ t} = 0.(14)

Then there exists a unique solution of the DE[0,∞) martingale problem for (A, ν).

Here C(E) denotes bounded continuous functions on E, B(E) denotes bounded
Borel measurable functions on E, DE[0,∞) is càdlàg paths in E and P (E) is
probability measures on E. The generator A is to be thought of as {(f,Af )}
for f in a suitable class. [In our case A should be thought of as the closure of
{(f,Af ) : f ∈ C2(E)}.] The probability measure ν specifies the initial distribution
of our process.

Our task then is to show that if we take Uk = U(k), then the condition (14) is
satisfied.

PROPOSITION 4.3. With τk as above, for any fixed t > 0,

lim
k→∞ P{τk ≤ t} = 0.

Of course, if the boundaries are inaccessible for the process {p(t)}t≥0, which,
as we show as part of Lemma 4.4, is true provided µi ≥ 1/2 for i = 1,2, then
there is no problem. The difficulty is to check that this is still true under the much
weaker (and biologically more realistic) condition that we are assuming here, that
µi > 0 for i = 1,2. The key is the following lemma.

LEMMA 4.4. (i) Suppose that µ2 ≥ 1/2 (resp. µ1 ≥ 1/2). Then 0 (resp. 1)
is an inaccessible boundary for the process {p(t)}t≥0. If µ2 ∈ (0,1/2) [resp.
µ1 ∈ (0,1/2)], then it is accessible.

(ii) Suppose that µ2 < 1/2 (resp. µ1 < 1/2). Then for any fixed value of
p(0) ∈ (0,1) and any K > 0, writing τx(a) for the first hitting time of a by the
process {p(t)}t≥0 given that p(0) = x, we have

lim
k→∞P

[∫ τp(0)(1/k)

0

1

p(s)
ds > K

]
= 1,(15)

respectively,

lim
k→∞P

[∫ τp(0)(1−1/k)

0

1

1 − p(s)
ds > K

]
= 1.

REMARK 4.5. Equation (15) is not the strongest statement that we could make
about the divergence of the integral, but it is the form that we require in the proof
of Proposition 4.3.
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PROOF OF LEMMA 4.4. Recall that for a one-dimensional diffusion process
on the interval [0,1] with generator

L = 1

2
a(x)

d2

dx2
+ b(x)

d

dx
,

the scale, n(x), and speed, m(x), are defined for x ∈ [0,1] by

n(x) =
∫ x

c
exp

(
−

∫ y

c

2b(z)

a(z)
dz

)
dy,

m(x) =
∫ x

c

2

a(y)
exp

(∫ y

c

2b(z)

a(z)
dz

)
dy,

where c ∈ (0,1) is fixed arbitrarily. According to Feller’s boundary classification,
a boundary point e is accessible or inaccessible according as

u(e) �
∫ e

c
m(x) dn(x)

is finite or infinite.
For the process of allele frequencies, {p(t)}t≥0, we have

a(x) = 1
2x(1 − x), b(x) = 1

2

(
s(x)x(1 − x) − µ1x + µ2(1 − x)

)
.

Substituting gives

n(x) =
∫ x

c
exp

(
−

∫ y

c
2s(z) dz

)
y−2µ2(1 − y)−2µ1 dy,

m(x) =
∫ x

c

4

y(1 − y)
exp

(∫ y

c
2s(z) dz

)
y2µ2(1 − y)2µ1 dy.

Since s(x) is bounded and continuous and µi > 0 for i = 1,2, we have n(x) ∼∫
x+ y−2µ2 dy as x ↓ 0 which is bounded or unbounded according as µ2 < 1/2 or

µ2 ≥ 1/2. The symmetrical argument applied to the boundary point 1 completes
the proof of Part 1 of the lemma.

Now suppose that µ2 < 1/2. Since p(0) is arbitrary, for the remainder of this
proof we shall suppress it in our notation and write τ (x) for the first hitting time
of x.

