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Abstract

We consider hidden Markov models (HMMs) with finite-valued latent process
and state-dependent distributions from a general one-parameter family. A test for
m = 2 against m ≥ 3 states of the underlying Markov chain is proposed. So far,
no satisfactory methods for this problem are available. Our test is an extension to
HMMs of the modified likelihood ratio test (LRT) for two-states in a finite mixture,
as introduced by Chen, Chen and Kalbfleisch (J. R. Stat. Soc. Ser. B 66, 2004, 95–
115). We develop its asymptotic distribution theory under the null hypothesis of two
states, and investigate its finite sample properties in a simulation study. The test is
based on inference for the marginal mixture distribution of the HMM. In order to
illustrate the additional difficulties due to the dependence structure of the HMM, we
also show how to test general regular hypotheses on the marginal mixture of HMMs
via a quasi LRT. Two empirical illustrations conclude the paper.

1 Introduction

A hidden Markov model (HMM) is a bivariate process (Xk, Yk)k≥0, where (Xk)k≥0 is an
unobservable, finite-state Markov chain and (Yk)k≥0 is the observable process with values
in a Borel-measurable subset Y ⊂ R

k, which are related as follows. Given (Xk)k≥0, the
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(Yk)k≥0 are conditionally independent, and for each j ≥ 0, the conditional distribution of
Yj depends on Xj only. The unobservable Markov chain is also called the regime or the
latent process of the HMM. We shall assume that (Xk) is stationary and ergodic with state
space M = {1, . . . ,m}, so that the stationary distribution π = (π1, . . . , πm) of the associ-
ated transition matrix αab = P (Xk+1 = b|Xk = a), a, b ∈ M is uniquely determined. The
conditional distributions of Yj given Xj are called the state-dependent distributions, we
shall assume that they belong to a parametric family {f(y; θ)| θ ∈ Θ} of densities w.r.t. a
σ-finite measure ν on Y .

HMMs provide a flexible and very widely used class of models for dependent data, in
particular in the presence of overdispersion (for series of count data) or unobserved hetero-
geneity. For independent data, these phenomena are often modeled by finite mixtures, and
indeed, the marginal distribution of an HMM is a finite mixture in the state-dependent
distributions, thus HMMs are sometimes also called Markov-dependent mixtures. Areas of
applications of HMMs include speech recognition (Rabiner 1989), biological sequence anal-
ysis (Durbin et al. 1998), the modeling of animal movements (Leroux & Puterman 1992),
series of overdispersed count data arising in medicine (Albert 1991, who analyzed series
of epileptic seizures) and financial time series (Rydén et al. 1998). See the monographs
by MacDonald & Zucchini (1997) for further examples of applications, and by Cappé et
al. (2005) for a state-of-the-art overview of theoretical developments for HMMs. Related
model classes include switching autoregressive models (Douc et al. 2004), switching regres-
sion (Zhang et al. 2003) and switching-regime GARCH models (Francq & Zaköıan 2005).

In statistical applications of HMMs, selection of the number of states m of the latent pro-
cess is a task of major importance. To this end, model selection criteria are often used,
which are either based on the full-model log-likelihood (McDonald & Zucchini 1997; Rydén
1995; Gassiat & Boucheron 2003; MacKay 2002), or on reducing the problem to selecting
the number of components in the marginal mixture distribution (Poskitt & Zhang 2005).
However, hypothesis tests for the number of components are also useful, since in contrast
to model selection criteria they allow decisions with a formal significance level, and the
likelihood ratio test (LRT) is then a canonical choice. For testing m = 1 against m ≥ 2
for an HMM, Gassiat & Keribin (2000) show that the LRT statistic diverges to ∞. Note
that for m = 1, the (Yk) are simply an i.i.d. sequence from f(y; θ), thus the simplest
non-trivial (i.e. dependent) HMM has to have at least two states. Therefore, testing for
m = 2 versus m ≥ 3 states for an HMM is the problem of primary practical interest. Short
of any asymptotic theory, Rydén et al. (1998) used a bootstrap version of the LRT for this
problem. However, bootstrapping in this context is computationally extremely demanding,
since it requires repeated maximization of the full log-likelihood function of an HMM for
more than two states. Further, the results by Gassiat & Keribin (2000) significantly reduce
the hope to develop asymptotic distribution theory for the even more difficult problem of
testing for m = 2 via the LRT.

In this paper, we shall propose a test for m = 2 against m ≥ 3 in an HMM by extending the
modified LRT of Chen, Chen and Kalbfleisch (2004) to HMMs. The test has a relatively
simple limit theory, and is computationally easy to handle, since it does neither require
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bootstrapping nor evaluation of the full log-likelihood function of the HMM. In fact, the
test is based on quasi likelihood inference for the marginal mixture distribution of the
HMM (cf. Lindgren 1987). Therefore, as an illustration in Section 2 we first discuss how
to test regular hypotheses on parameters of the marginal mixture distribution of the HMM
via a quasi LRT. It turns out that this test statistic is not asymptotically χ2-distributed
in general, but rather requires an adjustment for the dependence structure of the HMM.
Surprisingly, as shown in Section 3, the modified LRT for m = 2 against m ≥ 3 in an HMM
does not require such an adjustment, the limit distribution is the same as for independent
mixtures. This makes its use for HMMs particularly simple and attractive.
Section 4 contains the results of a Monte Carlo study. We first illustrate in Section 4.1
that even for simple regular hypotheses, the distribution of the quasi LRT for the marginal
mixture can be quite far from the expected χ2-distribution. Section 4.2 contains results of
extensive simulation experiments for the modified LRT for two components in an HMM,
both under the hypothesis of two states as well as under various alternative models, and
with distinct forms of the transition matrix. It turns out that as expected from the asymp-
totic distribution theory, the performance of the modified LRT is hardly influenced by the
form of the transition matrix, as long as its stationary distribution remains the same. The
test has satisfactory finite-sample properties, both for keeping the nominal level under the
hypothesis as well as in terms of power. In Section 5 we give two empirical illustrations,
one for the series of fetal lamb movements analyzed in Leroux & Puterman (1992), and
the other to the series of log-returns of the S&P 500 (cf. Rydén et al. 1998). Some formal
assumptions and proofs are given in the Appendix.

