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Abstract. Temporal aspects of neuronal activity have
received increasing attention in recent years. Oscillatory
dynamics and the synchronization of neuronal activity
are hypothesized to be of functional relevance to
information processing in the brain. Here we review
theoretical studies of single neurons at different levels of
abstraction, with an emphasis on the implications for
properties of networks composed of such units. We then
discuss the influence of different types of couplings and
choices of parameters to the existence of a stable state of
synchronous or oscillatory activity. Finally we relate
these theoretical studies to the available experimental
data, and suggest future lines of research.

1 Introduction

Originating from the pioneering work of Berger (1929),
experimental studies of the brain were initially based
heavily on EEG recordings. Due to the properties of this
technique, which renders a poor spatial but a high
temporal resolution, the search for physiological corre-
lates of cognitive processes concentrated on the overall
dynamics of neuronal activity, specifically on its fre-
quency components. Nevertheless, it was well known
that external stimuli induced reproducible activation of
individual sensory cells (Adrian and Zottermann 1926).
Only in the late fifties and early sixties did a paradigm
shift occur, when microelectrodes were developed that
were suitable for recording activity of cortical neurons
with a very high spatial resolution. It was discovered
that external stimuli induced specific and highly repro-
ducible responses in single cortical neurons (Hubel and
Wiesel 1962; Hubel 1982). The regular relationship
between neuronal activity and external events was
captured in the concept of receptive fields, stating that
the number of action potentials generated by single
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neurons reflects the presence or absence of an external
stimulus at a particular location. This concept proved to
be extremely powerful and led to a dramatic change in
the design of experimental work. In the following years
experimental studies concentrated on the detailed prop-
erties of neuronal receptive fields. The temporal struc-
ture of neuronal activity was not considered to be
relevant and, therefore, the study of the dynamics of
neuronal interactions was largely neglected.

In this context the idea was put forward that the ob-
servation of single neurons responding to specific retinal
stimuli may be transferable to more complex represen-
tational tasks (Barlow 1972; see also Martin 1994). The
vast amount of simple and unspecific information from
the retina would be processed by a feed-forward scheme,
compressing it onto smaller and smaller numbers of
neurons. At later stages these neurons would code for
increasingly complex features and behaviorally relevant
entities. At the end of this process the receptive fields of
the respective neurons — sometimes nicknamed “‘grand-
mother neurons”, though “‘cardinal cells” seems to be a
more appropriate name (Barlow 1995) — would directly
relate to the presence of complex objects in the visual
scene. Activity of these neurons is supposed to increase
only for a specific object, and not to be elevated for other
objects. Any visual scene would activate only a limited
number of cardinal cells, forming a sparse representa-
tion. Different stimuli can be differentiated if their
cortical representations are different. As these
representations are supposedly sparse, this notion has
been further generalized to the psychophysical linking
principle: ‘“Whenever two stimuli can be distinguished
reliably, then some analysis of the physiological messages
they cause in some single neuron would enable them to be
distinguished with equal or greater reliability” (Barlow
1995). This hypothesis proposes a one-to-one connection
between distinguishable stimuli of the outside world in
the outside world, and neurons in the brain.

The psychophysical linking principle has received
experimental support from studies of area MT in pri-
mate visual cortex. In these physiological recordings
monkeys were presented with random dot patterns that
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had varying directions of motion. And indeed, infor-
mation contained in the mean firing rate of single neu-
rons was sufficient to explain the performance of the
animal to discriminating stimulus movement in the
preferred direction of the neuron from the opposite di-
rection (Newsome et al. 1989). Although these experi-
ments do not necessarily imply that single neurons are
decisive (Shadlen et al. 1996; Parker and Newsome
1998), they have further strengthened the view that the
relevant analysis of physiological messages is the mean
activity or number of action potentials generated in
individual neurons.

However, the concept described above encounters
several problems. Most important, from our point of
view, is the issue of invariant representation. Starting
from the definition, if two stimuli are different and can
be distinguished, it is obvious that some retinal cells
generate different signals. In as far as differentiating
these stimuli involves cortical processing, these differ-
ences are presumably relayed to higher stages of the
visual system. The emphasis in the psychophysical
linking principle is on reliability. On repeated presenta-
tion, stimuli will not be identical and, indeed, in the
experiments cited above (i.e., Newsome et al. 1989) the
random dot patterns were not physically identical, but
had only identical motion vectors. Thus, any local
analysis on the retinal level is clearly insufficient to dif-
ferentiate these stimuli. Expanding this example to more
real-world stimuli, let us — for the sake of the argument —
imagine that you are viewing your grandmother while
her face is illuminated from the left. When you differ-
entiate this stimulus from a corresponding view of your
grandfather, some neurons are supposed to signal this
difference reliably. Compared to the situation when the
faces of your grandparents are illuminated from the
right, are the same neurons involved? It would be rather
helpful to generalize knowledge regarding your grand-
parents to different illumination conditions, thus, to
have one set of neurons coding faces for all illumina-
tions. These neurons would not only be highly specific
for some aspects of the visual stimulus, but simulta-
neously would not be sensitive to differences in other
aspects either. Importantly, you are capable of differ-
entiating illumination from left or right for any face
shown. Applying the linking principle again, this has to
be signalled by some other set of neurons. It is obvious
that this example can be inflated by introducing trans-
lations, different sizes and colors, partly overlapping
stimuli and other manipulations (a related and much
more entertaining form of this gedanken-experiment
is given in a letter by J.Y. Lettvin, reprinted in
Barlow (1995)). As a consequence, even in the psycho-
physical linking hypothesis, due to the combination of
specific and invariant responses a fair number of
neurons have to be involved in the representation of
any stimulus.

A competing hypothesis takes the view that individ-
ual objects are represented by a larger number of neu-
rons, not as a problem, but as a starting point for the
assembly concept (Hebb 1949). This hypothesis takes the
stance that focussing of a representation to highly spe-

cific neurons is not necessary, and that a distributed
representation involving a large number of optimally
and suboptimally activated neurons is sufficient and has
several desirable properties. First, since each neuron
participates in assemblies coding for other entities as
well, for a given acuity of representation this scheme is
more efficient in terms of the number of neurons needed.
Second, it is more robust since partial loss of neurons
would lead to graceful degradation of performance.
Third, the concept is also rather flexible with respect to
the generation of new representations, since there is a
canonical representation of new objects, made out of
already known features. Fourth, as neurons participate
in the representation of many objects, generalization
across different representations occurs naturally. These
properties make distributed codes attractive and they are
at the heart of interest in connectionism (see Rumelhard
and McClelland 1986).

However, smearing out a representation has a price:
when several stimuli are simultaneously present in a scene
and each stimulus is represented by an assembly of neu-
rons, how can these neurons be assigned to the different
assemblies and the representation be read out? This
problem, of decoding distributed representations of indi-
vidual objects, is known as the “‘binding problem” and is
currently hotly debated (Gray 1999; Singer 1999; Shadlen
and Movshon 1999). It may be solved utilizing the tem-
poral structure of neuronal activity (Milner 1974; von der
Malsburg 1981). Neurons coding for the same object
could be bound together by their synchronous firing, and
distinguished from neuronal assemblies coding for dif-
ferent objects by an absence of synchrony between them.

