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Abstract

This paper extends the notion of the Λ-coalescent of Pitman (1999) to the spatial setting.
The partition elements of the spatial Λ-coalescent migrate in a (finite) geographical space and
may only coalesce if located at the same site of the space. We characterize the Λ-coalescents
that come down from infinity, in an analogous way to Schweinsberg (2000). Surprisingly, all
spatial coalescents that come down from infinity, also come down from infinity in a uniform
way. This enables us to study space-time asymptotics of spatial Λ-coalescents on large tori
in d ≥ 3 dimensions. Some of our results generalize and strengthen the corresponding results
in Greven et al. (2005) concerning the spatial Kingman coalescent.
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1 Introduction

The Λ-coalescent, sometimes also called the coalescent with multiple collisions, is a Markov
process Π whose state space is the set of partitions of the positive integers. The standard Λ-
coalescent Π starts at the partition of the positive integers into singletons, and its restriction to
[n] := {1, . . . , n}, denoted by Πn, is the Λ-coalescent starting with n initial partition elements.
The measure Λ, which is a finite measure on [0, 1], dictates the rate of coalescence events, as
well as how many of the (exchangeable) partition elements, which we will also refer to as blocks,
may coalesce into one at any such event. More precisely, if we define for 2 ≤ k ≤ b, k, b ∈ N
integers,

λb,k :=
∫

[0,1]
xk−2(1− x)b−kdΛ(x), (1)

then the parameter λb,k ≥ 0 is the rate at which any collection of k blocks coalesces into one
new block when the current configuration has b blocks.

The Λ-coalescent was introduced by Pitman [23], and also studied by Schweinsberg [26]. It was
obtained as a limit of genealogical trees in Cannings models by Sagitov [25]. The well-known
Kingman coalescent [20] corresponds to the Λ-coalescent with Λ(dx) = δ0(dx), the unit atomic
measure at 0. For this coalescent, each pair of current partition elements coalesces at unit rate,
independently of other pairs. Papers [1] and [15] are devoted to stochastic coalescents where
again only pairs of partitions are allowed to coalesce, but the coalescence rate is not uniform over
all pairs. The survey [1] gives many pointers to the literature. The Λ-coalescent generalizes the
Kingman coalescent in the sense that now any number of partition elements may merge into one
at a coalescence event, but the rate of coalescence for any k-tuple of partition elements depends
still only on k. The first example of such a Λ-coalescent (other than the Kingman coalescent)
was studied by Bolthausen and Sznitman [11], who were interested in the special case where
Λ(dx) is Lebesgue measure on [0, 1] in connection with spin glasses. Bertoin and Le Gall [7]
observed a correspondence of this particular coalescent to the genealogy of continuous state
branching processes (CSBP). More recently, Birkner et al. [10] extended this correspondence to
stable CSBP’s to Λ-coalescents, where Λ is given by a Beta-distribution. Berestycki et al. [6]
use this correspondence to study fine small time properties of the corresponding coalescents.

A further generalization of the Λ-coalescents, known as the coalescents with simultaneous mul-
tiple collisions, was originally studied by Möhle and Sagitov [21] and Schweinsberg [27]. Fur-
ther connections to bridge processes and generalized Fleming-Viot processes were discovered by
Bertoin and Le Gall [8], and to asymptotics of genealogies during selective sweeps, by Durrett
and Schweinsberg [13].

Our first goal, in Section 2, is to extend the notion of the Λ-coalescent to the spatial setting.
Here, partition elements migrate in a geographical space and may only coalesce while sharing
the same location. Earlier works on variants of spatial coalescents, sometimes also referred
to as structured coalescents, have all assumed Kingman coalescent-like behavior, and include
Notohara (1990) [22], Herbots (1997) [19], and more recently Barton et al. [3] in the case of
finite initial configurations, and Greven et al. [16] with infinite initial states. A related model
has been studied by Zähle et al. [28] on two-dimensional tori. Finally, spatial coalescents are
related to coalescing random walks, the difference being that for coalescing random walks blocks
coalesce instantaneously when they enter the same site. Coalescing random walks have been
studied extensively, in particular as dual processes to the voter model, see for example [12].
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In most of this paper we assume that Λ is a finite measure on [0, 1] without an atom at 0 or at
1, such that Λ([0, 1]) > 0. At the end of Section 2 we comment on how atoms at 0 or 1 would
change the behavior of the coalescent. We extend the definition made in (1) by setting λb,k = 0
for b = 1 or b = 0, k ∈ N. Define in addition

λb :=
b∑

k=2

(
b

k

)
λb,k, (2)

and

γb :=
b∑

k=2

(
b

k

)
(k − 1)λb,k. (3)

Note that λb is the total rate of coalescence when the configuration has b blocks, and that γb is
the total rate of decrease in the number of blocks when the configuration has b blocks. From the
above definitions, one may already observe (see also proof of Theorem 1) that the Λ-coalescent
can be derived from a Poisson point process on R+×[0, 1] (R+ := [0,∞)) with intensity measure
dtx−2dΛ(x) provided that Λ has no atom at 0 : If (t, x) is an atom of this Poisson point process,
then at time t, we mark each block independently with probability x, and subsequently merge
all marked blocks into one.

Now consider a finite graph G, and denote by |G| the number of its vertices. Call the vertices of
G sites. Consider a process started from a finite configuration of n blocks on sites in G where
we allow only two types of transitions, referred to as coalescence and migration respectively:

(i) at each site blocks coalesce according to the Λ-coalescent,

(ii) the location process of each block is an independent continuous Markov chain on G with
jump rate 1 and transition probabilities p(gi, gj), gi, gj ∈ G.

The original Λ-coalescent of [23] and [26] corresponds to the setting where |G| = 1, so migrations
are impossible. The spatial Λ-coalescent started from a finite configuration {(1, i1), . . . , (n, in)}
is a well-defined strong Markov process (chain) with state space being the set of all partitions
of [n] = {1, . . . , n} labeled by their location in G. This will be stated precisely in Theorem 1 of
Section 2 which is devoted to the construction of spatial Λ-coalescents Π` with general (possibly
infinite) initial states.

After constructing the general spatial Λ-coalescent, we turn to characterizing those that come
down from infinity in Section 3. Schweinsberg [26] shows that if∑

b≥2

1
γb

< ∞ (4)

holds, then the (non-spatial) Λ-coalescent started with infinitely many blocks at time 0 imme-
diately comes down from infinity, that is, the number of its blocks at all times t > 0 is finite
with probability 1; otherwise, the Λ-coalescent stays infinite forever, meaning that it contains
infinitely many blocks at all times t > 0 with probability 1. Interestingly, Bertoin and LeGall [9]
have recently found that (4) is equivalent to the almost sure extinction of the associated CSBP.

The goal of Section 3 is to show that the spatial Λ-coalescent inherits this property of either
coming down from infinity or staying infinite, from its nonspatial counterpart. More precisely,
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let (Π`(t))t≥0 be the Λ-coalescent constructed in Theorem 1, and denote by #Π(t) its size at
time t, i.e. the total number of blocks in Π`(t), with any label. In Lemma 8 and Proposition 11
we show that condition (4) implies P [#Π(t) < ∞,∀t > 0] = 1, even if the initial configuration
Π(0) contains infinitely many blocks. In this case we say that the spatial Λ-coalescent comes
down from infinity. In Proposition 11 we also show via a coupling to the non-spatial coalescent
that if (4) does not hold, provided #Π(0) = ∞ and Λ has no atom at 1, then P [#Π(t) = ∞,∀t >
0] = 1. In this case we say that the spatial Λ-coalescent stays infinite. These results extend
to the spatial coalescent for which the migration mechanism may be more general, for example
non-exponential or depending on the past and in a restricted sense even on the future of the
coalescence mechanism. We include a comment at the end of Section 3.

In Section 4 we continue to study the time Tn in more detail, which is the time until there are on
average two blocks per site if there are initially n blocks per site. In particular, in Theorem 12
we obtain an upper bound on its expectation that is not only uniform in n but also, somewhat
surprisingly, in the structure (size) of G. In this case, we say that the coalescent comes down from
infinity uniformly. The argument of Theorem 12 relies on the independence of the coalescence
and migration mechanisms. Given Theorem 12, the approximation method of [16] section 7
applies verbatim and enables construction of the spatial Λ-coalescent on the whole lattice Zd

so that even if started with infinitely many partition elements at each site of Zd, at all positive
times the configuration is locally finite, almost surely.

Our final goal, in Section 5, is to study space-time asymptotic properties of Λ-coalescents that
come down from infinity uniformly on large finite tori at time scales on the order of the volume.
In [16], this asymptotic behavior was studied for the spatial Kingman coalescent where Λ = γδ0

for some γ > 0. It is interesting that on appropriate space-time scales, the scaling limit is
again (as in [16]) the Kingman coalescent, with only its starting configuration depending on the
specific properties of the underlying Λ-coalescent. We obtain functional limit theorems for the
partition structure and for the number of partitions, in Theorems 13 and 19 respectively.

2 Construction of the coalescent

The construction of the spatial coalescent on an appropriate state space follows quite standard
steps. The construction below is inspired by those in Evans and Pitman [15], Pitman [23], and
Berestycki [5].

Let P be the set of partitions on N, which can be identified with the set of equivalence relations on
N. Any π ∈ P can be represented uniquely by π = (A1, A2, A3, . . . ) where Aj ⊂ N for j ≥ 1 are
called the the blocks of π, indexed according to the increasing ordering of the set {minAj : j ≥ 1}
that contains the smallest element of each block. So in particular minAn−1 < minAn, for any
n ≥ 2. Likewise, we define for any n ∈ N, Pn as the set of partitions of [n], and for π ∈ Pn we
have π = (A1, A2, . . . , An) in an analogous way. We will write A ∈ π if A ⊂ N is a block of π,
and

Ai ∼π Aj

if Ai, Aj ⊂ N and Ai ∪ Aj ⊂ A for some (unique) A ∈ π. If the number of blocks of π, denoted
by #π, is finite, then set Aj = ∅ for all i > #π.