2 The LRT under independence assumption

The marginal distribution of the observations (Yk) is given by the finite mixture

fmix

(
y; π1, . . . , πm, θ1, . . . , θm

)
= π1f(y; θ1) + . . . + πmf(y; θm). (1)

Here we assume that the parameters
(
π1, . . . , πm, θ1, . . . , θm

)
of fmix depend on a pa-

rameter ω ∈ Ω ⊂ R
p, and we write πa(ω) and θa(ω), where a ∈ M, and fmix(y; ω) =

fmix(y; π1(ω), . . . , πm(ω), θ1(ω), . . . , θm(ω)). Lindgren (1978) proposed estimation of ω by
maximizing the log-likelihood function under independence assumption

LI
n(ω) =

n∑

k=1

log fmix(Yk; ω), (2)

and this approach can also be used to test hypothesis about ω via a LRT under indepen-
dence assumption (LRTI).
In this section we briefly discuss the LRTI for regular hypotheses in order to illustrate that
its asymptotic distribution is not given by a simple χ2-distribution but is in general signif-
icantly influenced by the dependence structure of the HMM. Note that since π is uniquely
determined by the transition matrix

(
αa,b

)
, a, b,∈ M, hypotheses on ω can in principle
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be reformulated into hypotheses on the original parameters of the HMM, and hence be
tested by the usual LRT for HMMs (cf. Giudici et al. 2000). However, the expression of
π in terms of the entries of the transition matrix is highly nonlinear for m ≥ 3, and thus
the ordinary LRT becomes intractable in such situations. Hence, for m ≥ 3 the LRTI is
also an attractive procedure to test hypotheses on the stationary distribution of an HMM,
e.g. testing for πa = πb for a, b ∈ M, or π1 = . . . = πm = 1/m.

We shall assume that finite mixtures of f(·, θ) are identifiable, as for example finite mix-
tures of Gaussian, Gamma or Poisson distributions, and that the components of the state
dependent distribution θa are all distinct, and moreover that the parametrization in ω is
such that there exists a unique true ω0 which corresponds to the true law P0 of the (Yk).
Let ω̂ be the maximizer of LI

n(ω). A slight generalization of the argument of Lindgren
(1978) shows that ω̂ is consistent and asymptotically normally distributed. More precisely,
one shows that under assumptions similar to the assumption of Theorem 3.4 in Lindgren
(1978), for the score under independence assumption we have that

DωLI
n(ω)√
n

L→ N(0, Cov0),

Cov0 = Σ0 +
∑

j≥2

E
(
h(Y1; ω0) h(Yj; ω0)

T + h(Yj; ω0) h(Y1; ω0)
T
)
,

where h(y; ω) =
(
Dω log fmix(y; ω)

)T
, and

Dω DT
ω LI

n(ω)

n
→ Σ0 a.s., Σ0 = Eh(Y1; ω0) h(Y1; ω0)

T .

Hence, if Σ0 is nonsingular, the usual argument gives
√

n
(
ω̂ − ω0

) L→ N
(
0, Σ−1

0 Cov0Σ
−1
0

)
.

The matrices Σ0 and Cov0 will typically differ, which causes the non-standard behavior of
the LRTI.
More precisely, suppose that we want to test a regular r-dimensional restriction

Hs : s(ω0) = 0 against Ks : s(ω0) 6= 0,

where s : R
p → R

r, r ≤ p, is a differentiable map with Jacobian Dωs(ω0) of full rank r at
ω0. Let

λI
n =

supω∈Ω:s(ω)=0 LI
n(ω)

supω∈Ω LI
n(ω)

be the LRTI statistic. In order to derive the asymptotic distribution of λI
n, reparametrize

Hs (at least locally around ω0) as the image of a differentiable mapping ϕ : R
p−r ⊃ U → R

p,
i.e. s(ϕ(t)) = 0, and these are the only solutions locally around ω0. Let Φ0 = Dtϕ(t0),
where ϕ(t0) = ω0. Then, under Hs and non-singularity of Σ0, by following the argument
for the i.i.d. case (cf. e.g. Pruscha 2000, p. 251-256) one can show that

− 2 log λI
n

L→ ZT Cov
1/2
0

(
Σ−1

0 − Φ0(Φ
T
0 Σ0Φ0)

−1ΦT
0

)
Cov

1/2
0 Z, (3)
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where Z ∼ N(0, Ip). The quadratic form which occurs as asymptotic distribution in (3) is
a linear combination of independent χ2

1 distributed variables, where the weights are given

by the eigenvalues of the matrix Cov
1/2
0

(
Σ−1

0 − Φ0(Φ
T
0 Σ0Φ0)

−1ΦT
0

)
Cov

1/2
0 . This matrix is

not an orthogonal projection in general since, as indicated above, Σ0 and Cov0 differ due
to the dependence structure of an HMM. Hence, the asymptotic distribution of the LRTI
will in general not be a simple χ2-distribution.