These proposals revived the interest in the detailed
dynamics of neuronal activity, and they are supported
by recent experimental evidence (Eckhorn 1994; Ko6nig
and Engel 1995; Singer and Gray 1995; Singer 1999). In
these experiments correlated activity of neurons was
observed, indicating that neurons can synchronize their
activity in the range of milliseconds. Synchronization of
neuronal activity was found in a variety of cortical areas
and subcortical structures. Furthermore, this phenome-
non was found to be stimulus specific. In accordance
with the notion of temporal tagging in assemblies, single
neurons could be synchronized with other neurons de-
pending on global properties of the stimulus. In partic-
ular, within the context of simple geometric stimuli,
synchronization properties reflect Gestalt laws (K&hler
and Wallach 1944).

A prominent feature of neuronal activity in these
experiments is an oscillatory temporal structure in the
y-frequency range (Eckhorn et al. 1988; Gray and
Singer 1989). Compared to synchrony, which refers to
simultaneous firing of two different neurons, oscilla-
tions refer to a regular firing pattern in individual
neurons. It has been found that synchronous activity of
spatially distant neurons is often accompanied by an
oscillatory behavior of the neurons involved (Engel
et al. 1992; Konig et al. 1995b). Thus, it is thought that
oscillatory activity of single neurons or neuronal
groups could act as a means of establishing synchrony
between neurons.



However, synchronization of neuronal activity may
not only express binding of neurons into an assembly,
but may also be crucially involved in processing itself
(Abeles 1982). Multi-electrode recordings in behaving
monkeys demonstrate precise spatiotemporal patterns
(Vaadia et al. 1995) and unitary events (Richle et al.
1997) which are associated with behavior. Parts of net-
works that can sustain such accuracy in the temporal
domain may serve as building blocks for cognitive pro-
cesses (Abeles and Prut 1996).

A related concept is temporal order coding (Maass
1997, 1998; Gautrais and Thorpe 1998). Here, infor-
mation is transmitted by the relative timing of action
potentials; small deviations from synchronous activity
represent relevant information. Indeed, experimental
evidence is available that synchronization is not per-
fect, but systematic phase leads and lags occur de-
pending on stimulus properties (Konig et al. 1995a),
which is compatible with this hypothesis. In the tem-
poral order coding scheme, oscillatory activity may
play a role in defining a temporal frame of reference
(Hopfield 1995).

In summary, there are a number of good reasons to
investigate the temporal dynamics of neuronal activity
and underlying mechanisms (Theunissen and Miller
1995; Konig et al. 1996). In the following we review
theoretical studies of single neurons as well as of small
and large networks of neurons with oscillatory behavior
at different levels of abstraction. We discuss network
properties which seem to be crucial for synchronization
and for the existence of a stable state of synchronous
activity. Finally, we discuss these results in the light of
available experimental data.

2 Different choices for the basic unit of a network

As is true for any modeling of physical reality, some
level of description has to be chosen for models of
neural networks that try to capture key processes of
synchronization. Therefore, assumptions have to be
made as to which biological details are important for
the process under investigation and thus must be
included in the model. Irrelevant details will unneces-
sarily complicate the analysis, and may even obscure
results if data are lacking for the aspects that are
considered important. Thus, the selection of the proper
level of description is an art, and opinions diverge
about the best choice. This has resulted in a rich
literature, which addresses the problem from many
different points of view.

For the investigation of synchronization phenomena
an important step is the selection of the basic unit. This
can be a single neuron or even an assembly of neurons
which we describe by its average activity. The particular
choice will strongly influence the properties of the in-
teractions between different units. To compare different
approaches, we will also have to pay attention to ‘“‘de-
tails” like the treatment of delays, refractory period and
inhomogeneity of parameters.
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2.1 Phase models

As outlined in the Introduction and discussed further
below, experimental observations of synchronous neu-
ronal activity are often accompanied by oscillatory
activity. Thus, it seems natural to start the investigation
of neuronal synchronization with a dramatic simplifica-
tion and consider units with only one variable, the
phase, which is a measure of the position of the system
on its periodic orbit. Actually, it is possible to give a
more sophisticated justification for this approach.

Suppose the dynamics of a neuron or neuronal as-
sembly is given by a set of coupled ordinary differential
equations. If the system exhibits oscillatory behavior
with a stable limit cycle its dynamics can be fully spec-
ified by the phase. This reduction of degrees of freedom
is reasonable if it can be extended to a region around the
limit cycle, such that perturbations can be studied within
the same framework (Kuramoto 1984; Ermentrout and
Kopell 1984, 1991).

We start with a general system of coupled ordinary
differential equations of the form

dx

— = F(X) . (1)
Here, X is a vector characterizing the state of the system,
and F a vector-valued function describing its change in
time. We will investigate the system’s behavior close to a
stable T-periodic limit cycle. Let this orbit be parame-
terized by Xy(¢), implying that Xo(¢ + T) = Xo(¢). Then,
for the points on the limit cycle, a phase ® can be defined
by

do(x,)
Tl 2)

A natural extension to an ‘“‘asymptotic phase” can be
given for any point X in the basin of attraction of the
limit cycle. The trajectory starting at such a point X at
time fo will tend towards the closed orbit as ¢t — oo.
Thus, it will asymptotically approach a trajectory that
started simultaneously from some point X; on the limit
cycle. The phase ®(X) is then defined by ®(Xj), since
both points will lead to the same phase description as
t — oo. By this method we obtain a one-parameter
family of hypersurfaces /(®) which contain all points of
constant phase @ intersecting the limit cycle in the point
Xo(®). These hypersurfaces are also sometimes referred
to as “‘isochrons”. We have herewith specified a function
® = ®(X) for all X in the basin of attraction, and in this
domain we have as well

= do(x) = VQ(X)g =VOX)F(X) . (3)
d¢ dt

For a system with an asymptotically stable limit cycle,
the phase description can now be maintained even when
we are dealing with small perturbations. This may be
understood by considering perturbations in the plane of
an isochron and orthogonal to it. For small perturba-
tions the former does not change the dynamics of the
system, and effects of the latter can be captured by the

1
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influence on the phase provided that the perturbations
are small enough so as not to drive the system away
from its limit cycle. This is further explored in Sect. 3.1.