First we convert the process p(t) to natural scale. That is, we study the process
Y (t) � n(p(t)). Now

Y (t) = Y (0) +
∫ t

0
σ(Y (s)) dWs,

where {Wt}t≥0 is a standard Brownian motion started from n(p(0)) and (using “ ′”
to denote differentiation)

σ(y) = n′(n−1(y)
)√1

2n−1(y)
(
1 − n−1(y)

)
.
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Without loss of generality, since scale is defined only up to translation, we
may assume that n(0) = 0 and then as x ↓ 0 our calculations above show that
n(x) ∼ x1−2µ2 . The quantity that we are interested in is

∫ τ(1/k)

0

1

n−1(Y (s))
ds.

Writing Y (t) = W(γ (t)) where γ is defined by

∫ γ (t)

0

1

σ(Ws)
ds = t,

and substituting r = γ (s) in the integral, we obtain

∫ τ(1/k)

0

1

p(s)
ds =

∫ γ (τ(1/k))

0

1

n−1(Wr)

1

σ(Wr)
dr.

Now observe that

n−1(x) ∼ x1/(1−2µ2), σ (x) ∼ x−2µ2/(1−2µ2)x1/(2(1−2µ2)) as x ↓ 0,

and so the behavior of (15) is determined by

∫ γ (τ(1/k))

0

1

Wα
r

dr,(16)

where

α = 1

1 − 2µ2
− 2µ2

1 − 2µ2
+ 1

2(1 − 2µ2)
= 1 + 1

2(1 − 2µ2)
.

Notice that W(γ (τ (1/k)) = n(1/k) implies that γ (τ (1/k)) ∼ τW(k−(1−2µ2)),
where τW(x) is the first hitting time of x by the Brownian motion {Wt}t≥0. Finally,
since µ2 < 1

2 , α > 1 and limk→∞ γ (τ (1/k)) = τW(0), we deduce (15). �

PROOF OF PROPOSITION 4.3. For a ∈ [0,1], we retain the notation τx(a) for
the first hitting time of a by the process {p(t)}t≥0 given that p(0) = x.

Suppose that 0 is an inaccessible boundary for the process {p(t)}t≥0. Then
we have P[τ1/k(0) ≤ t] → 0 as k → ∞. A fortiori, the probability that
{(p(t), n1(t), n2(t))}t≥0 hits {1

k
} × {i} × {n1} for i 	= 0 before time t tends to

zero as k tends to infinity. Similarly, if 1 is inaccessible for the process of allele
frequencies, the probability of hitting {1 − 1

k
} × {n1} × {i} for nonzero i tends to

zero as k → ∞.
We concentrate on the case when 0 is an accessible boundary for the process

{p(t)}t≥0, that is µ2 < 1/2.
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The idea of the proof is simple. If p approaches zero, then (15) implies that
the probability of jumping from type P to type Q for individuals in our sample
tends to one. On the other hand the jump rate from type Q to type P tends to zero.
Therefore, with very high probability (tending to one), if the allele frequency is
less than 1/k, we do not see a type P individual in (the ancestors of ) our sample.
Combined, if 1 is also accessible, with the symmetric argument as the allele
frequency increases to one, we see that the probability of hitting the boundary
of U(k) in finite time converges to zero as k → ∞.

We now make this argument more precise. Suppose that t ≥ 0 is fixed. We use
the abbreviation n(0) = n1(0) + n2(0). This is an upper bound on the number of
individuals in the sample at all times. Now fix δ > 0. For each p ∈ (0,1), define

λ1(p) = n(0)

(
pµ1

2(1 − p)
+ rp

2

)

and

λ2(p) = 1 − p

p

µ2

2
.

Notice that λ2 provides a lower bound for the rate at which individuals in the
sample jump away from state P (provided that n1 	= 0), whereas λ1 provides an
upper bound for the rate at which they arrive.