For an application of (3), these eigenvalues have to be estimated, by first consistently
estimating all component matrices Cov0, Σ0 and Φ0 and using the fact that the eigenvalues
depend continuously on the entries. Alternatively one can also use a Wald-type statistic
as follows. Suppose that Σ0 and Cov0 are non-singular, and let Σn and Ĉovn be consistent
estimates of Σ0 and Cov0, respectively. Then, under Hs and non-singularity of Σ0, one
shows by using the δ-method that

W I
n = ns(ω̂)T

(
Dωs(ω̂) Σ−1

n ĈovnΣ−1
n

(
Dωs(ω̂)

)T
)−1

s(ω̂)
L→ χ2

r.

3 The modified LRT for two states in an HMM

Now we propose the modified LRT for m = 2 against m ≥ 3 states in an HMM. The test is
in fact designed for testing for two components of the marginal mixture distribution of an
HMM. However, since we assume that the state-dependent distributions are all distinct,
this is equivalent to testing for two states of the underlying latent process. In this section
we assume that the parameter θ of the family {f(y; θ)| θ ∈ Θ} is univariate: Θ ⊂ R.

For independent mixtures, the LRT for homogeneity (i.e. one against two or more states)
and related tests have been intensively investigated in the literature in recent years,
cf. e.g. Dacunha-Castelle & Gassiat (1999) or Chen et al. (2001). However, as indi-
cated in the introduction, the main testing problem for HMMs is to test for m = 2 states,
since for a dependent HMM, at least two states are required. Therefore, in this section
we show how the modified LRT of Chen et al. (2004) for testing for two components in a
mixture can be extended to the marginal distribution of an HMM. Surprisingly, it turns
out that in contrast to general LRTIs as considered in Section 2, the modified LRT for
two components does not require a correction for the dependence structure for an HMM,
which makes its use for HMMs particularly attractive. Let

Mm =
{
G(θ) =

m∑

j=1

πjI{θj≤θ} : θ1 ≤ . . . ≤ θm,
m∑

j=1

πj = 1, πj > 0
}

denote the set of all m-point distributions on Θ, and let M = ∪m≥2Mm. For G ∈ Mm

with parameters (π1, . . . , πm) and (θ1, . . . , θm) we let fmix(y; G) denote the mixing density
(1). Further, let G0 be the true mixing distribution of the marginal distribution. We shall
propose a test for

H : G0 ∈ M2 against K : G0 ∈ M \ M2.
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Throughout we shall assume H, and denote the true two-component mixing distribution
of the marginal mixture as G0(θ) = π0 I{θ0

1
≤θ} + (1 − π0)I{θ0

2
≤θ}, where (π0, θ

0
1, θ

0
2) ∈

(0, 1) × Interior(Θ)2 with θ0
1 < θ0

2. Hence the true marginal density is fmix(y; G0).

For each G(θ) ∈ Mm, the modified likelihood function under independence assumption is
defined as

L̃I(m)
n (G) =

n∑

k=1

log fmix

(
Yk; G

)
+ Cm

m∑

j=1

log
(
πj

)
,

where Cm > 0 is a constant, a suitable choice of which is discussed in Chen et al. (2004).

The estimate Ĝ(m), or more explicitly (π̂
(m)
1 , . . . , π̂

(m)
m , θ̂

(m)
1 , . . . , θ̂

(m)
m ), resulting from maxi-

mization of L̃
I(m)
n ( · ), is called modified maximum likelihood estimate under independence

assumption. For a suitably large choice of m, the modified LRTI for two components is
based on the statistic

Tmod
n = 2

(
LI(m)

n (Ĝ(m)) − LI(2)
n (Ĝ(2))

)
, (4)

where L
I(m)
n is the ordinary likelihood function under independence assumption as defined

in (2).
In order to investigate the asymptotic distribution of Tmod

n in the HMM setting, following
Chen et al. (2004) we introduce the following quantities

∆k =
(
f(Yk; θ

0
1) − f(Yk; θ

0
2)

)
/fmix

(
Yk; G0

)
,

Z ′
k(θ) = f ′(Yk; θ)/fmix

(
Yk; G0

)
,

Z ′′
k (θ) = f ′′(Yk; θ)/fmix

(
Yk; G0

)
.

Set
b1k =

(
∆k, Z

′
k(θ

0
1), Z

′
k(θ

0
2)

)T
, b2k =

(
Z ′′

k (θ0
1), Z

′′
k (θ0

2)
)T

, bT
k = (bT

1k, b
T
2k),

and further b̃2k = b2k − B1
21 (B1

11)
−1

b1k, b̃2 =
∑n

k=1 b̃2k and Σ̃ = B1
22 − B1

21 (B1
11)

−1
B1

12,
where

B1 = E(b1b
T
1 ) =

(
B1

11 B1
12

B1
21 B1

22

)
, B1

11 ∈ R
3×3.

Following the arguments in Chen et al. (2004), under Assumptions 1 – 5, given in the
Appendix, one obtains the following quadratic approximation to Tmod

n

Tmod
n = sup

t2∈R
2
+

(
2(b̃T

2 /
√

n) t2 − tT2 Σ̃ t2

)
+ op(1).