Relating this approach to the biological system, the
basic assumption of a stable limit cycle attractor has to
be discussed. In experiments on rabbit olfactory bulb,
spindles with a dominant 40-Hz rhythm have been
observed (Freeman 1979a,b). The dynamics in the vi-
sual cortex have been accordingly nick-named 40-Hz
oscillations but the phenomenon is actually much more
complex. In the initial experiments on primary visual
cortex (area 17) of anesthetized cats (Gray and Singer
1989; Gray et al. 1990) a broad peak in the frequency
spectrum has been found in the range 35-70 Hz. This is
in line with results by Eckhorn et al. (1988) who re-
ported an even broader distribution of oscillation fre-
quencies in areas 17 and 18 of the anesthetized cat, in
the range 35-85 Hz. Using objective methods to define
the relevant frequency range, Siegel et al. (1999) found
in the awake behaving animal, optimal orientation
tuning in the range 30-85 Hz, matching these results.
Furthermore, these frequencies are not a sole property
of neuronal circuitry, but depend on stimulus proper-
ties: they tend to increase with increasing speed and
size of the visual stimuli (Eckhorn 1994). To make
matters even more complicated, in earlier parts of the
cat visual system, oscillations in a much higher fre-
quency range have been observed. In the retina and
lateral geniculate nucleus, neurons show periodic ac-
tivity with frequencies of 60-120 Hz (Neuenschwander
and Singer 1996). Upon presentation of flashed stimuli,
the high-frequency activity in retina and lateral geni-
culate nucleus leads to a feed-forward synchronization
of cortical activity (Castelo-Branco et al. 1998). For
moving stimuli, cortical circuitry seems to dominate
dynamics and 30-60 Hz oscillations are observed.
Thus, the oscillation frequency is highly dependent
on the experimental setup. Furthermore, the experi-
ments cited above concentrate on phenomena in the
y-frequency range, and oscillatory activity in lower
frequency bands is usually considered to be an inde-
pendent phenomenon. However, recent experiments
have demonstrated that activity in the y-frequency
range is often accompanied by lower frequency com-
ponents with considerable power. Furthermore, the
dynamics are not independent, but nonlinear correla-
tions between high and low-frequency oscillations
occur (Schanze and Eckhorn 1997; von Stein et al. 1999;
Siegel et al. 2000). In the hippocampus the situation
might be even more complex. Oscillatory activity has
been observed in many frequency bands, ranging from
ultra-low (0.025 Hz, Penttonen et al. 1999) to ultra-
high frequencies (up to 500 Hz, Bragin et al. 1999).
Furthermore, complex interactions between activity in
these frequency bands is observed.

From these results it becomes obvious that the de-
scription of neuronal dynamics by a single phase vari-
able is a first step, useful for restricted systems only.
Nevertheless, due to their analytical tractability and
numerical efficiency, phase models and their modifica-
tions are here to stay for some time.

2.2. The statistical approach

Given the gross simplifying assumptions that phase
models are based on, it is natural to refine the
description of neuronal dynamics. Wilson and Cowan
(1972, 1973) argue that the identity of presynaptic
neurons is not important, but only the distribution of
their level of activity. This leads to the statistical
description of activity in a neuronal network. The
proportions of active excitatory and inhibitory neurons
are chosen as model variables and are denoted by E(¢)
and I(z), respectively. The proportion of active neurons
at a time ¢ + 7t is given by the number of nonrefractory
neurons at time ¢ which have additionally received
enough input so that their membrane potential exceeds
the threshold of firing.

As the identity of neurons is considered not to be
relevant, we assume that all neurons receive the same
average input. This input depends only on the activity of
excitatory and inhibitory populations as well as on the
external input. This assumption seems plausible for a
fully interconnected network with homogeneous pa-
rameter values. The only inhomogeneity in this model is
a variation of the firing threshold, which is assumed to
vary to a limited degree in a population of otherwise
identical neurons. If the input is much lower than the
average threshold, E(¢) will be near zero. If it is much
higher than the average threshold, E(¢) will approach
one. In the region of the average threshold, a steep but
continuous dependence of E(f) on input strength is
found. This is well captured by a sigmoidal population
response function S(x), which gives the proportion of
neurons receiving enough stimulation to exceed their
threshold as a function of the average level of excitation
x. Assume that the input to the network by neurons
activated at time ¢ is given by the kernel «(z — ¢'). Then x
can be written as

t

/ a(t — ) [ceeE() — cil () + IE(F)]dl (4)

—0o0

where /g represents the external input to the excitatory
population, and ¢ and ¢, are positive constants
representing the connection strengths within the net-
work from excitatory onto excitatory neurons and
inhibitory onto excitatory neurons, respectively. After
firing the neurons will be refractory, meaning that they
will not be sensitive to input during a specific time ». The
proportion of nonrefractory excitatory cells is then given
by 1 — [/ E(¢)dr.

Suppose further that the subpopulation that exceeds
threshold is independent of the subpopulation which is
nonrefractory:

t t

E(t+1)=[1- /E(t’)dt’ - Se /oc(t—t/)

t—r —00

X [ceeE (') — ciel (') +1§’“(r’)]dt’> : (5)



For the population of inhibitory neurons we may obtain
an analogous equation. These are complicated integral
equations and they cannot easily be investigated with
analytical or numerical tools. Therefore, an important
further simplification is introduced, which relates to
temporal averaging of E(z) and I(z). First, if the
significant changes in E(¢f) occur on time scales that
are long compared to r, the variable E(f) may be
replaced by a time average given by E(¢) =1 ftt_rE (¢)dr'.
Second, for «(¢) close to a square pulse in the interval
0<t<r wehave ['_ a(t—{)E({)dl = KkE(t), where k
is a constant. Third, with a Taylor-series expansion in
the small parameter t we obtain for excitatory and
inhibitory populations

dE

L —E + (1 = 7E) Se(cecE — ciel + IEY) (6)
/di 7 '\ Q = T ext
Ta:—l—&-(l—rI)Si(ceiE—ciiI—i-I, ). (7)

These equations define the Wilson and Cowan model. It
exhibits a wide variety of behaviors depending on the
parameters chosen. In particular, there are reasonable
parameter ranges for which the system engages in a
stable limit cycle. In the statistical setting this corre-
sponds to synchronized oscillatory activity. Changes in
one parameter value, for example the external input to
the excitatory population, can act as a switch between
stable limit cycles and stable fixed points, corresponding
to an asynchronous state (Borisyuk and Kirillov 1991).

A justification of the statistical approach can be given
by the spatial clustering of neurons with similar response
properties in cortex. Indeed, in their pioneering work,
Hubel and Wiesel (1962) reported a columnar-like ar-
rangement of neurons that prefer stimuli of similar ori-
entation. With refined methods, some local variation of
response properties has been observed (Maldonado and
Gray 1996). Nevertheless, neighboring neurons have a
tendency to respond to similar stimuli. As neurons
within a cortical column share many inputs and are
tightly interconnected, one basic assumption of the sta-
tistical approach — the spatial averaging — seems to be
justified. Indeed, in the physiological measurements a
related signal in the range 1-100 Hz is observed, i.e., the
local field potential. It is measured by the same elec-
trodes used to record spiking activity, and may be seen
as an intracortical EEG measurement. It is related to
spiking activity (Gray and Singer 1989), for example
sharing its orientation tuning with neurons recorded by
the same electrode. Thus, it is interpreted as a spatial
average of neuronal activity or of inputs to these neu-
rons giving rise to dendritic currents. Thus, spatial av-
eraging as applied in the Wilson and Cowan model
might be justified to a certain degree.

However, the main problem lies not with the spatial
average, but with the temporal average. The dynamics
are assumed to be slow compared to the time scales of
the refractory period and the postsynaptic response
function. Thus, it is long when compared to the duration
of an action potential and cannot describe neuronal
dynamics on a millisecond time scale. Synchronization
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on a fast time scale in cortical networks, however, is the
experimental phenomenon of interest here, which forces
us to look for more biologically plausible models.