For concreteness in the rest of the paper, let |G| = υ for υ a positive integer and let the vertices
of G be {g1, . . . , gυ}. The spatial coalescent takes values in the set P` of partitions on N, indexed
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as described above, and labelled by G, so

P` := {(Aj , ζj) : Aj ∈ π, ζj ∈ G, π ∈ P, j ≥ 1}.

Similarly, the coalescent started from n blocks takes values in P`
n := {(Aj , ζj) : Aj ∈ π, ζj ∈

G, π ∈ Pn, 1 ≤ j ≤ n}. Here, the ζj ∈ G is the label (or location) of Aj ∈ π, j ≥ 1. Set ζj = ∂ 6∈ G
if Aj = ∅. For any element π ∈ P` or π ∈ P`

n with n ≥ m define π|m ∈ P`
m as the labeled

partition induced by π on P`
m. We equip P` with the metric

d(π, π′) = sup
m∈N

2−m1{π|m 6=π′|m}; π, π′ ∈ P`, (5)

and likewise P`
n with the metric

dn(π, π′) = sup
m≤n

2−m1{π|m 6=π′|m}; π, π′ ∈ P`
n.

Since |G| is finite, it is easy to see that d(π, π′) = supn dn(π|n, π′|n), and that (P`
n, dn) and (P`, d)

are both compact metric spaces.

Note that P` can be interpreted as a subspace of the infinite product space PQ̀ :=
(P`

1,P`
2,P`

3, . . . ) endowed with the metric d(π, π′) = supn dn(πn, π′n) for π = (π1, π2, . . . ),
π′ = (π′1, π

′
2, . . . ) ∈ PQ̀, by identifying π ∈ P` with (π|1, π|2, π|3, . . . ). Note that this met-

ric induces the product topology on PQ̀ and that an element (π1, π2, . . . ) of PQ̀ is also an
element of P` if and only if it fulfills the following consistency relationship,

πn+1|n = πn for all n ∈ N. (6)

In the rest of the paper, whenever Π` is a spatial coalescent process, we denote by Π the partition
(without the labels of the blocks) of Π`, and by

(#Π(t))t≥0

the corresponding total number of blocks process. Thus #Π(t) is the number (finite or infinite)
of blocks in Π(t), or equivalently, in Π`(t).

With the above notation we are finally able to construct the spatial Λ-coalescent started from
potentially infinitely many blocks, as stated in the following theorem. Recall the migration
mechanism stated in the introduction: each block performs an independent continuous Markov
chain on G with jump rate 1 and transition kernel p(·, ·).

Theorem 1 Assume that Λ has no atom at 0. Let G be a finite graph with vertex set
{g1, g2, . . . , gυ}. Then, for each π ∈ P`, there exists a càdlàg Feller and strong Markov pro-
cess Π` on P`, called the spatial Λ-coalescent, such that Π`(0) = π and

(i) blocks with the same label coalesce according to a (non-spatial) Λ-coalescent,

(ii) independently, each block of label gi ∈ G changes its label to gj ∈ G at rate p(gi, gj) as
mentioned in introduction.

This process also satisfies
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(iii) (Π`(t)|n)t≥0 is a spatial Λ-coalescent started from Π`(0)|n,

and its law is characterized by (iii) and the initial configuration π.

Proof. In order to define a càdlàg Markov process Π` with values in PQ̀ such that Π`
n := Π`|n

is a spatial coalescent starting at Π`(0)|n ∈ P`
n for any Π`(0) ∈ P`, we will make use of suitably

chosen Poisson point processes.

For each i ∈ [υ] let Ni be an independent Poisson point process on R+ × [0, 1] × {0, 1}N with
intensity measure dtx−2Λ(dx)Px(dξ), where ξ = (ξ1, ξ2, . . . ) is a random vector whose entries ξj

are i.i.d. Bernoulli(x) under Px, defined on some probability space (Ω,F ,F t, P ).

Let δn denote the Kronecker delta measure with unit atom at n. Let M be another independent
Poisson point process on the same probability space Ω with values in R+×N×Gυ and intensity
measure given by dt

∑∞
k=1 δk(dm)P υ(ds1, . . . , dsυ), where P υ is the joint law of independent

G-valued random variables S1, . . . , Sυ, such that P (Sgi = gj) = p(gi, gj), gi, gj ∈ G.

Using the above random objects define a spatial Λ-coalescent with n initial blocks, Π`
n, on Ω

for each n ≥ 1 as follows: At any atom (t, x, ξ) of Ni, all blocks Aj(t−) with ζj(t−) = gi

and ξj = 1 coalesce together into a new labeled block (
⋃

j,ξj=1,ζj(t−)=i Aj(t−), gi); at any atom
(t, m, (s1, . . . , sυ)) of M we set ζm(t) = sζm(t−) provided m ≤ #Πn(t−), otherwise nothing
changes. For all other t ≥ 0 we set Π`

n(t) = Π`
n(t−). Note that coalescence causes immedi-

ate reindexing (or reordering) of blocks that have neither participated in coalescence nor in
migration, and that this reindexing operation decreases each index by a non-negative amount.

Since the sum of the above defined jump rates of Π`
n is finite it follows immediately that Π`

n is
a well defined càdlàg Markov process on Ω for each n ≥ 1 therefore inducing a càdlàg Markov
process Π` on PQ̀. It is important to note that each Π`

n so constructed is a Λ-coalescent
started from Π`(0)|n. Since Π`

n+1(0)|n = Π`
n(0) and since clearly the consistency condition (6) is

preserved under each transition of Π`
n+1 in the construction (this is not always a transition for

Π`
n), we have Π`

n+1(t)|n = Π`
n(t) for all t ≥ 0. Therefore, (Π`(t))t≥0 constructed by Π`(t)|n :=

Π`
n(t), n ≥ 1, t ≥ 0 is well-defined. It follows that Π` is a càdlàg Markov process with values in

P`, which clearly satisfies properties (i)-(iii), and uniqueness in distribution follows similarly.

In order to verify that the semigroup Ttϕ(π) := E[ϕ(Π`(t))|Π`(0) = π] is a Feller-Dynkin
semigroup it now suffices to check the following two properties (see [24] III (6.5)-(6.7)): (i) For
any continuous (bounded) real valued function ϕ on P` and all π ∈ P` we have

lim
t→0+

Ttϕ(π) = ϕ(π),

and (ii) for any continuous (bounded) real valued function ϕ on P` and all t > 0, π 7→ Ttϕ(π)
is continuous (and bounded).

Note that (i) is an immediate consequence of the right-continuity of the paths and continuity
with respect to (5). One can easily argue for (ii): if Π`,k is the spatial coalescent started from πk

and Π` is the spatial coalescent started from π such that limk→∞ πk = π ∈ P`, then, due to the
definition of the metric (5) on P`, there exists for all k ∈ N an m = m(k) such that πk|m = π|m,
with the property m(k) → ∞ as k → ∞. This implies that one can construct a coupling of
Π`,k and Π` (using the same Poisson point processes for all) such that Π`,k(t)|m = Π`(t)|m for
all t ≥ 0. Hence d(Π`,k(t),Π`(t)) ≤ 2−(m(k)+1) for all t ≥ 0 and, since m(k) → ∞, the second
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property follows due to the continuity of ϕ. Given that Tt is a Feller-Dynkin semigroup the
strong Markov property holds. 2

Remark. A variation of the above construction could be repeated for the cases where Λ has an
atom at 0, i.e. where Λ(·) = aδ0(·)+Λ+(·), for some a > 0 and Λ+ which does not have an atom
at 0. This would correspond to superimposing Kingman coalescent type transitions and the
Poisson process (Λ+ driven) induced coalescent events. The spatial Λ-coalescent corresponding
to the atomic part aδ0 is a time-change of the spatial Kingman coalescent and it comes down
from infinity uniformly due to Proposition 3.4 in [16]. Superposition of coalescence driven by Λ+

can only decrease the number of particles, so any such Λ-coalescent comes down from infinity
uniformly. Also note that an atom of Λ at 1 implies complete collapse in finite time, even if the
coalescent corresponding to the measure Λ(·∩ [0, 1)) stays infinite. See [23] for further discussion
of atoms. �

Remark. We stated Theorem 1 for |G| < ∞. The same Poisson point process construction, even
in the cases where the underlying graph G is an infinite and bounded degree (or a locally finite)
graph, and where the starting configuration π ∈ P`

n is finite, clearly works. This fact will be
useful in Section 5 where we consider G = Zd. To extend the construction to infinite graphs and
infinite initial configurations requires a little more work. As mentioned in the introduction, given
Theorem 12, one can conveniently approximate the whole lattice Zd by large tori to construct a
locally finite (at all positive times) version of the coalescent, even if started with infinitely many
partition elements at each site of the lattice. �

3 Coming down from infinity

In this section, we first obtain estimates on the coalescence rates and the rates of decrease in
the number of blocks, both in the non-spatial and the spatial setting. Several of these estimates
will be applied to showing that the spatial Λ-coalescent comes down from infinity if and only if
(4) holds.

It is easy to see, using definitions (1)-(3), that

λb =
∫

[0,1]

1− (1− x)b − bx(1− x)b−1

x2
dΛ(x) , γb =

∫
[0,1]

bx− 1 + (1− x)b

x2
dΛ(x). (7)

The following lemma is listing some facts, which are based on (7) and some simple computations.

Lemma 2 We have the following estimates:

(i) λb+1 − λb =
∫
[0,1] b(1− x)b−1dΛ(x) for b ≥ 2, in particular λb ≤ λb+1 ≤ 3λb,

(ii) γb+1 − γb =
∫
[0,1](1− (1− x)b)x−1dΛ(x) ≥ 0.

Proof. (i) Note that −(1−x)b+1−(b+1)x(1−x)b+(1−x)b+bx(1−x)b−1 = (1−x)b−1(−(1−x)2−
(b+1)x(1−x)+ (1−x)+ bx), and that the term in the parentheses equals bx2. Combined with
(7), this gives the initial statement of the lemma. The first inequality λb+1 ≥ λb is immediate.
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The second inequality follows again from (7), by integrating the following inequality with respect
to Λ

b(1− x)b−1 ≤ b(b− 1)x−2(1− x)b−2 ≤ 2x−2
(
1− (1− x)b − bx(1− x)b−1

)
, x ∈ [0, 1],

which is easy to check, for example, via the Binomial Theorem.