The final step in the argument of Chen et al. (2004) (and likelihood ratio tests in general)
requires that Σ̃ is the covariance matrix in the asymptotic normal distribution of n−1/2b̃2.
However, due to the dependence structure, under Assumptions 1 – 5 we have that n−1/2b̃2

is asymptotically normally distributed with mean zero and covariance matrix

C̃ov = Σ̃ +
∞∑

k=2

E
(
b̃21b̃

T
2k + b̃2kb̃

T
21

)
.
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Surprisingly, for the asymptotic distribution of n−1/2b̃2 we indeed have Σ̃ = C̃ov, as stated
in the next proposition, the proof of which is given in the appendix.

Proposition 1. Suppose that Assumptions 1 – 5 hold. Under the hypothesis H of a two-
component marginal mixture, we have

E
(
b̃21b̃

T
2k) = E(b̃2kb̃

T
21

)
= 0 for all k ≥ 2.

This is much in contrast to the relation of the matrices Σ0 and Cov0 introduced in Section
2, as we shall illustrate in the simulation study in Section 4.1. Proposition 1 implies that
Tmod

n will have the same limit distribution as for independent mixtures. In particular,
analogously to Theorem 2 in Chen et al. (2004) we have

Theorem 1. Suppose that Assumptions 1 – 5 hold and that the true marginal distribution
of (Yk) is a two-component finite mixture. Further assume that m in the definition of Tmod

n

in (4) satisfies m ≥ m∗ := max {⌊1.5/π0
1⌋ , ⌊1.5/π0

2⌋ , 4}. Then

Tmod

n
L→ (

1

2
− p) χ2

0 +
1

2
χ2

1 + p χ2
2, (5)

where p =
(
cos−1 ρ

)
/(2π) and ρ is the correlation coefficient in the covariance matrix Σ̃.

For an application of Theorem 1, Chen et al. (2004) discuss a data-driven choice of m as
well as estimation of the correlation coefficient ρ. Since these methods can be applied here
without change, we refer to their paper for the details.

4 Simulations

Here we present some of the results of an extensive simulation study of the tests proposed
in the two previous sections. For the maximization of the log-likelihood function (under
independence assumption) we use direct maximization via a Newton-type algorithm, as
advocated by McDonald & Zucchini (1997).

4.1 The LRT under independence assumption

In this section we shall illustrate two aspects about the LRT under independence assump-
tion. First, the difference between Σ0 and Cov0 can be quite large and the distribution
of λI

n can be quite far from a χ2-distribution, even in a simple setting. Second, we show
that (at least in a particular example), the LRTI and the Wald test under independence
assumption have little loss in power when compared to the LRT based on full-model MLEs.
Thus, ignoring the dependence structure in the test statistic need not result in a significant
loss of power.

We start by suggesting estimators for the matrices Σ0 and Cov0, where Σ0 is estimated by
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Σn = 1
n

∑n
k=1 h(Yk; ω̂)h(Yk; ω̂)T , and Cov0 by

Ĉovn = Σn+
J∑

j=1

n − j

n
Σn,j, Σn,j =

1

n − j

n−j∑

k=1

(
h(Yk; ω̂)h(Yk+j; ω̂)T +h(Yk+j; ω̂)h(Yk; ω̂)T

)
,

where J is small compared to n. Typically, the covariances decrease exponentially fast, so
a small number for J will suffice. In practice one can simply check for each j whether the
entries of Σn,j are small compared to Σn.

We simulate from a stationary three-state Poisson HMM, where the means of the state-
dependent Poisson distributions are given by θ1 = 1, θ2 = 5 and θ3 = 9, and the transition
matrix of the underlying Markov chain is of the form




1 − α α 0
β 1 − β − γ γ
0 δ 1 − δ


 . (6)

We examine testing the hypothesis H : π1 = π3. Under H, we choose the entries in
(6) as α = 0.4, β = 0.2, γ = 0.3 and δ = 0.6, yielding for the stationary distribution
π1 = π3 = 0.25, π2 = 0.5.
In the following, for simplicity we fix the θ’s at their true values, and estimate the parameter
ω = (π1, π3) only. First, we generate estimates of Σ0 and Cov0 from a single sample of size
106, yielding for J = 8

Σn =

(
3.56 0.16
0.16 2.12

)
, Ĉovn =

(
8.13 −1.61
−1.61 2.74

)
, Pn =

(
1.34 −1.18
−1.18 1.03

)

where Pn = Ĉov
1/2

n

(
Σ−1

n − Φ0(Φ
T
0 ΣnΦ0)

−1ΦT
0

)
Ĉov

1/2

n is an estimate of the matrix in the

quadratic form in (3) (here, Φ0 does not depend on ω). Thus, the matrices Σ0 and Cov0

apparently differ significantly. The matrix Pn is singular, its non-zero eigenvalue is equal
to 2.38. Hence, the asymptotic distribution of the LRTI is a scaled χ2

1–distribution with
scaling factor 2.38.

The distribution of the LRTI-Statistic and the Wald-Statistic was investigated for sample
size n = 500 with N = 10000 replications. Figure 1 shows the empirical cumulative
distribution functions. In both cases one can hardly visually distinguish between the
sample and the asymptotic distribution functions. However, one clearly observes that the
distribution of LRTI differs strongly from the standard χ2

1-distribution.
Finally, we conduct a power comparison between the LRTI, the Wald test under inde-
pendence assumption and the LRT based on the full model MLEs. We again test the
hypothesis H : π1 = π3, and the parameters in (6) are taken as α1 = α0 + κ, β1 = β0 + κ,
γ1 = γ0 − κ and δ1 = δ0 − κ, where α0, . . . , δ0 are chosen as above, and for κ we use
κ = 0, 0.05, 0.1, 0.15, 0.25. For all tests, the asymptotic critical values are employed (in
case of the LRTI the critical value is estimated for each sample). The sample size was
taken as n = 500, and N = 10000 samples were used to estimate the power in each setting.
The results are displayed in Table 1. It turns out that at least in this specific scenario,
there is little loss in power when using the tests based on the MLEI.
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Figure 1: Distribution of the LRTI-Statistic and of the Wald-Statistic (solid), the dotted
line (hardly visible) indicates the asymptotic distribution of the LRTI-Statistic and the
dashed line the χ2

1–distribution.