2.3 Discrete spiking models

In the preceding section we argued that the statistical
approach of Wilson and Cowan does not only introduce
an average in space, but also in time. Being interested in
the fast dynamics of neuronal networks on a millisecond
time scale, this is an obvious problem. Here we will
describe the integrate-and-fire type of neuron that is
widely used to model spiking behavior. Furthermore, we
review the spike-response model. It allows a statistical
description of spatially homogeneous networks and
simultaneously maintains a high temporal resolution.
In this way the advantages of the tractable Wilson
and Cowan model and the more biologically realistic
integrate-and-fire approach are combined.

When we place the emphasis on spikes, i.e., action
potentials, several of their properties are worth consid-
eration (Kandel et al. 1991). First, the bulk of commu-
nication between cortical neurons is thought to be
transmitted by action potentials. Thus, a model that
faithfully describes network dynamics at the level of ac-
tion potentials has a good chance of capturing essential
features of the system. Second, action potentials are of
uniform shape and their precise dynamics on a sub-mil-
lisecond time scale does not seem to be important for the
postsynaptic potentials (PSPs) triggered in the targeted
neuron. Thus, we may be satisfied with a description only
of their time of occurrence. As a consequence the detailed
history of the membrane potential of the presynaptic
neuron is not available to the postsynaptic neuron, and
the effects of an afferent action potential depends on local
variables only. Third, action potentials are triggered at
the soma or somewhere into the axon. For this reason
emphasis is placed on the dynamics of the somatic
membrane potential, and dendritic processes are often
simply described by an integration of all inputs.

These aspects lead to the description of a neuron as
an integrate-and-fire unit. The somatic membrane po-
tential U is taken as the dynamic variable. It decays
towards its resting value with a time constant 7. Fur-
thermore, it is influenced by the external input I as
well as by input / originating from within the network.
When the membrane potential reaches a certain
threshold a unitary pulse is transmitted to all synapses of
this unit. Immediately afterwards the membrane poten-
tial of the presynaptic neuron is reset to its resting value.

Without loss of generality we set the resting potential
to be at zero, and the threshold to one. In this case the
model is given by

v,
dt 1
where U; denotes the membrane potential of neuron i.
Input to unit ; from other units is given by 7;. It is the

sum of the PSPs that are triggered by pulses of afferent
neurons at times ¢

+ L+ forO<U <1, (8)



Wijl)(t - t;) . (9)
all spikes, j#i

Here, w;; denotes the connection strength of neuron i to
neuron j corresponding to the synaptic efficacy, and the
function v(¢) models the shape of the postsynaptic
current corresponding to the PSP. Common choices for
v(t) are the delta function for pulse-like interaction as
well as more physiological shapes such as
o(f) = {c(exp(—r’l) —exp(—3)) ift> 0, (10)

0 otherwise .

where ¢ is a constant of normalization and 7; and 1,

specify the fall and rise time of the PSP, respectively.

Another widely used choice is given by the so-called

“alpha function”:

o(t) = {coc2texp(—oct) if 1 >0, (1)
0 otherwise .

We note that transmission delays can be taken into
account by shifting these functions to the right. If
constant external input /°*' is assumed, the uncoupled
integrate-and-fire unit will reach its threshold in equal
time intervals and fire regularly. The oscillation behavior
will remain qualitatively the same if the synaptic input /
is relatively small compared to the external input 7.

At this level of sophistication numerical treatment is
already computationally intensive. On one hand, single
neurons are simulated which means that large networks
are required for appropriate representations of popula-
tions. On the other hand, the temporal resolution of a
simulation has to be in the millisecond range for an
adequate treatment of action potentials. After all, this
was the reason for introducing them. As a result, the
required processing time is often much larger than the
simulated time. For real-time simulations (computer
time = simulated time) special hardware and/or soft-
ware has to be used.

The analytical treatment of the integrate-and-fire
model (Eq. 8), however, is difficult. The effects of in-
coming and outgoing action potentials are treated dif-
ferently. In the first case the effect on the postsynaptic
membrane potential is described by a kernel v(¢). In the
second an instantaneous reset to zero is used. A gener-
alization of the integrate-and-fire neuron, the spike re-
sponse model, alleviates this problem (Gerstner et al.
1993a). Here, the effect of outgoing spikes is described
by a kernel #(¢), which causes a sharp drop followed by a
slow and gradual rise of the membrane potential after
firing. Thus, the membrane potential U; of a model
neuron is given by

Z [’7(’_1;)+Zwij6(t_t;)] )

all spikes JFi

Ui(t) = (12)

where ¢ denotes the time of spike initiation. In the
following we assume that these functions are sufficiently
smooth. We obviously have 5(r) = 0 for ¢ < 0, since the
function should only affect the membrane potential after
firing. A standard dynamics is then defined by é’ > 0 for

t > 0. The function () gives the contribution due to
synaptic input from other neurons. Furthermore, trans-
mission delays A can be incorporated by requiring that
e(t) =0 for t < A.

It can be shown by integrating the linear differential
equation, (8), that the equations for the integrate-and-
fire model can be written in this form (Gerstner et al.
1993a) for

n(t)zkl—kzexp(—£> for 1 > 0 (13)
e(t) = tv(s) 24 fore>0 . (14)
0/ exp( . ) or t >

Note that in the direct comparison with (8) we have
ki = It and k, = It + 1. Thus, the classic integrate-and-
fire neuron is contained in this description as a special
case and has standard dynamics. The description of
neuronal network dynamics using this approach is
continued in Sect. 3.5.

The high temporal resolution of spiking neurons is an
essential feature to explain several biological phenome-
na. Based on selective neuronal activity little more than
100 ms after stimulus presentation in inferotemporal
cortex (Tovee et al. 1993) and in evoked potentials in
humans (Thorpe et al. 1996), it has been argued that
only about 10 ms is available to traverse an area in the
hierarchy of the visual system. Whether this high speed
of processing allows synchronization of neuronal activ-
ity to occur must at present be left unanswered. How-
ever, we would like to point out that the relative timing
of individual action potentials, i.e., their deviation from
perfect synchrony, has been used to explain this rapid
processing by the visual system (Maass 1997; Gautrais
and Thorpe 1998). Furthermore, several recent experi-
ments indicate that the fine temporal structure of neu-
ronal activity might be related to neuronal plasticity and
learning (Ahissar et al. 1992; Markram et al. 1997;
Koester and Sakmann 1998). This matches learning
rules proposed on theoretical grounds, which equally
exploit the relative timing of action potentials on a
millisecond time scale (Gerstner et al. 1996b; Kording
and Konig 2000).

2.4 Models of single neurons with continuous dynamics

The integrate-and-fire unit has been introduced using the
argument that action potentials are the main means of
communication between neurons. Since they are uni-
form in shape and only their timing is important, the
detailed processes within a neuron have been largely
neglected by simplifying them to a mere linear integra-
tion of inputs. Actually, the delicate morphology of
neurons gives much room for interactions of different
inputs in the dendritic tree which would affect the
membrane potential at the soma and, thus, the time of
spike initiation. It is therefore important to look at more
detailed neuron models in order to study its subthresh-
old dynamics.