(ii) The stated property of the sequence γ was already noted and used by Schweinsberg, cf. [26]
Lemma 3. For completeness we include a brief argument: From (7)

γb+1 − γb =
∫

[0,1]
(x + (1− x)b+1 − (1− x)b)x−2dΛ(x)

=
∫

[0,1]
(1− (1− x)b)x−1dΛ(x) ≥ 0.

2

The following two lemmas and a corollary are auxiliary results, often implicitly observed in [23]
or [26], and are of interest to anyone studying fine properties of Λ-coalescents. Fix a ∈ (0, 1).
Let Λa be the restriction of Λ to [0, a], namely

Λa([0, x]) = Λ([0, a] ∩ [0, x]), x ∈ [0, 1].

Let λa
b , γ

a
b be defined in (1)-(3) using Λa as the underlying measure instead of Λ.

Lemma 3 (i) For each fixed a, such that Λa((0, 1)) > 0, there exists a constant C1 = C1(Λ, a) ∈
(0,∞) such that for all large b,

λa
b ≤ λb ≤ C1λ

a
b .

(ii) There exists an a < 1 and C2 = C2(Λ, a) ∈ (0,∞) such that for all large b,

γa
b ≤ γb ≤ C2γ

a
b .

(iii) If
∫
[0,1]

1
x dΛ(x) = ∞, in particular if (4) holds, then for each fixed a, the inequalities in (ii)

hold with a constant C3 = C3(Λ, a) ∈ (0,∞).

Remark. For any fixed Λ let

ηb :=
b∑

k=2

(
b

k

)
k λb,k.

Then it is easy to see that γb/ηb → 1 as b →∞, so statements (ii) and (iii) above extend to the
corresponding ηb and ηa

b . �
Proof. For each a ∈ (0, 1), the first inequalities in both (i) and (ii) are trivial consequences of
Λa being the restriction of Λ, the identities in (7), and the fact that 1− (1− x)b − bx(1− x)b−1

and bx− 1 + (1− x)b are both non-negative on [0, 1].

The second inequality in (i) is easy as well, since 1 − (1 − x)b − bx(1 − x)b−1 is bounded by 1,
which implies

λb ≤ λa
b +

1
a2

Λ([a, 1]). (8)
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Then either λb → ∞, in which case (8) implies λa
b → ∞ as b → ∞, so that for all large b,

1
a2 Λ([a, 1]) ≤ λa

b , or λb stays finite, in which case the upper bound is trivial.

The proof of the second inequality in (ii) is similar. First note that bx − 1 + (1 − x)b ≤ bx so
that

γb ≤ γa
b +

b

a
Λ([a, 1]). (9)

Now it is easy to see by Lemma 2(ii) that γb+1 − γb is non-decreasing in b so that γb ≥ (γ3 −
γ2)(b− 2) for each b. For a chosen sufficiently close to 1, 1

aΛ([a, 1]) < (γ3 − γ2)/3 (recall Λ is a
finite measure). Hence, (9) implies γa

b ≥ (γ3 − γ2)b/2 for all b large enough and (9) then also
implies the upper bound in (ii) since b

aΛ([a, 1]) < (γ3 − γ2) b
3 < γa

b .

Part (iii) follows immediately from the argument for (ii), and the following fact (already noticed
by Pitman [23], Lemma 25), ∫

[0,1]

1
x

dΛ(x) = lim
b→∞

γb

b
. (10)

In particular, (4) must imply that the left hand side in (10) is infinite. 2

Let the symbol � stand for “asymptotically equivalent behavior” in the sense that am � bm (as
m →∞) if there exist two finite positive constants c, C such that

c am ≤ bm ≤ C am, m ≥ 1.

Lemma 4 We have

(i)

λb � b2Λ[0, 1/b] +
∫

[1/b,1]

1
x2

dΛ(x)− b

∫
[1/b,log(2b/(1−e−1))/b]

(1− x)(b−1)

x
dΛ(x),

(ii)

γb � b2Λ[0, 1/b] + b

∫
[1/b,1]

1
x

dΛ(x).

Proof. (i) To show the first claim, use expression (7) to get for b ≥ 2,

λb =
∫

[0,1/b]

1− (1− x)b − bx(1− x)b−1

x2
dΛ(x)

+
∫

[1/b,1]

1− (1− x)b − bx(1− x)b−1

x2
dΛ(x).

Then note that ∫
[0,1/b]

1−(1−x)b−bx(1−x)b−1

x2 dΛ(x)

b(b− 1)Λ([0, 1/b])/2
→ 1, as b →∞,

and also that

(1− e−1)
∫

[1/b,1]

1
x2

dΛ(x) ≤
∫

[1/b,1]

1− (1− x)b

x2
dΛ(x) ≤

∫
[1/b,1]

1
x2

dΛ(x).
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A calculus fact, 1− x ≤ e−x, x ∈ [0, 1] implies that if x ≥ log(2b/(1− e−1))/b, then (1− x)b ≤
(1−e−1)

2b . This in turn implies that∫
[log(2b/(1−e−1))/b,1]

b(1− x)b−1

x
dΛ(x)

≤
∫

[log(2b/(1−e−1))/b,1]

b(1− e−1)
2(b− 1)x

dΛ(x)

≤ b(1− e−1)
2(b− 1)

∫
[log(2b/(1−e−1))/b,1]

1
x2

dΛ(x)

≤ b

2(b− 1)

∫
[1/b,1]

1− (1− x)b

x2
dΛ(x),

so that−
∫
[log(2b/(1−e−1))/b,1]

b(1−x)b−1

x dΛ(x) can be ignored in the asymptotics, and the remaining
term ∫

[1/b,log(2b/(1−e−1))/b]

b(1− x)b−1

x
dΛ(x),

appears in the asymptotic expression for λb. (ii) Since γb � ηb, see the above remark, it suffices
to show the second statement for ηb instead. As in (7),

ηb = b

∫
[0,1/b]

1− (1− x)b−1

x
dΛ(x) + b

∫
[1/b,1]

1− (1− x)b−1

x
dΛ(x),

and since it is easy to see that∫
[0,1/b]

1−(1−x)b−1

x dΛ(x)

bΛ([0, 1/b])
→ 1, as b →∞,

while ∫
[1/b,1]

1− (1− x)b−1

x
dΛ(x) �

∫
[1/b,1]

1
x

dΛ(x),

the claim on the asymptotics of γb (i.e., ηb) follows. 2

Corollary 5 (i) If λb →∞, as b →∞ then limb→∞ λb+1/λb = 1,

(ii) Since γb →∞, as b →∞ we obtain that limb→∞ γb+1/γb = 1.

Proof. (i) By the Binomial Formula, for x ∈ [0, 1],

b− 1
2

bx2(1− x)b−1 ≤ 1− (1− x)b − bx(1− x)b−1,

so that ∫
[0,log(2(b−1))/(b−1)]

b(1− x)b−1 dΛ(x) (11)

≤ 2
b− 1

∫
[0,log(2(b−1))/(b−1)]

1− (1− x)b − bx(1− x)b−1

x2
dΛ(x).
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Since
∫
[log(2(b−1))/(b−1),1] b(1 − x)b−1 dΛ(x) ≤ b

2(b−1)Λ([0, 1]), the conclusion follows by Lemma
2(i), (7), (11) and the fact that λb →∞.
(ii) Perhaps the easiest way to see that γb →∞ whenever Λ([0, 1]) > 0 is by using the identity
(10). The statement then follows immediately from Lemma 2(ii), Lemma 4(ii), and the fact that∫

[0,1]

1− (1− x)b

x
dΛ(x) ≤ bΛ([0, 1/b]) +

∫
[1/b,1]

1
x

dΛ(x).

2

Lemma 6 There exists a finite number ρ ≥ 1 such that for any Λ, and all b ≥ 3,m ≥ 2 such
that b/m ≥ 2 we have

λb ≤ mρλdb/me

Proof. In this lemma we consider the identities (7) for all real b ≥ 1. It suffices to show that for
some c ∈ (0,∞)

λb ≤ cλb/2 (12)

for all b ≥ b0 where b0 > 2 is some finite integer. Indeed, if m ∈ (2k, 2k+1] for some k then (note
clog2 m = mlog2 c

λb ≤ ck+1λb/2k+1 ≤ cmlog2 cλdb/me,

and now one can take ρ > c + log2 c to get the statement of the lemma. Define the function

g(β, x) := 1− (1− x)β − βx(1− x)β−1.

Due to representation (7) for λb it then suffices to study

fb(x) :=
1− (1− x)b − bx(1− x)b−1

1− (1− x)b/2 − b
2x(1− x)

b
2
−1

=
g(b, x)

g(b/2, x)
,

and show
sup

x∈[0,1]
fb(x) ≤ c,

uniformly in all b ≥ b0. Note that fb(0+) = b(b−1)
b/2(b/2−1) = 4 b−1

b−2 ≤ 8 if b ≥ 3 and that fb(1) = 1.
The derivative f ′b(x) can be written as a ratio fnb(x)/fdb(x) where fdb(x) ≥ 0 and where fnb(x)
equals

x(1− x)b/2−2[b(b− 1)(1− x)b/2 − (b/2− 1)
b

2
− b

2
(
3b

2
− 1)(1− x)b − b(

b

2
)2x(1− x)b−1].

Therefore fnb(x) < 0 whenever b(b − 1)(1 − x)b/2 < ( b
2 − 1) b

2 and in particular whenever
x > 2

b log 8 for all b ≥ 4. So it suffices to show that

sup
x∈[0, 2

b
log 8]

fb(x) ≤ c.
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For this note that g(b/2, x) ≥ b/2(b/2−1)
2 x2(1− x)

b
2
−2 for any x ∈ [0, 1], and that (by expanding

the binomial terms and noting x/(1− x) ≤ 4
b log 8 whenever x < 2

b log 8 and b ≥ 10)

g(b, x)(
b
2

)
x2(1− x)b−2

=
b∑

l=2

2(b− 2)!
l!(b− l)!