Table 1: Simulated rejection rates of the LRT based on the MLE, LRTI and Wald test
based on MLEIs under the hypothesis (κ = 0) and under the alternative (κ > 0).

κ 0 0.05 0.1 0.15 0.25
π1 (true value) 0.25 0.276 0.300 0.323 0.377
π3 (true value) 0.25 0.226 0.200 0.169 0.078
Power LRT 0.052 0.135 0.381 0.717 0.994
Power LRTI 0.050 0.131 0.373 0.709 0.999
Power W I

n 0.047 0.121 0.351 0.683 0.997

4.2 The modified LRT for two states

In the following we investigate the finite-sample performance of the modified LRT for m = 2
against m ≥ 3 states as suggested in Section 3. We both consider the standard example of
HMMs with state-dependent Poisson distributions, as well as with state-dependent zero-
mean Gaussian distributions which are used to model financial times series (cf. Rydén et
al. 1998; Robert et al. 2000).
First, we examine the empirical levels under the hypothesis and consider two-state HMMs
with Gaussian state-dependent distributions (N1, N2) and Poisson state-dependent dis-
tributions (P1) and five different transition matrices T1 - T5. The specific parameter
combinations of N1, N2 and P1 are displayed in Table 2 and transition matrices T1 - T5
are given in Table 3.
To perform the test we need to specify the number of states m for the evaluation of
L

I(m)
n (Ĝ(m)) and the constants C2, Cm. Under the hypothesis we choose the minimal m =

m∗, i.e. m = 4 for T1-T4 and m = 6 for T5. Under the alternative we always take m = 4.
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Table 2: Parameter values of the Gaussian state-dependent distributions under the hy-
pothesis (N1, N2) and the alternative (A1, A2) as well as parameter values of the Poisson
state-dependent distributions under the hypothesis (P1) and the alternative (A3, A4).

Gaussian (µ = 0)
σ2

1 σ2
2 σ2

3

N1 1 2.5
N2 1 4
A1 1 2.5 4
A2 1 3 6

Poisson
θ1 θ2 θ3

P1 3 12

A3 3 8 1
A4 3 12 7

Table 3: Transition probabilities for models under the hypothesis.

α12 α21 π1

T1 0.50 0.50 0.50
T2 0.25 0.25 0.50
T3 0.75 0.75 0.50
T4 0.80 0.40 0.33
T5 0.90 0.30 0.25

We set C2 = C4 = C6 = 1 and choose the starting values as suggested by Chen et al.
(2004).
Tables 4 - 5 show the simulated rejection rates for sample sizes n = 200 and n = 1000
for different levels. Note that models N1 and N2 are often used for financial time series
analysis where large data sets are available (Rydén et al. 1998).
In general, the simulated rejection rates correspond to the specified levels under the hy-
pothesis in a satisfactory manner. Only for sample size n = 200 and for N1 and N2, the
test is somewhat conservative. The simulations also show better results for N2, where the
components differ clearly, than for N1. Note that as expected from the asymptotic theory,
the different transition matrices T1-T5 do not seem to have much influence on the results.
Indeed, the finite sample behavior for different transition matrices with equal stationary
distribution hardly differs, at least as long as transitions are not made too rarely or too
frequently (i.e. the diagonal entries are not too close to 0 or 1).
Second, we examine the power of the tests under alternative models. We consider three-
state HMMs with Gaussian state-dependent distributions (A1, A2) and Poisson state-
dependent distributions (A3, A4) and four different transition matrices T6 - T9, where T6,
T7 and T8 are matrices of the form (6) and T9 the corresponding i.i.d. mixture model.
The specific parameter combinations of A1 -A4 are displayed in Table 2 and transition
probabilities for T6 - T9 are given in Table 6.
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Table 4: Simulated rejection rates of the modified LRT for the models under the hypothesis
N1, N2 and P1 in Table 2 with transition probabilities T1 - T5 given in Table 3 for sample
size n = 200 with N = 10000 replications.

N1 (Gaussian), n = 200
Level T1 T2 T3 T4 T5
0.025 0.010 0.009 0.012 0.008 0.010
0.05 0.021 0.021 0.022 0.016 0.018
0.1 0.045 0.045 0.044 0.034 0.037

N2 (Gaussian), n = 200
Level T1 T2 T3 T4 T5
0.025 0.020 0.022 0.019 0.013 0.013
0.05 0.039 0.040 0.039 0.028 0.029
0.1 0.073 0.074 0.072 0.061 0.058

P1 (Poisson), n = 200
Level T1 T2 T3 T4 T5
0.025 0.032 0.032 0.030 0.031 0.032
0.05 0.056 0.056 0.056 0.054 0.060
0.1 0.101 0.101 0.098 0.098 0.109

The results for sample sizes n = 200 and n = 500 and additionally for n = 1000 for A1
and A2 are displayed in Tables 7 - 8.
Generally speaking, the simulations show that one should expect only a slight loss of power
when introducing dependence. In fact, the influence of the different transition matrices
on the resulting power is small. Only, for models where transitions are sparse as for the
models with transition matrix T8 one observes a slight loss of power, as might be expected.
Furthermore, one observes that the test is more powerful against A2 than against A1.
Similarly, for the Poisson case there is a higher power against A4 than against A3. Note
that Poisson-mixtures were also investigated in the simulations by Chen et al. (2004), our
results are rather close to those obtained in that paper.
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Table 5: Simulated rejection rates of the modified LRT for the models under the hypothesis
N1, N2 and P1 in Table 2 with transition probabilities T1 - T5 given in Table 3 for sample
size n = 1000 with N = 10000 replications.