Let Tε be an exponentially distributed random variable with rate λ1(ε).
Recall that for 0 ≤ a < x < b ≤ 1,

P[τx(a) < τx(b)] = n(b) − n(x)

n(b) − n(a)
,

where the scale function, n(x) was defined in Lemma 4.4. Substituting, we see that
by choosing N large enough, we can arrange that

P[τε(0) < τε(Nε)] > 1 − δ

8
uniformly in ε <

1

N
.(17)

By choosing ε to be still smaller if necessary, we arrange that

P[TNε > t] > 1 − δ

8
.(18)

Now let X be a Poisson random variable with mean K . Choose K large enough
that

P[X > n(0)] > 1 − δ

8
.(19)

Finally suppose that p(0) ≥ ε and (with ε fixed) using Lemma 4.4 choose k0 large
enough that for k > k0,

P

[∫ τp(0)(1/k)

τp(0)(ε)
λ2(p(s)) ds > K

]
> 1 − δ

8
.(20)
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Now consider the first time τp(0)(1/k) that the process of allele frequencies
hits 1/k. We want to estimate the probability that n1(τp(0)(1/k)) = 0. We combine
the above estimates as follows. We use equation (17) to restrict our attention to the
event that between first hitting ε and first hitting 1/k we always have p < Nε.
Equation (18) then allows us to ignore the possibility that there are any jumps of
individuals in the sample into state P in this time interval. Equation (20) ensures
that the rate of jumps out of state P is at least K (provided there are any individuals
to jump) and finally equation (19) ensures that all individuals do indeed jump out
of state P before the process hits 1/k. Thus, with probability at least 1 − δ/2 when
the p process hits 1/k, n1 = 0.

Started from p = 1/k and n1 = 0, we now let the process run until the first
time T that n1 	= 0. Evidently this is smallest if p = 1/k, n2 = n(0). Moreover,
since the rate at which individuals jump into state P increases as p increases,
provided that ε < 1/2, this time is stochastically greater than T ′, the first time
started from (1/2,0, n(0)) that n1 	= 0. The distribution of T ′ is independent of
ε and δ. We want to apply the above argument once again to see that the next
time the allele frequency hits 1/k, the probability that n1 = 0 is at least 1 − δ/2.
The only twist is that we may need to choose ε smaller still to ensure that the
probability that at the time T the process p is greater than ε is at least 1 − δ/2.
Notice that this last estimate can be obtained uniformly in k > 1/ε by choosing ε

so that if we start from (0,0, n(0)), then p(T ) > ε with probability 1 − δ/2.
Now we are essentially done. The process hits the boundary p = 1/k with

n1 	= 0 only after a geometric number of hits of p on 1/k. The success probability
for this geometric random variable is at most δ. Each “failure” accrues an
additional waiting time bounded below by an independent copy of T ′. Since δ was
arbitrary, the proof is complete. �

5. Convergence. Having established existence of our candidate diffusion
approximation, we now turn to proving that the rescaled processes of Section 3
actually converge to this limit. That is, we prove the following theorem.

THEOREM 5.1. The processes {(p(N)(t), n
(N)
1 (t), n

(N)
2 (t))}t≥0 corresponding

to the generators A(N) of Lemma 3.1 converge weakly in DE[0,∞) as N → ∞ to
the process {(p(t), n1(t), n2(t))}t≥0 generated by A.

The main tool in the proof will be the following result which is a special case of
Ethier and Kurtz [(1986), Chapter 4, Corollary 8.7].

THEOREM 5.2. Suppose that (E,d) is a complete separable metric space.
Let A be a Feller generator on E corresponding to the Markov process X.
For each N ≥ 1, let X(N) be progressively measurable E-valued processes
with full generators Â(N) and such that X(N)(0) converges weakly to X(0) as
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N → ∞. Suppose that D(A) separates points. Suppose further that the compact
containment condition holds for {X(N)}N≥1. That is, for every ε > 0 and every
T > 0 there exists a compact set �ε,T ⊆ E for which

inf
N

P
[
X(N)(t) ∈ �ε,T for 0 ≤ t ≤ T

] ≥ 1 − ε.