(
x

1− x

)l−2

≤ 2 ·
b∑

l=2

[
(l − 2)!(b− 2)!
l!(b− l)!bl−2

]
(log 84)l−2

(l − 2)!
≤ 2 · 84,

since the term in square brackets is bounded by 1. 2

Now we turn to the spatial setting. Recall that the vertex set of G is {g1, . . . , gυ}. Denote by
λ(b1, b2, . . . , bυ) the total rate of coalescence for the configuration with bi blocks at site gi,

λ(b1, b2, . . . , bυ) :=
υ∑

i=1

bi∑
k=2

(
bi

k

)
λbi,k =

υ∑
i=1

λbi
.

Similarly, let

γ(b1, b2, . . . , bυ) :=
υ∑

i=1

γbi
.

Denote by bxc the integer part of the real number x and let dxe := −b−xc.
The following two lemmas will be useful for the proof of the characterization result given in
Proposition 11.

Lemma 7 For all υ ≥ 1, bi ≥ 0, i = 1, . . . , υ integers with
∑υ

i=1 bi > υ,

(i) γPυ
i=1 bi

≥ γ(b1, b2, . . . , bυ) ≥ υγb
Pυ

i=1 bi/υc,

(ii) υ1+ρλd
Pυ

i=1 bi/υe ≥ λ(b1, b2, . . . , bυ) ≥ λd
Pυ

i=1 bi/υe.

Proof. (i) In order to verify the first inequality we observe that for x ∈ [0, 1],

υ − 1 ≥ (
υ∑

i=1

(1− x)bi)− (1− x)
Pυ

i=1 bi (13)

since one can simply check that equality holds for x = 0 and that x 7→ (
∑υ

i=1(1 − x)bi) − (1 −
x)

Pυ
i=1 bi is a decreasing function on [0, 1]. Inequality (13) implies that

(
υ∑

i=1

bi)x− 1 + (1− x)
Pυ

i=1 bi ≥
υ∑

i=1

(bix− 1 + (1− x)bi)

for all x ∈ [0, 1]. The first inequality in (i) now follows from this and from (7), since

γ(b1, b2, . . . , bυ) =
υ∑

i=1

γbi
=
∫

[0,1]
x−2

υ∑
i=1

(bix− 1 + (1− x)bi)dΛ(x), (14)
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for bi ≥ 0 (if we set 00 = 1). The second inequality of (i) is immediate if
∑υ

i=1 bi < 2υ. Otherwise,
we note that

υ∑
i=1

(1− x)bi ≥ υ(1− x)
Pυ

i=1 bi/υ (15)

by Jensen’s Inequality since the function y 7→ ay is convex for every a > 0. Therefore, (14) is
bounded below by

υ

∫
[0,1]

x−2
(
βx− 1 + (1− x)β

)
dΛ(x),

where β =
∑υ

i=1 bi/υ. If β is an integer then the last expression is just υγβ. Now note that the
function β 7→ βx− 1 + (1− x)β is increasing (for β ≥ 1) and this implies the second inequality
in (i).

(ii) Use Lemma 6 to conclude

λ(b1, b2, . . . , bυ) ≤ υ1+ρλd
Pυ

i=1 bi/υe.

The second inequality of (ii) is a simple consequence of the fact that there exists a 1 ≤ j ≤ υ
such that bj ≥ d

∑υ
i=1 bi/υe and Lemma 2(i). 2

Now consider the coalescent (Π`
nυ(t))t≥0 such that its initial configuration Π`

nυ(0) has n blocks
at each site of G. Let

Tn := inf{t > 0 : #Πnυ(t) ≤ 2υ}. (16)

Lemma 8 If condition (4) holds then supn E[Tn] ≤
∑∞

b=2
3υρ+1

γb
< ∞.

Proof. The argument is an adaptation of the argument by Schweinsberg [26], Lemma 6, to our
situation. In fact we will even use similar notation. For n ∈ N define R0 := 0 and stopping
times (with respect to the filtration generated by Π`

nυ) given by

Ri := 1{#Πnυ(Ri−1)>2υ} inf{t > Ri−1 : #Πnυ(t) < #Πnυ(Ri−1)}
+1{#Πnυ(Ri−1)≤2υ}Ri−1, i ≥ 1.

In words, Ri is the time of the ith coalescence as long as the number of blocks before this
coalescence exceeds 2υ, otherwise Ri is set equal to the previous coalescence time. Since there
are no more than 2υ blocks left after (n− 2)υ coalescence events, note that

Tn = R(n−2)υ.

Of course, it is also possible that Tn = Ri for i < (n− 2)υ, but the above identity holds almost
surely as R(n−2)υ = Ri in this case. Let

Li = Ri −Ri−1, Ji = #Πnυ(Ri−1)−#Πnυ(Ri),

and note that there exists some finite random number ξi such that Ri−1 = T i
0 < T i

1 < T i
2 < . . . <

T i
ξi

< Ri, where T i
1, T

i
2, . . . are the successive times of migration jumps of various blocks from site

to site in between the i−1th and ith coalescence time. Let Bi(t) be the number of blocks located
at site gi ∈ G at time t. Since the total number of blocks does not change at the jump times T i

j
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for j = 1, . . . , ξi we have due to Lemma 7 (ii) that λ(B1(T i
j ), . . . , Bυ(T i

j )) ≥ λd
Pυ

e=1 Be(T i
j )/υe =

λd
Pυ

e=1 Be(Ri−1)/υe. This implies (by coupling of exponentials in a straightforward way) that

E[Li|Πnυ(Ri−1)] ≤
1

λd
Pυ

e=1 Be(Ri−1)/υe
. (17)

Also note that for all i with Πnυ(Ri−1) > 2υ,

E[Ji|Πnυ(Ri−1)] = E

 ∞∑
j=0

γ(B1(T i
j ), . . . , Bυ(T i

j ))

λ(B1(T i
j ), . . . , Bυ(T i

j ))
1{ξi=j}

∣∣∣∣∣∣Πnυ(Ri−1)


≥

υγb
Pυ

e=1 Be(Ri−1)/υc

υ1+ρλd
Pυ

e=1 Be(Ri−1)/υe
P (1{ξi<∞}|Πnυ(Ri−1))

=
1
υρ

γb
Pυ

e=1 Be(Ri−1)/υc

λd
Pυ

e=1 Be(Ri−1)/υe
, (18)

where the first equality is a direct consequence of definitions (2) and (3), and the fact that Ji is
the decrease in the number of blocks at the ith coalescence time Ri. The middle inequality is
due to Lemma 7 (i) and (ii). From (17) and (18) and the fact that Li = 0 if Ji = 0 we get the
important relation

E[Li|Πnυ(Ri−1)] ≤
υρ

γb
Pυ

e=1 Be(Ri−1)/υc
E[Ji|Πnυ(Ri−1)] (19)

for i ≥ 1. Now

E[Tn] = E[
υ(n−2)∑

i=1

Li] =
υ(n−2)∑

i=1

E [E [Li|Πnυ(Ri−1)]]

≤
υ(n−2)∑

i=1

E

[
υρ

γb
Pυ

e=1 Be(Ri−1)/υc
E [Ji|Πnυ(Ri−1)]

]

= E

υ(n−2)∑
i=1

υρ

γb
Pυ

e=1 Be(Ri−1)/υc
Ji

 = E

υ(n−2)∑
i=1

Ji−1∑
j=0

υρ

γb
Pυ

e=1 Be(Ri−1)/υc


≤ υρE

[
n∑

b=2

υ

γb
+

2υ

γ2

]
≤

n∑
b=2

3υρ+1

γb
,

where we have used Lemma 9 below. 2

Lemma 9 For a fixed υ, let m,n be positive integers such that m ∈ [nυ, (n + 1)υ). For any
k ≥ 1 and j1, . . . , jk ≥ 1 such that

∑k−1
i=1 ji < m− 2υ and

∑k
i=1 ji ∈ [m− 2υ, m− 1] one has

k∑
i=1

ji

γb(m−
Pi−1

`=1 j`)/υc
≤ m− nυ

γn
+

n−1∑
b=2

υ

γb
+

2υ

γ2
. (20)
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Proof. Statement (20) can be proved for each fixed υ by induction in n. The base cases n = 2
with m > 2υ and

∑k
i=1 ji = m − 1 explain the extra summands 2υ/γ2. Here one also uses the

fact that (γb)∞b=2 is an increasing sequence (cf. Lemma 2 (ii)). 2

Let us now recall the construction in Theorem 1, and define

T (2)
n := Tn from definition (16),

and
T∞ = T (2)

∞ = sup
n

T (2)
n = inf{t > 0 : #Π(t) ≤ 2υ},

and furthermore define

T (k)
n := inf{t > 0 : #Πnυ(t) ≤ kυ}, T (k)

∞ := sup
n

T (k)
n , k ≥ 3. (21)

Note that by monotone convergence T
(k)
n ↗ T

(k)
∞ we have

E[T (k)
∞ ] = lim

n→∞
E[T (k)

n ], k ≥ 2.

Corollary 10 If condition (4) holds then for each k ≥ 2, supn E[T (k)
n ] ≤

∑∞
b=k

υρ+1

γb
+ kυρ+1

γk
<

∞, and in particular
lim

k→∞
sup

n
E[T (k)

n ] = 0.

Proof. The upper bound on E[T (k)
n ] can be shown as in the proof of Lemma 8. The second

claim above now follows by relation (10) and the observation following it. 2

We can now establish the following analogues to Proposition 23 of Pitman [23] and Proposition
5 of Schweinsberg [26] in the spatial setting.

Proposition 11 Assume that Λ has no atom at 1. Then the spatial Λ-coalescent either comes
down from infinity or it stays infinite. Furthermore, it stays infinite if and only if E[T∞] = ∞.

Proof. Define T := inf{t ≥ 0 : #Π(t) < ∞}. The first statement could be shown following
Pitman [23] Proposition 23 by observing that P [0 < T < ∞] > 0 leads to a contradiction. We
choose a different approach, based on Corollary 10 and coupling with non-spatial coalescents.

Suppose that (4) holds. Then E[T∞] < ∞, by Lemma 8, implying T∞ < ∞ almost surely. Also
note that the Λ-coalescent comes down from infinity due to Corollary 10, since for any t > 0,
and any k ≥ 2,

P [T > t] ≤ P [T (k)
∞ > t] ≤ E[T (k)

∞ ]
t

.

This verifies that P [T ∈ {0,∞}] = P [T = 0] = 1, again by Corollary 10.