N1 (Gaussian), n = 1000
Level T1 T2 T3 T4 T5
0.025 0.022 0.023 0.020 0.016 0.018
0.05 0.044 0.044 0.039 0.035 0.034
0.1 0.082 0.080 0.076 0.067 0.070

N2 (Gaussian), n = 1000
T1 T2 T3 T4 T5

0.025 0.033 0.031 0.030 0.027 0.027
0.05 0.063 0.057 0.055 0.053 0.054
0.1 0.110 0.104 0.103 0.103 0.107

P1 (Poisson), n = 1000
Level T1 T2 T3 T4 T5
0.025 0.030 0.030 0.034 0.034 0.036
0.05 0.055 0.055 0.059 0.061 0.063
0.1 0.096 0.102 0.104 0.111 0.116

Table 6: Transitions probabilities for models under the alternative. The transition matrix
is of the form (6).

α β γ δ π1 π2 π3

T6 0.60 0.60 0.35 0.70 0.40 0.40 0.20
T7 0.10 0.10 0.20 0.40 0.40 0.40 0.20
T8 0.05 0.05 0.05 0.10 0.40 0.40 0.20
T9 i.i.d. 0.40 0.40 0.20
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Table 7: Simulated rejection rates of the modified LRT for the models under the alternative
A1 - A4 in Table 2 with transition probabilities T6 - T9 given in Table 6 for sample size
n = 200 and n = 500 with N = 10000 replications.

A1 (Gaussian), n = 200
Level T6 T7 T8 T9
0.025 0.048 0.049 0.040 0.046
0.05 0.090 0.086 0.072 0.083
0.1 0.157 0.153 0.129 0.155

A2 (Gaussian), n = 200
Level T6 T7 T8 T9
0.025 0.214 0.192 0.152 0.216
0.05 0.313 0.288 0.234 0.313
0.1 0.441 0.413 0.351 0.443

A3 (Poisson), n = 200
Level T6 T7 T8 T9
0.025 0.327 0.293 0.239 0.326
0.05 0.437 0.399 0.334 0.446
0.1 0.567 0.529 0.451 0.573

A4 (Poisson), n = 200
Level T6 T7 T8 T9
0.025 0.247 0.233 0.216 0.231
0.05 0.348 0.329 0.305 0.330
0.1 0.476 0.463 0.427 0.466

A1 (Gaussian), n = 500
Level T6 T7 T8 T9
0.025 0.146 0.145 0.137 0.149
0.05 0.227 0.219 0.213 0.227
0.1 0.343 0.333 0.315 0.342

A2 (Gaussian), n = 500
Level T6 T7 T8 T9
0.025 0.570 0.552 0.540 0.582
0.05 0.684 0.664 0.649 0.695
0.1 0.793 0.772 0.759 0.799

A3 (Poisson), n = 500
Level T6 T7 T8 T9
0.025 0.700 0.680 0.622 0.714
0.05 0.791 0.774 0.713 0.807
0.1 0.878 0.857 0.804 0.881

A4 (Poisson), n = 500
Level T6 T7 T8 T9
0.025 0.532 0.529 0.506 0.531
0.05 0.646 0.640 0.609 0.646
0.1 0.761 0.754 0.722 0.769

13



Table 8: Simulated rejection rates of the modified LRT for the models under the alternative
A1 - A4 in Table 2 with transition probabilities T6 - T9 given in Table 6 for sample size
n = 1000 with N = 10000 replications.

A1 (Gaussian), n = 1000
Level T6 T7 T8 T9
0.025 0.313 0.310 0.304 0.307
0.05 0.422 0.419 0.410 0.417
0.1 0.556 0.550 0.546 0.551

A2 (Gaussian), n = 1000
Level T6 T7 T8 T9
0.025 0.882 0.884 0.868 0.884
0.05 0.929 0.930 0.916 0.933
0.1 0.965 0.965 0.957 0.966

5 Empirical illustrations

5.1 Fetal lamb movements

As a first illustration, let us revisit the fetal movement data set which is analyzed in Leroux
& Puterman (1992) and Chen et al. (2004). Leroux & Puterman (1992) fit both two- and
three component independent Poisson mixtures as well as two- and three state Poisson
HMMs. They find for these data that while independent mixtures are only marginally
better than a negative binomial model, the fits provided by the HMMs are much superior
and should be used. In fact, there is strong evidence for autocorrelation in these data (cf.
Figure 2). For a two-state Poisson HMM, ordinary maximum likelihood yields the follow-
ing estimates: α̂12 = 0.011, α̂21 = 0.310, θ̂1 = 0.256 and θ̂2 = 3.115. Assuming m = 2, an
ordinary likelihood ratio test rejects the hypothesis of independence, i.e. H : α12 = 1−α21

with a p-value nearly zero. The comparison of the autocorrelation functions of the sample
and the two-state Poisson HMM with parameters

(
α̂12, α̂21, θ̂1, θ̂2

)
displayed in Figure 2

indicates that a two-state Poisson HMM is an appropriate model for the given data.