The most detailed models of a single neuron try to
capture the dynamics of the membrane potential U by a
description of transmembrane currents. They arise due
to charging and discharging the membrane capacitance
C by ionic currents through channels situated in the cell
membrane with conductance g, due to synaptic currents
Iyn, and eventually, depending on the experimental
setup, externally injected currents /.. Each ionic current
drives the membrane potential towards a characteristic
value where inward and outward currents — driven by
osmotic and electric gradients — cancel. As a change of
membrane potential crossing this value leads to a “re-
versal” of the direction of current flow, it is called the
reversal potential U;. Its value depends on the intra- and
extracellular concentration of ion type i. Furthermore,
the membrane potential influences the fraction of open
channels p; and, thus, the conductivity g;(p;) of ion type
i. We can formulate this dynamic by a set of coupled
differential equations of the form

dU
Cqr = 2 0p)(U = U)ol o (15)
%:pi (U) Di ) (16)
dt T; ( U)
For a given membrane potential U, p; relaxes towards a
value p*°(U) with a time constant given by 7;(U). If the
response of a channel is relatively fast, the dynamics of
pi can be approximated by p; = p°(U). We observe from
(15) that when many channels of the i-th type are open
and g;(p;) is large, the membrane potential is driven to
the reversal potential U; of this ion type. Leakage
through the membrane may be described by a term of
similar form. We write g;(U — U;) where U} denotes the
leakage reversal potential and g; is a constant.

A model that is now widely used was introduced by
Hodgkin and Huxley (Hodgkin 1948; Hodgkin and
Huxley 1952) to simulate the membrane potential in the
giant axon of the squid. It includes the dynamics of
sodium and potassium channels as well as a leakage
term:

dU

Ca = —gnam’h(U — Una) — gxn* (U — Uk)

_gl(U_ Ul)""[syn + Lext (17)
dm  my(X)—m
dr (X (18)
dh hoo(X) —h
- == 7 1
&~ ) (19)
dn  ne(X)—n
TS (20)

The Hodgkin-Huxley model was very successful in
explaining the experimental results during axonal trans-
mission. Similar models were later designed to capture
the membrane potential in other parts of the neuron.
Although the distribution of conductances differs in
different parts of a neuron, and large variations in
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dynamics are observed, the general framework proved
extremely powerful (Koch 1994): coupling the differen-
tial equations for individual parts of dendrites, soma,
and axon, and taking into account preservation of
currents (Kirchhof’s law) leads to the so-called com-
partmental models. These take into account the specific
spatial structure of a neuron with its dendritic tree. For
example, they have been used to model detection of
synchronous input by supralinear interaction in the
dendritic tree (Softky 1994).

However, it has also been argued that the effects of
different voltage-dependent conductances cancel one
another, resulting in an effective linear integration of
synaptic inputs by cortical neurons (Cook and John-
stone 1997; Cash and Yuste 1998). At the other extreme,
it is possible that different synaptic inputs add sublin-
early due to a saturation of dendritic potentials near the
reversal potentials of depolarizing ionic currents (Mel
1994). These alternatives are not exclusive, and indeed
recent experiments in cultured hippocampal neurons
point to a most interesting synthesis of these views.
Using a refined technique to apply synaptic stimulation,
a rapid switch between sublinear and supralinear sum-
mation was found, depending on the temporal proper-
ties of the stimulus train (Margulis and Tang 1998). In
effect, this would make the neuron particularly sensitive
to coincident synaptic inputs.

However, the incorporated detail leads to extremely
large computational burdens in numerical studies.
Studies of synchronization of small networks of neurons,
modeled with a moderate number of compartments, re-
quire hours of supercomputer time (Jefferys et al. 1996;
see also Sect. 3.6). Looking back at the history of in-
cluding more and more detail into the description of
model neurons, we have to remark that several simplifi-
cations can ease considerably the computational burden
or problems of analytical treatment. The most common
approximation of the Hodgkin-Huxley equations, (17)—
(20), are given by the FitzHugh-Nagumo model in which
the additional assumption is made that the sodium
channels adapt rapidly so that the system is described by
a set of only two differential equations. This makes a
convenient phase plane analysis possible. Furthermore,
Kistler et al. (1997) have shown in a simulation study
that with a suitable choice of the modeling functions 5
and ¢, the spike response model (12) approximates the
behavior of the Hodgkin-Huxley model quite well.
Lastly, we note that in certain parameter ranges (17)—(20)
exhibit a stable limit cycle. Thus, under these conditions
the equations can be approximated by a phase descrip-
tion as described in Sect. 2.1.

The most serious problem of the detailed description,
however, is our lack of knowledge of the relevant pa-
rameters. These include membrane capacitance, leakage
currents, axial resistance, ion channel densities, param-
eters describing voltage dependent channels, and the
position and properties of synapses. This list is quickly
multiplied for a correct description of all compartments.
Thus, the large number of free parameters in these de-
tailed models is not paralleled by an appropriate number
of biological constraints.
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3 Synchronization in networks of oscillatory elements

In the preceding section different choices of the basic
unit and some implications for network properties were
described. In addition to the immediate consequences of
the choice of the basic unit and its form of interaction,
several decisions have to be taken.

First, the topology of connections is a most important
choice to be made. The units may be completely con-
nected to resemble a local assembly of neurons. Studies
addressing hippocampal function often assume random
connectivity with a small probability, resultings in a
sparse connectivity. Cortical topography is modeled by
having the density of connections decaying with dis-
tance.

Second, the treatment of delays in the neuronal in-
teraction turns out to be a crucial feature. Networks
with instantaneous interactions show qualitatively dif-
ferent behaviors to networks with delayed interaction,
whether due to finite transmission delays, slow post-
synaptic processes, or refractory periods.

Third, the size of the network affects the dynamics.
In large networks the inclusion of dynamic or static
noise leads to irregularities of formerly observed be-
haviors and interesting new phenomena. Thus, the
number of options is multiplied when considering dif-
ferent kinds of networks built with the basic units de-
scribed above.

Different characteristic measures are being used to
investigate properties of each network. First, many au-
thors focus on the conditions required for the existence
of a stable state of synchronous activity within the net-
work. Second, they investigate the process of synchro-
nization from a biological point of view. Here, switching
between synchronous and asynchronous states, as well
as the speed of synchronization, are important proper-
ties. Third, for modeling physiological experiments the
emphasis lies on the effect of inhomogeneous input on
synchronization and desynchronization.

In the following sections the above aspects are dis-
cussed for some prototypical neuronal networks. Obvi-
ously, all relevant combinations have not been addressed
in published work, nor is it possible to cover everything
that has been done in this review. Open issues which
seem relevant are discussed in the final section.

3.1 Coupled phase oscillators

The advantages of a phase description lie in its
simplicity, allowing a thorough mathematical analysis
as pointed out above. For this reason many studies have
used this approach.