Suppose that for each (f, g) ∈ A and T > 0 there exist (f (N), g(N)) ∈ Â(N) and
G(N) ⊂ E such that

lim
N→∞ P

[
X(N)(t) ∈ G(N),0 ≤ t ≤ T

] = 1,(21)

supN ‖f (N)‖∞ < ∞ and

lim
N→∞ sup

x∈G(N)

∣∣f (x) − f (N)(x)
∣∣ = 0 = lim

N→∞ sup
x∈G(N)

∣∣g(x) − g(N)(x)
∣∣.(22)

Then X(N) converges weakly to X as N → ∞.

In fact, this result would be sufficient to allow us to prove the result in one
fell swoop, but in view of the work of Section 4, it is convenient to proceed in
two stages. First, taking the sets G(N) = E, we prove convergence of the stopped
processes, X(N,k), generated by A(N,k) ≡ χU(k)A(N), to the process Xk for each k.
The following lemma, which is a straightforward adaptation of Lemma 11.1.1 of
Stroock and Varadhan (1979) then completes the proof.

LEMMA 5.3. Let {P(N)}N≥1 be a sequence of probability measures on the
space DE[0,∞) and suppose that T (k) is a nondecreasing sequence of stopping
times (with respect to the natural filtration) increasing to infinity almost surely.
For each k ≥ 1, let {P(N,k)}N≥1 be a relatively compact sequence of probability
measures such that P

(N,k) is equal to P
(N) on FT (k) .

If the probability measure P has the property that, for any k ≥ 1, any limit point
of {P(N,k)}N≥1 agrees with P on FT (k) , then P

(N) converges to P as N → ∞.

PROOF OF THEOREM 5.1. First we fix k ≥ 1 and consider the sequence
of stopped processes {X(N,k)}N≥1. The compact containment condition of The-
orem 5.2 is automatically satisfied since E is compact. We take the sets Gn = E in
condition (21). From Section 3 we see that we can take f (N) = f in condition (22)
and convergence of the stopped processes is proved.

Combining Proposition 4.3 with Lemma 5.3, the proof is complete. �

6. Differential equations for the identities. We now return to the problem
of calculating the probability of identity in allelic state at the neutral locus for a
sample whose types at the selected locus are known. For simplicity, we consider
the case of a sample of size two, but see Remark 6.2.
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Our approach is to use the diffusion approximation to write down a coupled
system of ordinary differential equations for the probability of identity, indexed
by the state at the selected locus of the sample, that is PP, PQ and QQ. Thus
fPP will denote the probability of identity given that the two individuals in our
sample are both of type P . These quantities will be compared to the predictions of
equations (1) and (2) in Section 7.

If the current allele frequency at the selected locus is p (assumed as always to
have reached stationarity), then write FPP(t,p) for the probability that at time t

the (backwards in time) process {(p(t), n1(t), n2(t))}t≥0 is in [0,1] × {0} × {1} ∪
[0,1] × {1} × {0} given that at time zero n1(0) = 2, n2(0) = 0. Similarly, define
FPQ(t,p) and FQQ(t,p). We assume, as always, that {p(0)}t≥0 is drawn from the
(reversible) stationary distribution for the process {p(t)}t≥0.