However, using formal model selection criteria one cannot decide between the two-state
HMM (selected by BIC) and the three-state HMM (selected by the AIC). Using the mod-
ified LRT for two components in independent mixtures, Chen et al. (2004) test the hy-
pothesis of two components which, yielding a p-value of 0.085, cannot be rejected. From
Theorem 1, it follows that their analysis remains valid for the marginal mixture distribution
even if the model of choice is an HMM.
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Figure 2: Autocorrelation function for the series of fetal lamb movements.

5.2 Series of log-returns of the S&P 500

Rydén et al. (1998) use HMMs with zero-mean Gaussian state-dependent distributions
to analyze the series of log-returns of daily values of the S&P 500 index (formerly called
S&P 90). Specifically, they consider the series of log-returns of ten subseries of length 1700
of the S&P 90/500 from 3 January 1928 to 30 April 1991. We shall examine the same
ten subseries A, . . . , J, with outlier replacement and centering of each subseries being
conducted as in their paper.
In order to determine the number of states of the HMM, Rydén et al. (1998) use an M- out-
of N (M = 800) bootstrap for the full-model LRT for two against three components. This
procedure requires repeated maximization of the full log-likelihood function of an HMM
with three states. We found this procedure extremely computationally expensive, since
proper maximization also require the choice of several starting value combinations, and
we were not able to investigate the properties in an adequate simulation. In fact, in their
analysis Rydén et al. (1998) only used very small bootstrap samples for the distribution
of the LRT of size 50, and rejected the hypothesis if the LRT statistic from the first M
observations of the sample exceeded 48 (or more) values of the bootstrap distribution.
Also, the choice of M in the M- out-of N bootstrap is a somewhat subjective manner, and
may (at least in practice) significantly influence the results.
Therefore, we apply the modified LRT for two against more states to this data set, where
we use m = m∗ and set Cm = 1 for all m. As illustration, we present the estimates of the
fitted models Ĝ(2) and Ĝ(m) for the subseries H (m = 4), I (m = 4) and J (m = 5) in Table
9.
One observes that for H and I the mixture distribution Ĝ(m) exhibits only three different
components, while for series J four distinct components are present. The values of the
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Table 9: Estimates Ĝ(2) and Ĝ(m) for the subseries H, I and J of the series of log-returns
of the S&P 500 index, each of length 1700.

π̂1 σ̂1 σ̂2

H 0.679 0.0064 0.0125
I 0.562 0.0062 0.0115
J 0.704 0.0063 0.0154

π̂1 π̂2 π̂3 π̂4 π̂5 σ̂1 σ̂2 σ̂3 σ̂4 σ̂5

H 0.181 0.308 0.308 0.203 0.0043 0.0077 0.0077 0.0136
I 0.232 0.287 0.287 0.193 0.0049 0.0084 0.0084 0.0131
J 0.173 0.242 0.252 0.252 0.081 0.0032 0.0063 0.0101 0.0101 0.0210

LRT statistic, the estimated p̂ in the limit distribution in (5) as well as the p-values of the
test are displayed in Table 10.

Table 10: Test results of the hypothesis m = 2 for the subseries H, I and J of the series
of log-returns of the S&P 500 index, each of length 1700.

LRT p̂ p-value
H 2.68 0.09 0.074
I 2.16 0.08 0.099
J 21.72 0.12 0.000

While for the series J , the hypothesis of two states can be rejected at a level of α < 0.001,
for series H and I rejection is only possible at a nominal level of 0.1. Note that from the
simulations in Section 4.2 we may expect that the test is somewhat conservative in such
settings, so that a test decision on a nominal level of 0.1 appears to be reasonable.

6 Discussion

Inference for the parameters of the marginal mixture distribution of an HMM can be
conducted, apart from maximum likelihood estimation in the full model, by using the
likelihood function under independence assumption (Lindgren 1978)

LI
n(π1, . . . , πm−1, θ1, . . . , θm) =

m∏

i=1

(
π1f(Yi, θ1) + . . . + πmf(Yi, θm)

)
.

Generally speaking, compared to full model log-likelihood inference one expects this strat-
egy to result in a gain of simplicity, accompanied by a loss of efficiency. In Sections 2 and

16



4.1 we showed that when testing regular restrictions on the parameters of the marginal
mixture via a LRT based on LI

n (LRTI), the loss of efficiency can be quite small, however,
the gain in simplicity is also limited by the fact that the distribution of LRTI is not simply
a χ2-distribution, but requires an adjustment for the dependence structure of the HMM.
Model selection criteria for choosing the number of components in a finite mixture can also
be extended via LI

n to choosing the number of states in an HMM (cf. Poskitt & Zhang
2005). However, methods for model selection based on the full model likelihood are also
available (Gassiat & Boucheron 2003), and the gain in simplicity is rather marginal since
these full model based criteria only require a single maximization of the log-likelihood
function of the HMM.
When testing for the number of states of an HMM, the situation is quite different. Re-
garding full-model likelihood inference, it turns out that the asymptotic distribution of the
LRT is inaccessible (Gassiat & Keribin 2000), while a bootstrap test for m = 2 against
m ≥ 3 states (Rydén et al. 1998) is computationally extremely expensive so that proper
bootstrap sample sizes cannot be realized. In contrast, we showed in this paper how to
extend the modified LRT for m = 2 against m ≥ 3 in a finite mixture by Chen et al. (2004)
to HMMs, using a modified version of LI

n. Quite surprisingly, in contrast to the ordinary
LRT based on LI

n, the modified LRT for two states in an HMM does not require any ad-
justment for its dependence structure, the asymptotic distribution under the hypothesis is
the same as for independent mixtures. Judging the loss of efficiency of the modified LRT
for HMMs is hard since it does not have any feasible full-model likelihood based (or in
fact, any) competitors. A simulation study concerning its power properties turned out to
be quite promising.
We believe that our approach to reduce the testing problem for the number of states in
latent models with Markov-dependent regime to independent regimes provides a general
principle which can be extended to other latent models such as switching autoregression
(Douc et al. 2004).