In Sect. 2.1 a phase is defined in the basin of attrac-
tion of a stable limit cycle. Here we study the effect of
known perturbations on the phase of an oscillator, given
in its phase description. Let us consider a small pertur-
bation p(X,1)

Y o)+ px, e

& (21)

The perturbation could be due to input from other basic
neural oscillators. Using the definition of the phase
variable ®(X) from Sect. 2.1 gives

do(x dx
d<t ) = V(I)(X)E =VOX)F(X)+pX,0)] . (22
Using (3) for the unperturbed state then leads to
do(x
do(x) =14+ VOX)p(X,t) . (23)

dt

Equation (23) is not yet a closed expression in @ because
the right-hand side still depends on the precise location
X in phase space, which is not fully specified by ® since
all points on one isochron are associated with a certain
phase ®. However, for small perturbations X will be
close to Xj, the intersection point of isochron with limit
cycle, and by considering the linear approximation one
may take

VO(X) = VO(Xp) . (24)

Furthermore, we can approximate p(X,t¢) by p(Xo,?).
For the investigation of a synchronized state we may
also assume that the perturbation is 7-periodic, and is
only implicitly dependent on time so that
p(Xo,t) = p(Xp). This results in the desired phase
description

do

PP 1+ Q(®) |, (25)

where

QD) := Z(D®)p(Xo(®)) and Z(®) := VO(Xo(D)) .
(26)

The vector Z(®) is sometimes referred to as the phase
response function, as it represents the change in phase
caused by external perturbations. Geometrically, Z(®) is
a vector normal to the isochron at the intersection point
with the limit cycle. Thus, it is tangential to the limit
cycle, and its length relates to the effect of a perturba-
tion: it will be greater at points of the limit cycle at which
the state of the system changes slowly. The slower the
change in state space the higher the density of isochrons.
In turn, a higher density of isochrons implies a greater
length of Z(®).

We now introduce the phase disturbance ¥ given by
® =1+ V. The phase disturbance indicates the devia-
tion in phase from the unperturbed state for which the
phase is increasing with constant velocity one. Thus, (25)
takes an even simpler form:

dy
dt
Because Q is a product involving the perturbation p, it
takes on small values, and so the phase disturbance W
changes only slowly. Thus, neglecting higher-order
effects we obtain the average phase disturbance by
averaging the right-hand side over one period 7, which
leads to

Q(t+Y) . (27)



(28)

Note that in the expression for @ we have assumed that
Z and p and, therefore, also Q are T-periodic functions,
and that the change of ¥ over one period is small
compared to 7.

The same scheme can be generalized to a system of N
coupled oscillators that are slightly different. Let their
dynamics be given by

X, N
3 = PO+ filX) + th/(XnX_/)

J=1

fori=1,....N . (29)
Here, f;(X;) denotes a small individual component of the
i-th oscillator’s dynamics. The small perturbation
I;;(X;,X;) represents the influence of the j-th oscillator
on oscillator i, and can be thought of as synaptic
interaction. Analogous considerations then lead to

U ) £ D20 (0.0, (30)
where
9i(®;) = Z(D:) fi(Xoi(P:)) - (31)

This last term results from the slightly different dynam-
ics of the oscillators. Changing the variables ®; = ¢ + ¥;
and averaging as before gives the final set of differential
equations

dv, N
" :Q)j+jz:1:ri/(lpi_lP./) , (32)
where
| T
FU(‘{’[—‘P/):?/Z(“r‘f’i)fu(“F‘Piaﬂr\yf)d’ , (33)
0
and
f 1r
gt Wt =— [ a . 4
o= [ate+wya =1 [ (34
0 0

We observe that the interaction function I' indeed
depends only on the difference in phases by again using
the T-periodicity of the functions and the fact that ¥
does not change significantly during one period. As-
suming identical oscillators we would have f; = 0 and,
thus, w; = 0, which results in an even simpler form of
(32).

161

It has been noted that the dependence of the inter-
action on the phases themselves, rather than on the
difference in phase, can lead to a greater variety of more
complex behaviors (Ermentrout and Kopell 1991; Go-
lomb et al. 1992). In our derivation the simplification is
due to the assumption that perturbations are weak and
do not explicitly depend on time, thus making it possible
to justify time averaging. Weak coupling has also been
used for the definition of the phase. However, equations
that are dependent on the phases can also be obtained
for a limit cycle of strong attraction without the as-
sumption of weak coupling. More detail and also a more
rigorous derivation of the above results can be found in
Ermentrout and Kopell (1984, 1991).

Two approaches have been taken to utilize the above
derivation. First, a detailed neural oscillator can be re-
duced to its phase description. In this context it should
be mentioned that the phase response function cannot be
obtained analytically in most cases, since the trajectory
of the limit cycle is not known exactly; thus it has to be
approximated numerically. Also, the differential equa-
tion (32) will in general not be solvable analytically, al-
though some analysis of synchronous states can be
performed.

Therefore, many studies have taken a second ap-
proach by assuming a simple interaction function T.
Since I is a T-periodic function, it can be decomposed
into its Fourier series. The first-order approximation
given by a sinusoidal function will render a reasonable
and simple choice for analysis. It is for this reason a
widely studied model system of coupled oscillators.

Here we present one study that addressed the physi-
ological data obtained in the mammalian visual system
(Sompolinsky et al. 1990, 1991; see also Schuster and
Wagner 1990; Kammen et al. 1992). These authors
introduce a scheme to separate the effects of the level
of activity from the oscillatory dynamics within the
framework of a phase description (for an investigation
of the relationship to Wilson and Cowan types of
models, see Grannan et al. 1993). The probability of
firing P(r,¢) of a neuron at location » and time ¢ is given
by

P(r,t) = V(r)[1 + Acos(®(r,1))] , (35)
where
d(D(gz;, 2 =w+n(rt) — ZJ(V, ¥)sin(®(r, 1) — O, 1)) .

r#r
(36)

Without coupling, the progression of the phase is given
by the constant speed w which is slightly disturbed by a
noise term #(r, ). Since the connections J sin(A®) tend
to globally synchronize the network, the incorporation
of this noise term plays an important role in desynchro-
nization. The connection strength of different units is
not only dependent upon their connectivity W (r,#), but
also on their activity level

J(r, )=V W@, Hyvi) . (37)
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Thus, unstimulated oscillators do not interfere with the
network dynamics. The units are arranged in clusters
that are thought to represent cortical columns. Within
each cluster neurons receive input from the same
position in the visual field, whereas their individual
orientation preference covers the full range of 180
degrees. The connections are strong and independent
of the preferred orientation, resulting in rapid synchro-
nization within a column during stimulation with a
single stimulus of any orientation. Between different
clusters the connectivity is weak and a decreasing
function of the difference of the preferred orientation.
Different shapes of this connectivity function have been
investigated. Plausible choices for W(r,#') led to stim-
ulus-specific synchronization of different clusters. Note
that these were not obtained by derivation from an
explicit neuron model underlying the phase description,
but rather they were chosen to reproduce the phenom-
ena observed in experiment. For a stimulus consisting of
two short bars presented to different receptive fields,
coherence arises only if they have similar orientations.
For distant receptive fields, the synchronization of
neuronal oscillators turns out to be dependent on the
type of stimulus. If the angle of the stimulus varied
continuously between the receptive fields, i.e., such as an
arc, coherent activity could be observed. In contrast, a
discontinuity in orientation, i.e., such as a wedge, led to
uncorrelated activity of the two clusters.