If (4) does not hold, we will show next by a coupling argument that, provided #Π(0) = ∞,
we have P [T ∈ {0,∞}] = P [T = ∞] = 1. This implies of course that P [T∞ = ∞] = 1
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and E[T∞] = ∞. So assume that #Π(0) = ∞, i.e. that there exists at least one site g in G
such that Π`(0) contains infinitely many blocks with label g. Then the spatial coalescent Π` is
stochastically bounded below by a coalescing system Π̃`, in which any block that attempts to
migrate is assigned to a “cemetery site” ∂ instead. More precisely, the evolution of the process
Π̃` at each site is independent of the evolution at any other site, and its transition mechanism
is specified by:

(i) blocks coalesce according to a Λ-coalescent,

(ii’) each block vanishes (moves to ∂) at rate 1.

By adapting the construction of Π` in Theorem 1, one can easily construct a coupling
(Π`(t), Π̃`(t))t≥0 on the same probability space, so that at each time t, and for each site g
of G, the number of blocks in Π`(t) located at g is larger than (or equal to) the number of
blocks in Π̃`(t) located at g. We will show that in any given time interval [0, t], at each site
of G that initially contained infinitely many blocks, there are infinitely many blocks remaining
in Π̃` (even though there are infinitely many blocks that do vanish to ∂ by time t). Therefore,
∞ = #Π̃(t) ≤ #Π(t) so that Π` stays infinite.

To show that P [#Π̃(t) = ∞] = 1 for each t > 0, it will be convenient to construct a coupling
of Π̃`(t) with a new random object Π1(t). Since there is no interaction among the sites of G
in Π̃, it suffices to consider the nonspatial case where |G| = 1. Introduce an auxiliary family
(Xj)j≥1 of independent exponential random variables with parameter 1. Take a (non-spatial)
Λ-coalescent (Π1(s))s∈[0,t] such that Π1(0) = Π̃(0), and in addition augment the state space for
Π1 to accommodate a mark for each block. Initially all blocks start with an empty mark. At
any s ≤ t, any block A ∈ Π1(s) is marked by ∂ if {Xmin A ≤ s}. In this way, if an already
marked block A coalesces with a family A1, A2, . . . of blocks, such that minA ≤ minj(minAj),
the new block A ∪∪jAj automatically inherits the mark ∂. Note as well that if a marked block
A coalesces with at least one unmarked block containing a smaller element than min A, the new
block will be unmarked.

The number #uΠ1(t) of all unmarked blocks in Π1(t) is stochastically smaller than the number
#Π̃(t). To see this, note the difference between Π̃(t) and Π1(t): a marked block in Π1(s) is
not removed from the population immediately (unlike in Π̃) so it may coalesce (and “gather”)
additional blocks with higher indexed elements during [s, t] resulting in a smaller number of
unmarked partition elements in Π1(0) than in Π̃(t).

Another random object Π2(t), equal in distribution to Π1(t), can be constructed as follows: run
a (non-spatial) Λ-coalescent (Π2(s))s∈[0,t], and attach to each block A ∈ Π2(t) a mark ∂ with
probability e−t. Let #uΠ2(t) be the number of all unmarked blocks in Π2(t). Since (4) does not
hold, due to the corresponding result in [26], P [#Π2(t) = ∞] = 1. Since Π1(t) and Π2(t) have
the same distribution, then #uΠ1(t) and #uΠ2(t) have the same distribution and by the above
construction we conclude immediately that

1 = P [#uΠ2(t) = ∞] = P [#uΠ1(t) = ∞].

Recalling that #uΠ1(t) is stochastically bounded above by Π̃(t) for all t ≥ 0 completes the
proof. 2
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Remark. It is intuitively clear that in the case in which the Λ-coalescent Π` stays infinite, there
are infinitely many blocks in Π` at all positive times at all sites, a proof of this fact is left to an
interested reader. �
Remark. Note that the upper bounds in Lemma 8 and Corollary 10 neither depend on the
structure of G nor on the underlying migration mechanism, as long as there is enough indepen-
dence between the migration and coalescence. Of course it is easy to construct examples where
the migration “anticipates” coalescent events and where the particles shift from sites where a
coalescent event happens in the very near future to sites without a coalescent event in the near
future, and where for this reason the size of the system stays large for a very long time. In view
of this, it seems difficult to control the behavior of the system when the migration is general.
However, after a careful look at the proof the reader will see that in fact similar estimates would
hold with any migration mechanism for which one has (see the calculation leading to (18))

E(Ji|B1(T i
j ), . . . , Bυ(T i

j ), ξi = j, Πnυ(Ri−1)) ≥ ci
j

γ(B1(T i
j ), . . . , Bυ(T i

j ))

λ(B1(T i
j ), . . . , Bυ(T i

j ))
,

where E(
∑

j ci
j1{ξi=j}|Πnυ(Ri−1)) > c for some deterministic c > 0. �

4 Uniform asymptotics

The result of this section is essentially based on the lower bound in Lemma 7 (i) and the
observation that given X an exponential (rate λ) random variable, and another non-negative
independent random variable T , one has

P (X < T ) =
1
λ

E(X ∧ T ).

Hence, one could quickly generalize the argument comprising (22)-(23) to more complicated
migration mechanisms that are independent of the future of the coalescent mechanism.

To make the proof more transparent, we will assume the setting of Theorem 1, where each block
changes its label (i.e. migrates) at rate 1, independently of the coalescent mechanism. Recall
the setting of Lemma 8 and Corollary 10, and in particular the first time T

(k)
n for the spatial

Λ-coalescent to have kυ or fewer blocks when started with n blocks at each site.

Theorem 12 If (4) holds, then for k ≥ 2

sup
n

E[T (k)
n ] ≤

∞∑
b=k

1
γb

+
k

γk
.

Proof. We use the same notation as in the proof of Lemma 8, but this time the calculations
are finer. First, fix an i ≥ 1 (note the subscripts i are omitted in a number of places below for
notational convenience). Recall that ξi := max{k : T i

k < Ri} is the number of migration events
in between the (i− 1)st and ith coalescence time and that T i

j are the jump times and define

a :=
υ∑

e=1

Be(Ri−1) =
υ∑

e=1

Be(T i
j ) for all j ≤ ξi.
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Also set λi
j = λj = λ(B1(T i

j ), . . . , Bυ(T i
j )) for all j ≤ ξi. We extend the definition of T i

j and λi
j

to all j ∈ N by considering a coupled process Πi
nυ which agrees with Πnυ on [Ri−1, Ri) but for

which no coalescence takes place. As before, T i
j is the time of the jth migration event and λj is

the coalescence rate associated with the configuration at time T i
j for all j ∈ N.

Using the first line of (18) and Lemma 7 (i) as well as further conditioning on (λl)l∈N0 we obtain

E[Ji|Πnυ(Ri−1)] ≥ υγb a
υ
cE

 ∞∑
j=0

λ−1
j 1{ξi=j}

∣∣∣∣∣∣Πnυ(Ri−1)


= υγb a

υ
cE

 ∞∑
j=0

λ−1
j P [ξi = j|(λl)l∈N0 ,Πnυ(Ri−1)]

∣∣∣∣∣∣Πnυ(Ri−1)


= υγb a

υ
cE

 ∞∑
j=0

λ−1
j

(
j−1∏
l=0

a

λl + a

)
λj

λj + a

∣∣∣∣∣∣Πnυ(Ri−1)

 . (22)

For the next computation define an auxiliary i.i.d. sequence (Xj)j≥0 of exponential random
variables with parameter a, as well as a sequence (Yj)j≥0 of independent random variables
where each Yj has an exponential (rate λj) distribution. Note that Wj := Xj∧Yj are exponential
random variables with rate a + λj that are independent of Zj = 1{Xj>Yj}.

Observe that conditioned on ((λj)j∈N0 ,Πnυ(Ri−1)) the Xj correspond to the waiting time until
the next migration and the Yj to the waiting time until coalescence as long as

∑j−1
l=1 Zl = 0. So

the event {Z0 = · · · = Zj−1 = 0} = {ξi ≥ j} is independent of Wj . This implies that

E [Li|Πnυ(Ri−1)] = E

E

 ξi∑
j=0

Wj

∣∣∣∣∣∣ (λl)l∈N0 ,Πnυ(Ri−1)

∣∣∣∣∣∣Πnυ(Ri−1)


= E

E

 ∞∑
j=0

Wj1{ξi≥j}

∣∣∣∣∣∣ (λl)l∈N0 ,Πnυ(Ri−1)

∣∣∣∣∣∣Πnυ(Ri−1)


= E

 ∞∑
j=0

E [Wj | (λl)l∈N0 ,Πnυ(Ri−1)]

·E
[
1{ξi≥j}

∣∣ (λl)l∈N0 ,Πnυ(Ri−1)
] ∣∣∣∣ Πnυ(Ri−1)

]

= E

 ∞∑
j=0

1
λj + a

(
j−1∏
l=0

a

λl + a

)∣∣∣∣∣∣Πnυ(Ri−1)

 . (23)

Comparing now the terms in (22) and (23) we find that

E [Li|Πnυ(Ri−1)] ≤
1

υγb a
υ
c
E[Ji|Πnυ(Ri−1)], (24)

where we gained a factor of υρ+1 in the denominator with respect to the analogous relation (19)
in the proof of Lemma 8. The rest of the proof proceeds now as the proof of Lemma 8 and
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Corollary 10 and hence we obtain

E[T (k)
n ] ≤

n∑
b=k

1
γb

+
k

γk
.

2

Definition. We will say that the spatial Λ-coalescent comes down from infinity uniformly if

lim
k→∞

sup
n

ET (k)
n = 0.