Since by our work of Section 4 there will be no point of accumulation of epochs
of jump times for the process, following Feller [(1966), Section X.3], we see
[by first conditioning on {p(t)}t≥0] that {FPP(t,p),FPQ(t,p),FQQ(t,p)} can be
characterized as the unique minimal solution to the following system of differential
equations (we use Ḟ to denote the derivative of F with respect to t):

ḞPP = 1 − FPP

2p
+

(
µ2q

p
+ rq

)
(FPQ − FPP)

+ 1

2
(−µ1p + µ2q + spq)F ′

PP + 1

4
pqF ′′

PP,

ḞPQ = 1

2

(
pµ1

q
+ rp

)
(FPP − FPQ) + 1

2

(
qµ2

p
+ rq

)
(FQQ − FPQ)

(23)
+ 1

2
(−µ1p + µ2q + spq)F ′

PQ + 1

4
pqF ′′

PQ,

ḞQQ = 1 − FQQ

2q
+

(
µ1p

q
+ rp

)
(FPQ − FQQ)

+ 1

2
(−µ1p + µ2q + spq)F ′

QQ + 1

4
pqF ′′

QQ.

Suppose that the mutation rate to a novel allele at the neutral site is ν, cor-
responding to the rescaling ν �→ ν/N of the model of Section 2, then conditional
on the individuals having coalesced at time t , the probability that they are identical
in state, that is, that there has been no mutation since time t along either of
their lines of descent, is e−2νt . Conditioning on the time to coalescence then
gives

fPP(p) =
∫ ∞

0
e−2νt dFPP(t,p)

dt
dt

with similar expressions for fPQ(p) and fQQ(p). Integration by parts then
shows that, under the diffusion approximation, the probabilities of identity
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satisfy

0 = −2νfPP + 1 − fPP

2p
+

(
µ2q

p
+ rq

)
(fPQ − fPP)

+ 1

2
(−µ1p + µ2q + spq)f ′

PP + 1

4
pqf ′′

PP,

0 = −2νfPQ + 1

2

(
pµ1

q
+ rp

)
(fPP − fPQ)

+ 1

2

(
qµ2

p
+ rq

)
(fQQ − fPQ)(24)

+ 1

2
(−µ1p + µ2q + spq)f ′

PQ + 1

4
pqf ′′

PQ,

0 = −2νfQQ + 1 − fQQ

2q
+

(
µ1p

q
+ rp

)
(fPQ − fQQ)

+ 1

2
(−µ1p + µ2q + spq)f ′

QQ + 1

4
pqf ′′

QQ.

We now identify the probabilities of identity in state as the minimal solu-
tion to this system. Again following Feller [(1969), Section X.3], {FPP(t,p),
FPQ(t,p), FQQ(t,p)}, the minimal solution to (23) is most easily constructed
via an iterative procedure. At the nth stage of the iteration, the functions
{F (n)

PP (t,p), F
(n)
PQ (t,p), F

(n)
QQ(t,p)} are obtained by conditioning the number

of jumps that the process can make by time t to be at most n. Since (by
our work of Section 4) the total number of jumps that the process can make
by time t is finite, as n → ∞ this sequence of functions really does con-
verge to the distribution function of the coalescence times. If we now de-
fine

f
(n)
PP =

∫ ∞
0

e−2νt dF (n)(t,p)

dt
dt,

with parallel definitions for f
(n)
PQ and f

(n)
QQ , then as n → ∞, {f (n)

PP (p), f
(n)
PQ (p),

f
(n)
QQ(p)} converges to the minimal solution to the system of equations (24).

Combining the above yields the following.

THEOREM 6.1. Under the diffusion approximation, if the process of allele
frequencies is assumed to have reached stationarity, then the probabilities of
identity in state for a sample of size two whose types at the selected site are
known, denoted {fPP(p), fPQ(p), fQQ(p)}, are given by the minimal solution to
the system of equations (24).
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Before exploring the equations numerically, we make precise the iteration that
we used above to construct the minimal solution. The sequence of functions
{f (n)

PP , f
(n)
PQ , f

(n)
QQ}n≥0 is obtained as follows. First set (f (0)

PP (p), f (0)
PQ (p), f (0)

QQ(p)) ≡
(0,0,0) for p ∈ [0,1]. Then for n ≥ 1,

0 = −2νf
(n)
PP + 1 − f

(n)
PP

2p
+

(
µ2q

p
+ rq

)(
f

(n−1)
PQ − f

(n)
PP

)