Appendix

Assumption 1. The parameter space Θ ⊂ R is compact. Let

E (|log fmix(Y ; G0)|) < ∞.

and there exists ε > 0 such that, for each G, fmix(y; G, ε) := 1 + sup|Q−G|≤ε fmix(y; Q) is
measurable and

E (log fmix(Y ; G, ε)) < ∞.

Assumption 2. The support of f(y; θ) does not depend on θ and f(y; θ) is three times
continuously differentiable w.r.t. θ ⊂ Θ. The derivatives are jointly continuous in x and θ.

Assumption 3. The family {f(y; θ) | θ ∈ Θ} is strong identifiable, i.e. for θ1 6= θ2

2∑

j=1

(ajf(y; θj) + bjf
′(y; θj) + cjf

′′(y; θj)) = 0
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for all y implies aj + bj + cj = 0 for j = 1, 2.

Assumption 4. There exists a ε > 0 such that for j = 1, 2

E


 sup

θ∈Θ

∣∣∣∣∣
f(Y1; θ) − f(Y1; θ

0
j )

fmix

(
Y1; G0

)
∣∣∣∣∣

4+ε

 < ∞;

and for i = 1, 2, 3

E


 sup

θ∈Θ

∣∣∣∣∣
di

dθi f(Y1; θ)

fmix

(
Y1; G0

)
∣∣∣∣∣

3

 < ∞.

Assumption 5. The processes

n−1/2
∑

k

f(Yk; θ) − f(Yk; θ
0
j )

fmix

(
Yk; G0

)

for j = 1, 2 and

n−1/2
∑

k

di

dθi f(Yk; θ)

fmix

(
Yk; G0

)

and for i = 1, 2, 3 are tight.

Proof of Proposition 1. Set Bk = E
(
b1b

T
k

)
, and partition Bk into

Bk =

(
Bk

11 Bk
12

Bk
21 Bk

22

)
, Bk

11 ∈ R
3×3.

Let

λj = E (b1|X1 = j) =

∫
b1(y)f(y; θ0

j ) dy ∈ R
5.

From E [b1] = 0 it easily follows that λ2 = c1λ1, where c1 = −α21

α12
6= 0. Using this and

E (∆1b1) = E (b1|X1 = 1) − E (b1|X1 = 2) we arrive at

B1 1̄ = λ1 − λ2 = (1 − c1)λ1 (7)

where 1̄ = (1, 0, 0, 0, 0)T . Further, using λ2 = c1λ1 and E
(
b1b

T
k |X1, Xk

)
= E (b1|X1) E (bk|Xk)

T

one shows that

Bk = E
(
b1b

T
k

)
= ckλ1λ

T
1 , k ≥ 2, (8)

where ck = α21

α12

(
1 − α

(k−1)
12 − α

(k−1)
21

)
, and α

(k)
ij = P (Xk+1 = j|X1 = i) denotes the k-step

transition probability. Note, that ck = 0 for all k if and only if a12 + a21 = 1, which leads
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to independence of the (Yk). Furthermore, note that (8) implies the symmetry of Bk. In
order to show B̃k = 0 for k ≥ 2, we compute

B̃k = E
(
b̃21b̃

T
2k

)

= Bk
22 − Bk

21

(
B1

11

)−1
B1

12 − B1
21

(
B1

11

)−1
Bk

12 + B1
21

(
B1

11

)−1
Bk

11

(
B1

11

)−1
B1

12

To establish our claim, we show that all four summands in this expansion coincide. From
(7),

B1
11 1̄ = (1 − c1) (λ11, λ12, λ13)

T =⇒
(
B1

11

)−1
(λ11, λ12, λ13)

T =
1

1 − c1

1̄,

where 1̄ = (1, 0, 0)T and λ1i denotes the ith component of λ1. Using this, (7) and (8) give

B1
21

(
B1

11

)−1
Bk

12 = ckB
1
21

(
B1

11

)−1
(λ11, λ12, λ13)

T (λ14, λ15)

=
ck

1 − c1

B1
21 1̄ (λ14, λ15) = ck (λ14, λ15)

T (λ14, λ15) = Bk
22.

Since B1 and Bk are symmetric, one also has Bk
21 (B1

11)
−1

B1
12 = Bk

22. The same argument
applies to the last matrix

B1
21

(
B1

11

)−1
Bk

11

(
B1

11

)−1
B1

12

= ckB
1
21

(
B1

11

)−1
(λ11, λ12, λ13)

T (λ11, λ12, λ13)
(
B1

11

)−1
B1

12

=
ck

(1 − c1)2
B1

21 1̄ 1̄T B1
12 = ck (λ14, λ15)

T (λ14, λ15) = Bk
22.

This concludes the proof.
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