�
In particular, by Proposition 11 and Theorem 12 any coalescent with independent Markovian
migration mechanism that comes down from infinity also comes down from infinity uniformly.
Example. Let α ∈ (0, 2). The Beta(2−α, α)-coalescent, where Λ d= Beta(2−α, α) has density
x1−α(1−x)α−1/Γ(2−α)Γ(α) is of special interest in [10]. As already noted in [26], for α ∈ (0, 1]
this (non-spatial) coalescent stays infinite, and for α ∈ (1, 2) it comes down from infinity. By
the previous theorem the spatial Beta(2− α, α)-coalescent comes down from infinity uniformly.
An interesting consequence follows by the results of the next section. �

5 Asymptotics on large tori

In this section we further restrict the setting in the following way:

• the graph G is a d-dimensional torus TN = [−N,N ]d ∩ Zd for some N ∈ N, where d ≥ 3
is fixed,

• the migration corresponds to a random walk on the torus, meaning that the kernel
p(x, y), x, y ∈ G is given as p(x, y) ≡

∑
{z:(z−y) mod N=0} p̃(z − x), where p̃ is purely d-

dimensional distribution such that
∑

x |x|d+2p̃(x) < ∞, and all particles move indepen-
dently of each other and of the coalescence,

• the Λ-coalescent comes down from infinity (uniformly), i.e., condition (4) holds.

We are concerned here with convergence of the Λ-coalescent partition structure on TN , if time
is rescaled by the volume (2N + 1)d of TN , to that of a time-changed non-spatial Kingman
coalescent as N → ∞. The main results are presented in Theorem 13 and Theorem 19: The-
orem 13 states convergence of the partition structure in a functional sense for arbitrary finite
initial configurations. Theorem 19 states convergence of the number of partition elements in a
functional sense if the initial number of partition elements is infinite.

Remark. There are strong reasons to believe that the behavior of the above system in recurrent
dimensions d = 1 and d = 2 is mutually different and different from the behavior in transient
dimensions d ≥ 3.
Cox [12] verifies that coalescing random walks (which formally correspond to spatial coalescents
with infinite collapse rate on all k-tuples, i.e. instantaneous collapse of all the individuals on
the same site) satisfy an analogue of Proposition 18, under appropriate scaling. However, the
limit corresponding to the one in Proposition 18 is different, and can be interpreted in terms of
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Arratia [2] coalescing Brownian motions on the unit circle.
In the same paper [12] Theorem 6, Cox proves that for coalescing random walks on two-
dimensional tori, under appropriate scaling, the analogue of Proposition 14 holds for sparse
particles. We therefore believe it would not be difficult to extend Proposition 14 to d = 2,
however a non-trivial analogue of Theorem 13 seems much more difficult since ΠZ2

(∞) is
the trivial partition with everything coalesced into one block, due to recurrence. Work in
progress [18] is in part devoted to the asymptotic analysis of the spatial Kingman coalescent on
two-dimensional tori. �

We write PN,` if we want to emphasize that the partitions are labeled by TN . Let

ΠN,`
π and ΠN,`

denote the Λ-coalescent started from a partition π ∈ PN,`, and the Λ-coalescent started from
any partition that contains infinitely many equivalence classes labeled by (located at) each site
of TN , respectively. In order to determine the large space-time asymptotics for ΠN,`, at time
scales on the order of the volume (2N +1)d of TN , we imitate a “bootstrapping” argument from
[16].

Remark. Observe that in [16], only the singular Λ = δ0 case was studied in this context. However,
the structure of the argument concerning large space-time asymptotics carries over due to the
cascading property for general (spatial) Λ-coalescents, in particular due to the fact that any two
partition elements π1, π2 ∈ ΠN,`(0) coalesce at rate

λ2,2 = Λ([0, 1]) (25)

while they are at the same site, and that they do not coalesce otherwise. �

We will need the following notation: for a marked partition π ∈ P`
n (or π ∈ P`), and two real

numbers a < b ∈ R, write
π ∈ [[a, b]],

if ∀i, j with i 6= j, such that (Ai, ζi), (Aj , ζj) ∈ π we have |ζi − ζj | ∈ [a, b]. In words, π ∈ [[a, b]]
if and only if all the mutual distances for pairs of different partition elements of π are contained
in [a, b].

The following theorem states that, viewed on the right timescale t(2N + 1)d, and after some
initial collapse of a finite starting configuration, the partitions of the Λ-coalescent on the tori TN

with N large behave like those of a (non-spatial) time-changed Kingman coalescent. To make
this statement more precise, we introduce the following notation.

Let G =
∑∞

k=0 p̃k(0) where p̃k denotes the k-step transition probability of a p̃ random walk.
Note that this random walk is transient on Zd, so that G < ∞. Let ΠZd,`

π be the Λ-coalescent
on G = Zd with migration given by the random walk kernel p̃, started from partition π ∈ P`

with #π < ∞. The transience of p̃ also implies existence of non-trivial limit partitions

ΠZd

π (∞) = lim
t→∞

ΠZd

π (t),

in the sense that if #π ≥ 2 then #ΠZd

π (∞) ≥ 2 with positive probability.
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We define Kπ as the non-spatial Kingman coalescent started in the partition π ∈ P or π ∈ Pn.
This means that Kπ is the ΛK-coalescent for ΛK = δ0 and |G| = 1 with initial configuration
Kπ(0) = π.

Denote by D(R+, E) the càdlàg paths on R+ with values in some metric space E, and equip
the space D(R+, E) with the usual Skorokhod topology. Also let ” ⇒ ” indicate convergence in
distribution. Set

κ =
2

G + 2/λ2,2
. (26)

Recall that ΠN,` starts from a configuration containing infinitely many blocks, namely the par-
tition Π(0) = {{j} : j ∈ N}. The theorem below concerns the behavior of only finitely many
blocks. Recall that ΠN,`(0)|n is the restriction of the labeled partition ΠN,`(0) to [n]. In the the-
orem below we use the abbreviation ΠN,`

n := ΠN,`
ΠN,`(0)

|n. Again, ΠN
n is the process of partitions

corresponding to ΠN,`
n .

Theorem 13 Assume that for each fixed n ≥ 1 and all large N we have ΠN,`(0)|n =
ΠN+1,`(0)|n. Then for each n, we obtain as N → ∞, the following convergence of the (un-
labeled) partition processes:

(ΠN
n (t(2N + 1)d))t≥0 ⇒ (K

ΠZd
n (∞)

(κt))t≥0,

where convergence is with respect to the Skorokhod topology on D(R+,Pn), and both ΠN,`
n and

ΠZd,`
n are started from the same initial configuration ΠN,`(0)|n ∈ P`

n.

Remark. The statement is a generalization of Proposition 7.2 in [16], which deals with the case
of spatial Kingman coalescents, rather than Λ-coalescents and only states convergence of the
marginals. Nevertheless, the first part of the argument is analogous, and we will change it only
slightly in preparation for Proposition 18 and Theorem 19. �
As the first step we will state a result for the case in which the initial configuration is sparse
on the torus, so that no coalescence involving more than two particles may be seen in the limit.
The general case, stated in Theorem 13, will then follow easily.

Proposition 14 Let aN →∞ be such that aN/N → 0. Fix n ∈ N, and let πN,` ∈ PN,` be such
that #πN,` = n ≥ 2, πN,` ∈ [[aN ,

√
dN ]], and such that its corresponding (unlabeled) partition

πN equals a constant partition π0 ∈ P for all N . Then as N → ∞, we have the following
convergence in distribution of the (unlabeled) partition processes:

(ΠN
πN,`(t(2N + 1)d))t≥0 ⇒ (Kπ0(κt))t≥0,

where the convergence is in the space D(R+,P).

Proof. To simplify the notation we refer to the ith block of π0 as {i}, for i = 1, . . . , n. In order
to show the convergence on the space D(R+,P) we will prove that the joint distribution of
inter-coalescence times converges, when appropriately rescaled, to the joint distribution of inter-
coalescence times of K(κ ·), and that, at each coalescence time, any pair of remaining blocks is
equally likely to coalesce next, see also [17] for a similar argument.
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We set τN
0 = 0. Since there are at most n − 1 coalescence times in general, we then define

recursively stopping times for k = 1, . . . , n− 1,

τN
k := inf{t ≥ τN

k−1 : #ΠN
πN,`(t) 6= #ΠN

πN,`(τN
k−1)},

as long as #ΠN
πN,`(τN

k−1) > 1. Also define inter-coalescence times σN
k := τN

k − τN
k−1, k ≤ n − 1.

Let us first observe that for n = 2

P [σN
1 /(2N + 1)d < t] = P [τN

1 /(2N + 1)d < t] → e−κt (27)

uniformly in t ∈ [0, T ] for any T < ∞, by Lemma 7.3 in [16]. Indeed, as remarked at the
beginning of this section, the spatial Λ-coalescent restricted to two-particles is identical in law
to the spatial λ2,2δ0(·)-coalescent from [16].

Let Uk be independent exponential random variables with parameters κ
(
n−(k−1)

2

)
for k < n− 1.

We wish to show the convergence in distribution of the random vector

(σN
1 /(2N + 1)d, . . . , σN

n−1/(2N + 1)d) ⇒ (U1, . . . , Un−1) (28)

as N → ∞. The statement is clear by (27) if n = 2. In order to show (28) for n ≥ 2, the first
step is to see that, we may exclude the possibility of coalescence of more than two particles at
any given time with probability tending to 1 as N →∞.

Let τN (i, j) be the time of the coalescence which merges the block A(i) containing i and the
block A(j) containing j, and for each i denote by ζ(i) the label associated with the block A(i).
Then, we have for any 0 < T < ∞, and any distinct i, j, k ∈ [n],∫ T (2N+1)d

0
P
[
τN
1 = τN (i, j) ∈ du, |ζ(i) − ζ(k)| ≤ aN

]
→ 0, (29)

uniformly over all partitions πN,` ∈ [[aN ,
√

dN ]], as N →∞. The statement (29) is analogous to
(3.7) in Cox [12], and follows with exactly the same calculation. Likewise, a statement analogous
to (3.8) in [12] holds, saying that uniformly over all πN,` ∈ [[aN ,

√
dN ]]∫ T (2N+1)d

0
P
[
τN
1 = τN (i, j) ∈ du, |ζ(k) − ζ(l)| ≤ aN

]
→ 0, (30)

as N →∞ for i, j, k, l ∈ [n] distinct.

Now fix T < ∞, ε > 0, and let n > 2. Relation (29) implies that for N large enough,

P
[
#ΠN

πN,`(τN
1 ) 6= n− 1, τN

1 < T (2N + 1)d
]

< ε, (31)

and together with (30) it implies that

P
[
ΠN,`

πN,`(τN
1 ) 6∈ [[aN ,

√
dN ]], τN

1 < T (2N + 1)d
]

< ε.