These results match experimental observations on
stimulus-specific synchronization in the mammalian vi-
sual system. For example, it has been found that neu-
rons synchronize when they are activated by a single
moving bar simultaneously passing over their individual
receptive fields (Gray et al. 1989; Freiwald et al. 1995;
Brosch et al. 1997). However, if two short bars were
presented to the receptive fields their activity would not
be correlated even though their mean firing rate would
be increased equally in both cases. Thus, for the simple
types of stimuli used, neurons tend to synchronize if they
are activated by features that are likely to be part of the
same object.

The assumptions on connectivity in these simulations
are compatible with results of recent anatomical studies.
Long-range connections in visual cortex are slightly bi-
ased to connect sites with similar feature preferences
(Malach et al. 1993; Kisvarday et al. 1997). Further-
more, recent studies have found an anisotropy of con-
nectivity in visual cortex in the direction of the preferred
orientation (Fitzpatrick 1996; Bosking et al. 1997; Sch-
midt et al. 1997). In this sense, the anatomical connec-
tions implement Gestalt laws.

3.2 Networks of excitatory and inhibitory spiking units

Taking one step into biological realism and choosing
elements that are either excitatory or inhibitory as basic
units of a network leads to the investigation of the effect
of different coupling.

Starting with a model of excitable elements that was
designed to model the synchronization of the flashes in

fireflies, Mirollo and Strogatz (1990) showed that glob-
ally excitatory interaction results in synchronization
with zero phase lag. In this analysis generalized inte-
grate-and-fire oscillators are used. The starting point is a
unit as described by (8). The differential equation can be
easily integrated over one period T after which the cycle
begins anew. Performing a change of variable to a phase
description, such that d®/d¢t=1/T, we obtain the
membrane potential X = f(®), where f : [0,1] — [0, 1].
In the following analysis it is only assumed that f is
smooth, monotonically increasing (f’ > 0), and concave
down (f” < 0), which is not only true for the leaky in-
tegrate-and-fire unit but also for certain choices of
functions in the spike response model given by (12).

The oscillators are pulse coupled, meaning that the
input is given by delta impulses. After integration this
leads to the interaction rule

Xi(@) =1
= X;(®") =min(1, X;(®)+¢€) forall j#i .
(38)

Thus, the firing of one oscillator instantaneously gives a
small standard input € to all other oscillators, thereby
advancing them on their cycle or putting them to their
firing threshold if they are already sufficiently close. We
now investigate the behavior of two coupled oscillators
via return maps (Mirollo and Strogatz 1990). Let us
consider the situation where oscillator 1 has just fired
and the phase of oscillator 2 is given by @,. The return
map R(®,) is defined to be the phase of oscillator 2
immediately after the next firing of oscillator 1. Note
that the relative phases only change when one oscillator
is firing. This means that oscillator 2 will fire in the
meantime, specifically after a time 1 — ®,, and this will
advance oscillator 1 on its cycle. At this instant the
membrane potential of oscillator 1 is either set to one, in
which case the system is already synchronized, or is
given by X; = f(1 — ®@;) + € < 1. Its phase then defines
the firing map A:

h(®y) := @ = f1(f(1 —Dy) +¢) . (39)
Now the situation is reversed because oscillator 2 has
just fired, and the return map is obtained by applying the
same reasoning and the firing map one more time so that
R(®2) = h(h(D2)) - (40)
Assuming that synchrony is not reached we always have
Xi=f1-®)+e<1, which implies that
®, € (6,h71(5)), where 6=1—f"1(1—¢). We will
now see that in this interval there exists only one fixed

point of the system, which is a repeller. Fixed points are
given by the zeros of

F(®y) = ®y — h(D,) (41)

because fixed points of 4 are also fixed points of R. We
note that #'(®,) < —1 because of the chain rule, and

F1(1=®) = (fV(f(1 — ®,)))"" implies that
V(1 =Dy) +¢)
(1= D))

H (@) = (“2)



Concavity of f gives convexity of /!, and the statement
follows. This leads to F'(®;) =1 — 4 (®y) > 0. It can
also be verified that

F(6) <0 and F(h'(8))>0 . (43)

Therefore, there is a unique fixed point ®* in the given
interval for which R(®*) = ®*. Since

R(®*) = h'(h(®*))h' (D) > 1 (44)
we have

R(®) > @ for @ > ¢*

and R(®P)<® for ® < ®* | (45)

such that this fixed point is unstable. Biologically this does
not represent a realistic solution since noise is omnipres-
ent and the system would not stay at this steady state.

In summary, this means that the two oscillators with
excitatory pulse coupling will always be synchronized.
The system has been analyzed explicitly for a biologi-
cally plausible and mathematically convenient choice of
the function f. The interesting results obtained in this
special case may hold for a whole class of similar func-
tions. Both coupling strength given by the value of € and
dissipation, which is a measure for the leakiness of the
model and, therefore, for the concavity of the function
f, prove to be important parameters. The speed of
synchronization is inversely proportional to their prod-
uct. They also have an effect on the location and stability
of the fixed point. It tends to be closer to the in-phase
solution for greater values of dissipation and connection
strength. It can also be shown that in the case of negative
€, corresponding to inhibitory coupling, the counter-
phase situation will be stable such that the oscillators
will not necessarily synchronize. The case of a large
network has also been investigated. Intuitively, one
might argue that oscillators will be absorbed into groups
of synchronously firing units. Note that in the given
dynamics, once two oscillators fire in synchrony they
cannot break apart. Thus, such groups can only become
larger in time. Indeed, it can be shown, using return maps
and a similar argument, that the set of initial conditions
for which the oscillators will never be absorbed into one
single synchronized group has measure zero and is as
such biologically irrelevant. This conclusion has been
confirmed in numerical studies.

These results suggest that excitation rather than in-
hibition leads to a synchronous solution. An extreme
case of excitatory coupling can be found in the hippo-
campus. Recent in vitro experiments suggest direct ax-
onal-axonal excitation of pyramidal neurons by gap
junctions (Draguhn et al. 1998). Indeed, even a low in-
cidence of such connections is sufficient to explain the
observed synchronization in the high frequency range
(100200 Hz, Traub et al. 1999).

3.3 The effect of transmission delays

In the considerations above, idealized interactions
without any transmission delays have been assumed.
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This is not only an unphysiological assumption. In a
numerical study, Ritz et al. (1994) showed that a
coherent oscillation of period 7 in two disjoint domains
of spiking neurons connected by axonal delay lines with
a uniform distribution of transmission delays remains
coherent only if the mean delay is less than approxi-
mately 7/3 (mod 7).

Ernst et al. (1995) analyzed a system of two integrate-
and-fire neurons using the same method as Mirollo and
Strogatz (1990). Due to transmission delays, various
cases for the return map had to be distinguished. In a
network of excitatory elements and for the same func-
tion f as in the example chosen by Mirollo and Strogatz
(1990), the synchronous state is repellent. Additional
out-of-phase fixed points exist which are stable at A and
[f~1(1 — €) — AJ; here A denotes the transmission delay.
Therefore, in-phase solutions will not occur in this setup.