+ 1

2
(−µ1p + µ2q + spq)

d

dp
f

(n)
PP + 1

4
pq

d2

dp2 f
(n)
PP ,

0 = −2νf
(n)
PQ + 1

2

(
pµ1

q
+ rp

)(
f

(n−1)
PP − f

(n)
PQ

)

+ 1

2

(
qµ2

p
+ rq

)(
f

(n−1)
QQ − f

(n)
PQ

)

+ 1

2
(−µ1p + µ2q + spq)

d

dp
f

(n)
PQ + 1

4
pq

d2

dp2 f
(n)
PQ ,

0 = −2νf
(n)
QQ + 1 − f

(n)
QQ

2q
+

(
µ1p

q
+ rp

)(
f

(n−1)
PQ − f

(n)
QQ

)

+ 1

2
(−µ1p + µ2q + spq)

d

dp
f

(n)
QQ + 1

4
pq

d2

dp2 f
(n)
QQ .

As n → ∞, the functions f
(n)
PP , f

(n)
PQ and f

(n)
QQ converge (monotonically) to the

minimal solution of (24).
Since the system (24), arose by integrating the Kolmogorov backward equa-

tions (23), the boundary conditions are implicitly prescribed. However, in order
to solve the equations numerically, we require explicit expressions. The first thing
that we must check is that

p
df

(n)
PP

dp
, p

df
(n)
PQ

dp
, p

d2f
(n)
PP

dp2
, p

d2f
(n)
PQ

dp2

all tend to 0 as p tends to 0 and similarly,

(1 − p)
df

(n)
PQ

dp
, (1 − p)

df
(n)
QQ

dp
, (1 − p)

d2f
(n)
PQ

dp2
, (1 − p)

d2f
(n)
QQ

dp2

all tend to 0 as p tends to 1. The method is lengthy, but completely standard.
For each equation, first use the Frobenius method of solution in series to find two
linearly independent solutions to the corresponding homogeneous equation. (One
solution will be singular at p = 0 and the other will not.) Then use the method
of variation of parameters to write down the corresponding Green’s function and
finally integrate to obtain the solution to the original (inhomogeneous) equation.
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We omit the details. They can be found in any standard text on ordinary differential
equations, for example, Simmons (1974).

Granted the above, we can now read off the boundary conditions from the
equations. Letting p tend to 0 in the first equation and to 1 in the last equation
of (24) gives

f
(n)
PP (0) = 1 + 2µ2f

(n−1)
PQ (0)

1 + 2µ2
, f

(n)
QQ(1) = 1 + 2µ1f

(n−1)
PQ (1)

1 + 2µ1
.

Letting p tend to 1 in the first equation and to 0 in the last equation of (24) we see
that we must have

(1 + 4ν)f
(n)
PP (1) + µ1

df
(n)
PP

dp
(1) = 1, (1 + 4ν)f

(n)
QQ(0) − µ2

df
(n)
QQ

dp
(0) = 1.

The second equation yields

f
(n)
PQ (0) = f

(n−1)
PP (0), f

(n)
PQ (1) = f

(n−1)
QQ (1).

REMARK 6.2. Our system of differential equations is for a sample of size
two from a population that can be in just two possible states. Clearly this is
a very special situation. Of course it is readily extended to larger systems.
However, to characterize the transition probabilities for a sample of size N from
a population with m possible states requires

∑N
n=1

∑m
k=1

( m

k

)( n − 1
k − 1

)
equations.

The distribution of the time to the most recent common ancestor of the sample
requires

∑N
n=2

∑m
k=1

( m

k

)( n − 1
k − 1

)
equations. The probability of identity in state for a

sample of size two from a population distributed amongst m genetic backgrounds
requires m(m + 3)/2 equations. Evidently for large samples or complex genetic
backgrounds the approach will become intractable.