A simple induction (using the strong Markov property and uniformity of (29) and (30) in t ∈
[0, T ]) yields the following statement: for each k < n − 1, and any fixed ε > 0, if N is large
enough then

P
[
#ΠN

πN,`(τN
k ) 6= n− k, τN

k < T (2N + 1)d
]

< ε,
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and
P
[
ΠN,`

πN,`(τN
k ) 6∈ [[aN ,

√
dN ]], τN

k < T (2N + 1)d
]

< ε,

for k ≤ n− 2. From this we get that, for any fixed ε > 0, if N is large enough,

P
[
#ΠN

πN,`(τN
k ) = n− k for each k with τN

k < T (2N + 1)d
]

> 1− ε, (32)

and
P
[
ΠN

πN,`(τN
k ) ∈ [[aN ,

√
dN ]] for each k with τN

k < T (2N + 1)d
]

> 1− ε. (33)

Moreover, on the event

{τN
k < T (2N + 1)d} ∩ {#ΠN

πN,`(τN
k ) = n− k} ∩ {ΠN

πN,`(τN
k ) ∈ [[aN ,

√
dN ]]}

we have as in (3.1) of [12] that

|P [σN
k+1/(2N + 1)d > u|FτN

k
]− e−κ(n−k

2 )u| < εN , (34)

where εN depends on N only, and where εN → 0, as N →∞.

In order to arrive at (28), we show that σN
k is asymptotically independent of σN

k−1, . . . , σ
N
1 for

all k = 2, . . . , n− 1. So consider for any fixed 0 ≤ t1, . . . , tk, where
∑k

i=1 ti < T, the event

AN
k :=

{
σN

k

(2N + 1)d
< tk,

σN
k−1

(2N + 1)d
< tk−1, . . . ,

σN
1

(2N + 1)d
< t1

}
.

In particular, on this event we have that τN
i < T (2N +1)d is satisfied for i = 1, . . . , k. We obtain

P
[
AN

k

]
= E

[
P

[
σN

k

(2N + 1)d
< tk

∣∣∣∣FτN
k−1

]
1AN

k−1

]
= E

[(
P

[
σN

k

(2N + 1)d
< tk

∣∣∣∣FτN
k−1

]
−
(
1− e−(n−(k−1)

2 )κtk
))

1AN
k−1

]
+(1− e−(n−(k−1)

2 )κtk)P
[
AN

k−1

]
.

Now use (32), (33), and (34) to get

lim
N→∞

P
[
AN

k

]
= (1− e−(n−(k−1)

2 )κtk) lim
N→∞

P
[
AN

k−1

]
.

By iterating the argument we obtain asymptotic independence. This in turn implies that
(#ΠN

πN,`(t(2N +1)d)t≥0 ⇒ (#Kπ0(κt))t≥0 in the Skorokhod topology, since by (32), as N →∞,

P

[
#ΠN

πN,`(t) = n−
n−1∑
k=1

1{τN
k <t} for all t < (2N + 1)dT

]
→ 1,

so that the convergence of the jump times τN
k in n −

∑n−1
k=1 1{τN

k <t} implies convergence in the
Skorokhod topology, see for example Proposition 6.5 in Chapter 3 of [14].
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Finally, (2.8) in [12] states that

lim
N→∞

sup
t≥(log N)N2

sup
x∈T N

(2N + 1)d|p̃t(0, x)− (2N + 1)−d| = 0.

where p̃t(0, x) = P (X(t) = x|X(0) = 0) and X is a random walk on TN . This implies that the
positions of partition elements in ΠN,`

πN,`(τN
k +(log N)N2) (note that (τN

k +(log N)N2)/(2N+1)d ≈
τN
k /(2N + 1)d are approximately uniformly and independently distributed on the torus. Due to

(28), with probability tending to 1 as N →∞, we also have

#ΠN
πN,`(τN

k + (log N)N2) = #ΠN
πN,`(τN

k ).

Therefore, at time τN
k+1, each pair of partition elements of #ΠN

πN,`(τN
k ) is approximately equally

likely to coalesce, as is the case in the Kingman coalescent. This completes the proof of conver-
gence on the space D(R+,P). 2

Proof of Theorem 13. Fix n ∈ N. We will first show that, as N →∞, ΠN
n (N3/2) = ΠZd

n (∞) (note
this is only a statement about the partition structure, not the locations), and that ΠN,`

n (N3/2) ∈
[[N3/4/ log N,

√
dN ]], with probability arbitrarily close to 1. The statement of the theorem will

then follow by Proposition 14 if we continue running the process from time N3/2 onwards, and
use the strong Markov property, noting that N3/2 = o((2N + 1)d).

Let ||x||∞ = maxi=1,...,d xi for x ∈ Zd denote the maximum norm on Zd. Define the stopping
time

τN := inf{t > 0 : max{||ζ||∞ : (A, ζ) ∈ ΠN,`
n (t)} ≥ N}.

Before time τN none of the blocks has reached the boundary of [−N,N ]d, so we may couple
ΠN,`

n and ΠZd,`
n in a natural way such that ΠN,`

n (t) = ΠZd,`
n (t) for t ≤ τN .

Note that by the functional CLT, any random walk X on Zd with random walk kernel p̃ started
at X(0) ≤ N

2 satisfies

lim
N→∞

P

[
sup

0≤t≤N3/2

||X(t)||∞ < N

]
= 1.

Since for N large enough, max{ζ : (A, ζ) ∈ ΠN,`(0)|n} ≤ N
2 and since the coalescent has at most

n blocks independently performing random walks, we immediately obtain

lim
N→∞

P
[
τN > N3/2

]
= 1.

In particular, we have
lim

N→∞
P
[
ΠN,`

n (N3/2) = ΠZd,`
n (N3/2)

]
= 1. (35)

To see that the blocks remaining at time N3/2 are at a mutual distance of N3/4/ log N with high
probability, more precisely that

lim
N→∞

P [ΠN,`
n (N3/2) ∈ [[N3/4/ log N,

√
dN ]] ] = 1, (36)

if suffices to observe that again by the functional CLT,

lim
N→∞

P
[
|X1(N3/2)−X2(N3/2)| < N

3
4 / log N

]
= 0,
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where X1 and X2 are two independent p̃-random walks on Zd started at X1(0) = X2(0) = 0.
Due to (36), and the fact that P [X1(t) = X2(t) for some t ≥ 0|X1

0 −X2
0 = x] → 0 as |x| → ∞

we have,
lim

N→∞
P
[
ΠZd,`

n (N3/2) = ΠZd,`
n (∞)

]
= 1. (37)

Now (35) and (37) imply

lim
N→∞

P
[
ΠN,`

n (N3/2) = ΠZd,`
n (∞)

]
= 1. (38)

2

We will also show a uniform convergence to the Kingman coalescent, on the same time scale, in
the sense of the number of blocks, cf. Theorem 19 below. One starts with a bound on the mean
number of partition elements left in the coalescent ΠN at a fixed time, say 1. The following
useful monotonicity property carries over from the spatial Kingman coalescent setting to the
spatial Λ-coalescent setting:

Suppose that the blocks of ΠN,`(0) are initially divided into classes ΠN,1,`(0), ΠN,2,`(0), . . . (in
any prescribed deterministic way) and let (∪jΠN,j,`(t))t≥0 denote the united Λ-coalescent where
only blocks of the same class are allowed to coalesce.

Lemma 15 For each t > 0,

E[#ΠN (t)] ≤
∑

j

E[#ΠN,j(t)].

Proof. We can couple ΠN,` and ∪jΠN,j,`, applying a modification of the Poisson point processes
(from the construction of ΠN,`) to all the Λ-coalescents corresponding to different classes. By
induction it suffices to construct jointly the coalescence and migration transition mechanisms
for both processes ΠN,` and ∪jΠN,j,` so that if the number of blocks of ΠN,` is bounded by the
number of blocks of ∪jΠN,j,` strictly before any (coupled) migration or coalescence time, the same
will remain true after the transition takes place. To construct this coupling let ΠN,`

0 = ∪jΠ
N,j,`
0

and assume a reservoir of independent Poisson point processes Ni, i ∈ [υ] on R+ × [0, 1] with
intensity measure dt x−2Λ(dx).

Initially link each block in ΠN,`
0 with its copy in ∪jΠ

N,j,`
0 . Let the label processes of blocks in

ΠN,`
0 evolve as stated in Theorem 1. In between the coalescence transition times, for any block

A′ ∈ ∪jΠ
N,j,`
0 which is linked to a block A ∈ ΠN,`

0 , match the evolution of the label process of
A′ with the evolution of the label process of A.

Given (t, x), a point in the Poisson process Ni, generate a sequence of i.i.d. Bernoulli(x) random
variables. To the kth linked pair (according to some prescribed and arbitrary ordering) of blocks
with label i at time t− assign the kth Bernoulli variable. Recall that if two blocks are linked,
their label processes are equal so saying that a linked pair has label i makes sense. Note that
there may be unlinked blocks in ∪jΠ

N,j,`
t− (but not in ΠN,`

t− ), and to each such block assign a
different and unique Bernoulli variable above. To form ΠN,`

t coalesce all blocks of ΠN,`
t− with

label i and Bernoulli outcome 1, and to form ∪jΠ
N,j,`
t , for each j, coalesce all blocks of ∪jΠ

N,j,`
t−

in class j with label i and Bernoulli outcome 1.
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Note that if at this transition two blocks A1 and A2 of ΠN,`
t− coalesce, then the corresponding

blocks A′
1 and A′

2 of ∪jΠ
N,j,`
t− linked to A1 and A2, respectively, coalesce only if they consist

of elements of the same class. In case there exist two or more blocks A′
1, A

′
2, . . . in ∪jΠN,j,`,

belonging to different classes, and linked to A1, A2, . . . that have just coalesced into a new block
A within ΠN,` at time t, then at time t instantaneously relink A′

1 to A and unlink A′
2, . . .. It is

easy to continue the evolution of labels of unlinked blocks of ∪jΠN,j,` using extra randomness
so that each process ΠN,j,` is distributed as the Λ-spatial coalescent.

Since in the above construction, at all times, each block of ΠN,` is linked to a block of ∪jΠN,j,`

located at the same site, clearly #ΠN (t) ≤
∑

j #ΠN,j(t), and in particular the bound in expec-
tation holds. 2

The following lemma is taken from [16] and is similar to Theorem 1 in [4] and the proposition
in Section 4 of [12].

Lemma 16 There is a finite constant cd such that uniformly in N ∈ N, and in the sequences
(ΠN (0))N∈N satisfying #ΠN (0) ≥ (2N + 1)d,

E
[
#ΠN (t)

]
≤ cd max

{
1,

#ΠN (0)
t

}
.

Proof. All we need to do is translate the notation and explain the small differences in the
argument.

Our λ2,2 is γ in [16]. The migration walk p̃ is from the same class as in [16]. There are only
two statements in the argument of [16], Lemmas 7.4 and 7.5 that depend on the structure of the
underlying coalescent. One is relation (7.50) at the beginning of the argument of Lemma 7.4.
Take A0 ∈ ΠN (0) and note that, similar to (7.44) in [16],

#ΠN (t) ≤ #ΠN (0)−
∑

ΠN (0)3A6=A0

1{A0∼ΠN (t)
A},

so that
E
[
#ΠN (t)

]
≤ E

[
#ΠN (0)

]
−

∑
ΠN (0)3A6=A0

P [A0 ∼ΠN (t) A],

leading to (7.46) of Lemma 7.4 in [16], and therefore to relation (7.50) since the remaining
calculations concern the behavior of two partition elements (not the joint behavior of several
partition elements).

The other statement concerns (7.58) in the proof of Lemma 7.5: here, the torus is cut up into
boxes and (7.58) states that the expected number of blocks is bounded by the expected number
of blocks in a coalescent in which only blocks that start in the same initial box may coalesce.
This holds in our setting due to Lemma 15.

Given (7.50) and (7.58), the remaining arguments are the same as those in the proof of Lemmas
7.4 and 7.5 of [16]. 2

The next lemma says that the number of the partition elements at time ε(2N + 1)d is tight in
N .
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Lemma 17 Fix 0 < ε, ε′ < 1. Then there exists a constant M0 = M0(ε, ε′) such that, for all
M ≥ M0,

lim sup
N→∞

P [#ΠN (ε(2N + 1)d) > M ] ≤ ε′.

Proof. Assume 1 < ε(2N+1)d

2 . Due to Theorem 12, for k ∈ N,

sup
N

P [#ΠN (1) > k(2N + 1)d] = sup
N

P [TN,(k)
∞ > 1]

= sup
N

sup
n

E[TN,(k)
n ] ≤

( ∞∑
b=k

1
γb

+
k

γk

)
.

Due to (4) (more precisely observation (10)), the right hand side converges to zero as k → ∞.
Therefore, we may choose M0 ≥ 1 large enough so that

∑∞
b=M0

1
γb

+ M0/γM0 < ε′/2 and also
that M0 > 4cd

εε′ . Then for all M ≥ M0,

P [#ΠN (1) > M(2N + 1)d] ≤ ε′

2
. (39)

Now take M ≥ M0 and define the event AN
M := {#ΠN (1) ≤ M(2N + 1)d}. We then have by

Lemma 16 that

E[#ΠN (ε(2N + 1)d)|AN
M ] ≤ cd max{1,

M(2N + 1)d

ε(2N + 1)d − 1
} ≤ cd max{1,

2M

ε
}.

Note that on AN
M we may have #ΠN (1) ≥ (2N + 1)d and we can apply Lemma 16 directly,

otherwise couple the coalescent (ΠN (t), t ≥ 1) with another coalescent Π̃N (t), t ≥ 1) such that
Π̃N almost surely dominates ΠN (t) at all times, at all sites, and such that #ΠN (0) = (2N +1)d,
and apply Lemma 16 to Π̃N . It follows that

P [#ΠN (ε(2N + 1)d) > M2|AN
M ] ≤ 1

M
cd max{1,

2
ε
}.

By conditioning on whether AN
M or its complement occurs, using (39)

P [#ΠN (ε(2N + 1)d) > M2] ≤ 1
M

cd max
{

1,
2
ε

}
+ 1 · ε′

2
.

Since 2cd
Mε < ε′

2 we arrive at

sup
N

P [#ΠN (ε(2N + 1)d) > M2] ≤ ε′,

for M ≥ M0, which gives the statement of the lemma with M0 = (M0)2. 2

As a consequence, we obtain the following asymptotics for the number of partitions in ΠN , a
spatial Λ-coalescent started from a partition having infinitely many equivalence classes labeled
by (located at) each site of TN .
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Proposition 18 Let (K(t))t≥0 be the (non-spatial) Kingman coalescent started from the parti-
tion K(0) = {{i}, i ∈ N}, and let κ be defined in (26). Then, for each fixed t > 0, we have

#ΠN (t(2N + 1)d) ⇒ #K(κt),

as N →∞, where the above convergence is in distribution.

Proof. We start with a lower bound on the asymptotic distribution of #ΠN (t(2N + 1)d). Let
aN = N3/2 so that aN → ∞ and also

√
aN/N → 0. For any fixed M one can find N0 large

enough so that for all N ≥ N0, ΠN,`(0) contains at least M blocks (say Ai1 , . . . , AiM ), having
mutual distances larger than

√
aN . Let Π̃N,` be the ΠN,` coalescent restricted to {Ai1 , . . . , AiM }.

Then clearly
#ΠN (t(2N + 1)d) ≥ #Π̃N (t(2N + 1)d). (40)

As a consequence of (the proof of) Theorem 13, for any t > 0 , as N →∞,

P [#Π̃N (t(2N + 1)d) = k] → P [#KM (κt) = k], k = 1, . . . ,M,

where KM (·) is the Kingman coalescent started from partition {{1}, . . . , {M}}. By (40), for
k = 1, . . . ,M ,

lim inf
N→∞

P [#ΠN (t(2N + 1)d) ≥ k] ≥ lim inf
N→∞

P [#Π̃N (t(2N + 1)d) ≥ k]

= P [#KM (κt) ≥ k].

Taking M →∞ on both sides and using the well-known coming down (or entrance law) property
for K(·), we get for each k ≥ 1, and each t > 0,

lim inf
N→∞

P [#ΠN (t(2N + 1)d) ≥ k] ≥ P [K(κt) ≥ k]. (41)

To get the upper bound corresponding to (41), we use Lemma 17. Namely, fix ε, ε′ ∈ (0, 1∧ t/2),
and find the corresponding M0 = M0(ε/2, ε′). Running the configuration ΠN,`(ε(2N + 1)d/2)
for an additional N3/2 << ε(2N + 1)d/2 units of time will result in ΠN,`(ε(2N + 1)d/2 + N3/2).
On the event {#ΠN (ε(2N + 1)d/2) ≤ M0}, that has probability greater than 1 − ε′, we have
{#ΠN (ε(2N + 1)d/2 + N3/2) ≤ M0}, and moreover due to (36), for N sufficiently large, all the
(fewer than M0) partition elements of ΠN,`(ε(2N +1)d/2+N3/2) are at mutual distances larger
than N3/4/ log N with probability close to 1. More precisely, if we let CN,ε,M0 be the event that

ΠN,`(ε(2N + 1)d/2 + N3/2) ∈ [[N3/4/ log N,
√

dN ]] and
#ΠN (ε(2N + 1)d/2 + N3/2) ≤ M0

then, for all sufficiently large N ,
P [CN,ε,M0 ] ≥ 1− 2ε′. (42)

Again by the proof of Theorem 13, on CN,ε,M0 we have for k = 1, . . . ,M0, almost surely

|P [#ΠN (t(2N + 1)d) ≥ k|Fε(2N+1)d/2+N3/2 ]

− P [#K#ΠN (ε(2N+1)d/2+N3/2)(κ(t− ε

2
)) ≥ k]| ≤ εN ,

390



further implying,

|P [#ΠN (t(2N+1)d) ≥ k, CN,ε,M0 ]−E[P [#K#ΠN (ε(2N+1)d/2+N3/2)(κt−ε/2) ≥ k]1CN,ε,M0 ]| ≤ εN ,

(43)
where εN → 0 as N →∞. Now use

P [#K#ΠN (ε(2N+1)d/2+N3/2)(κt) ≥ k]1CN,ε,M0 ≤ P [#KM0(κt− ε/2) ≥ k]1CN,ε,M0

≤ P [#K(κt− ε/2) ≥ k]1CN,ε,M0

together with the fact that Cc
N,ε,M0 happens with probability smaller than 2ε′ to obtain from

(43) that
lim sup
N→∞

P [#ΠN (t(2N + 1)d) ≥ k] ≤ 4ε′ + P [#K(κt− ε/2) ≥ k].

The last statement is true for any ε′, ε > 0, and this combined with (41) gives

lim
N→∞

P (#ΠN (t(2N + 1)d) ≥ k) = P (K(κt) ≥ k), k ≥ 1. (44)

2

Remark. Before continuing, note an interesting consequence of (41):
If tN = o((2N + 1)d) then

lim
N→∞

P [#ΠN (tN ) ≥ k] ≥ lim
t↘0

lim inf
N→∞

P [#ΠN (t(2N + 1)d) ≥ k] = 1, k ≥ 1, (45)

or equivalently, #ΠN (tN ) →∞ in probability as N →∞. �

An even stronger form of convergence is true. It holds in any setting where Proposition 18 and
Theorem 13 hold, in particular in the setting of [16], although there it does not appear explicitly.
Its analogue is important for the diffusive clustering analysis in the two-dimensional setting of
[18].

Theorem 19 Let (K(t))t≥0 be as in Proposition 18. Then for each fixed a > 0, we have

(#ΠN (t(2N + 1)d))t≥a ⇒ (#K(κt))t≥a,

as N →∞, where the convergence is with respect to the Skorokhod topology on càdlàg processes.

Proof. As a consequence of (42) we have for any fixed a > 0,

lim
N→∞

P [ΠN,`(a(2N + 1)d) ∈ [[N3/4/ log N,
√

dN ]]] = 1. (46)

Together with the convergence of marginals in Proposition 18, and Theorem 13, this yields the
current statement. 2
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