7. Numerical examples. In this section we illustrate the accuracy of (24)
when compared to a direct solution of the matrix equations (1) and (2) that gave
us the exact probabilities of identity for the Wright–Fisher model. We then use
the equations to illustrate the potentially important influence of the fluctuations
on the probabilities of identity in allelic state at the neutral locus. We concentrate
exclusively on the case of balancing selection s = s0(p0 − p) with p0 = 1/2. We
also set the recombination rate r = 0.

These results could all be obtained for low selection rates using the ancestral
selection graph methods in which lineages branch into three potential ancestors at
rate s0. Here we used Mathematica to solve the differential equations numerically
(a process that takes only seconds of computer time irrespective of the strength of
selection). In all the figures we have included a plot of the stationary distribution
for the allele frequencies for the parameter values used. The unique stationary
distribution for the process has density

m(p) = βp2µ2−1(1 − p)2µ1−1 exp
(−1

2s0
(
p2 + (1 − p)2))

, p ∈ (0,1),
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FIG. 1. Comparison of solutions to the matrix equations for identity in state obtained from the
Wright–Fisher model to those of the differential equations obtained from the diffusion approximation.
The three thin lines are (in descending order at p = 0) fPP, fQQ and fPQ. The dotted lines are the
solutions to the matrix equations and the bold line is the stationary distribution of p. The parameter
values are N = 50, s0 = 0.16, p0 = 0.5, µ1 = 0.0005 = µ2, ν = 0.002.

where the constant β is chosen so that
∫ 1

0 m(p)dp = 1. Note that when the
selection is very strong, rounding errors mean that the explosion of the density
at the margins is not visible on the plot.

Figure 1 compares the solution to the matrix equations (1) and (2) to the
diffusion approximation obtained by solving the system (24). Even for the
modest population size (fifty diploid individuals), the accuracy of the diffusion
approximation is striking. We obtained similar results with other parameter values.
In this example the mutation rate between selected loci was chosen to be very small
as this is the case when one expects the diffusion approximation to be most likely
to break down.

In Figures 2 and 3 the probabilities of identity are plotted for the case of strong
balancing selection. In both cases the mean value of the allele frequencies at the

FIG. 2. From top to bottom at p = 0 the plotted functions correspond to fPP, fQQ, f and fPQ.
The thick line is the stationary distribution. The parameter values are ν = 0.1, µ1 = 0.025 = µ2,
p0 = 0.5, s0 = 0.16.
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FIG. 3. The same as Figure 2 except that now s0 = 0.32.

selected locus when the population has reached stationarity is 1/2. The probability
f = p2fPP + 2pqfPQ + q2fQQ of identity for two individuals selected at random
is also plotted. This function should be compared to the constant value 0.43 that
one obtains by setting p ≡ 1

2 and using the standard structured coalescent model.
Even when the strength of selection is rather strong, this is a poor approximation.
In Figure 4 we plot the result of integrating the function f against the stationary
distribution of the allele frequencies for different strengths of selection (all other
parameters being as in Figures 2 and 3). As we see the strength of selection has
to be very strong indeed before the value predicted by the standard structured
coalescent can be regarded as a good approximation. Finally, in Figure 5 we
compare the mean time to coalescence for a sample of size two as a function of the
strength of selection.

We refer to the companion paper, Barton and Etheridge (2004), for a more
detailed investigation and discussion of the biological issues raised.

FIG. 4. Prediction of the diffusion approximation for the integral of f against the stationary
distribution for the allele frequencies at the selected locus as a function of the strength of selection.
All other parameters are chosen as in Figures 2 and 3.
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FIG. 5. Predictions of the diffusion approximation for mean coalescence time scaled relative to the
neutral expectation (2N ) for a sample of size two. The parameters are as in Figure 4. The thick line
on the upper right is the prediction from the structured coalescent (6N ).
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