In contrast, the picture is reversed for a network with
inhibitory connections and excitatory input; without
input there is no response. The behavior can be deduced
from a “locking theorem™ due to Gerstner et al. (1996b,
Figs. 2 and 3). Under rather general assumptions (in the
limited of a large number of presynaptic neurons and
standard dynamics), an asymptotically stable coherent
oscillation in a homogeneous network of spiking neu-
rons occurs if and only if the total postsynaptic potential
is rising at the time that the postsynaptic spike is trig-
gered. Thus, if delays are not too small, so that spikes
are triggered in a phase when the effect of the IPSP
decays, i.e., when the potential is rising again, they have
a synchronizing effect. Excitatory input requires that the
delays be not too large so as to attain the same effect.

Van Vreeswijk et al. (1994) investigate as a special
case a pair of leaky integrate-and-fire neurons with non-
instantaneous interaction, which is represented by an
alpha function; see (11). A finite slope for the post-
synaptic potential can mimic the effect of delays and in
reverse, the finite slope of experimentally observed post
synaptic potentials is similar to a delayed transmission
of signals between two neurons. They found that in the
two-unit system the synchronous state is only stable for
mutually inhibitory connections.

To understand this we present some of their analysis,
considering possible phase lags when the oscillators are
phase locked. We use the equations given in (8) with
7 = 1 and constant external input /°*'. Suppose neuron 1
fires at times ¢t = nT, where #n is an integer and 7 denotes
the period, while neuron 2 fires at times ¢t = (n — ¥)7,
whilst ensuring that W is a constant phase lag between
them. Let ® denote the phase. The input to neuron 2 at
times t = @7 for 0 < ® < 1 is then given by

0
(@) = > w((¥ - 7). (46)
n=—00

Outside the range 0 < @ < 1, I is extended by making it
a periodic function. Input to neuron 1 is analogously
given by I7(® + V), and a consistency condition imme-
diately follows from our assumption that neuron 1 fires
again at time 7. At this time the membrane potential
reaches threshold at one and is reset to zero. Integrating
the original equation, (8), gives
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Xi(T) = I™(1 — exp(-=T))
1
+ Texp(— /exp ()7 (D + W)dD
0
=1. (47)
Similarly the consistency condition for neuron 2 reads:
X((1=W)T) =1(1 — exp(—T))
+ Texp(— / (OT) (D — V)dD
0
=1 (48)

Here we have exploited the periodicity of /7. Subtracting
the two equations and dividing them by T leads to the
condition

1
/exp (OT)(I7(D+VY)—I7(®—V))dD
0
~0 . (49)

G(¥) = exp(—

Thus, the synchronous solution ¥ = 0 will always be a
steady state and, because of the periodicity of I7, ¥ =
as well. The stability of the solutions is determined by

G(¥)>0 . (50)

o=

This condition becomes apparent by substituting (47)
into (48) and replacing the integral by G(¥), which gives

X((1—¥)T) =1 — TG(¥P) . (51)

If ¥ is now a bit larger than at the steady state then
neuron 2 should tend to fire later in order to return to
the equilibrium phase lag. So X>((1 — W)7T) should be
smaller than one and, therefore, G(¥) > 0. By looking
at the reversed case we obtain the above condition.

We note that the zero phase-lag solution is always
unstable for excitatory coupling but stable in the in-
hibitory case, which can easily be shown analytically for
the assumed alpha function. Similar to the observation
of Ernst et al. (1995), other steady states can be stable
for inhibitory connections depending on the values of o
which determine the time course of the dynamics.
Smaller values of «, corresponding to slower dynamics,
tend to have only the synchronous state as a realistic
solution. Thus, the analysis of this model with a more
realistically shaped synaptic input instead of a
delta-impulse implies as well that inhibitory rather than
excitatory connections lead to a stable synchronous
solution for two coupled oscillators.

In a study using Wilson and Cowan oscillators (Ko6nig
and Schillen 1991; Schillen and Koénig 1991), the inter-
action of overlapping visual stimuli was investigated.
Similar to (6), the basic neuronal assembly is modeled
using statistical approach. The important modification is
the inclusion of transmission delays in the coupling
between different neurons. Under these conditions
excitatory-to-inhibitory coupling leads to synchronous

activity, whereas excitatory-to-excitatory coupling favors
desynchronization. Studying a system with connections
of the first type between units of similar response prop-
erties, and connections of the second type between units
of dissimilar response properties, the following experi-
mental results could be reproduced: overlapping stimuli
with orthogonal motion vectors were represented by
different assemblies which had no consistent phase rela-
tionship between each other (Engel et al. 1991; Kreiter
and Singer 1996). Furthermore, the correlation length in
the network turns out to be dependent on the number of
stimuli shown, a prediction confirmed by physiological
experiments (Engel et al. 1991).

Traub and Whittington (Whittington et al. 1995;
Traub et al. 1996) find an interesting twist to the story
on synchronization mechanisms. In a simulation of the
hippocampal network using detailed compartmental
model neurons they observed that the synchronization
of y-activity is governed by the network of inhibitory
interneurons. In particular, spike doublets of these cells
induce synchronization of interneurons and principal
cells without phase lag, as well as the synchronization of
the active pyramidal neurons (Jefferys et al. 1996).

3.4 Analysis via the phase response function

If a system of coupled differential equations is trans-
ferred to its phase description, the phase response
function of different neuron models has proven valuable
in the analysis of the influence of the timing of the
synapses on the stability of coherent oscillations.

The phase response function Z(¥) has already been
introduced as a vector in Sect. 3.1. For most neuron
models it can be reduced to a scalar function because
only one component is relevant for the further analysis.
This is due to the fact that in most cases only the
equation for the dynamics of the membrane potential is
directly perturbed by coupling to other neuronal oscil-
lators. Thus, there is only a contribution from one
component of Z(¥) to the vector product in (33). In this
case it can be seen directly that if the phase response
function is positive the next spike will be advanced by a
depolarizing pulse; conversely the firing will be delayed
if the perturbation takes place in a negative region of the
phase response function.

Hansel et al. (1995) and van Vreeswijk et al. (1994)
use the equations as a starting point to derive expres-
sions that indicate steady states of phase lags ‘¥ as well
as their stability between oscillators which are coupled
without a delay. In this phase-locked situation we have

¥, =¥, + ¥ and, thus, % = d(liljz. When the oscillators
are symmetrically coupled, subtracting (32) written for
the two oscillators gives the following condition for
steady states:

H(¥) == (T(¥) — T(-¥)) =0 . (52)

Because of symmetry ¥ =0 as well as ¥ = 2 are again
solutions to this equation. Considering small deviations



from this steady state one can see that its stability can be

determined through

dH(Y)
dv

From (33) we have by substitution and the periodicity of
the functions that

<0 . (53)

'Y, —¥,)=I(¥Y) = %/Z(u)[(u,u —W¥)du . (54)
0

In particular, the stability of the synchronous state is
then determined by

v T (59)

T
Ay _ 0y = 1(0) = —l/z(u)ﬂ(u,u)du <0,
0

where ' denotes differentiation with respect to W. This
expression is not only valid for integrate-and-fire units
but also for conductance-based models like the Hodg-
kin-Huxley equations, where spiking interactions are
reduced to their phase description; this has been done by
Hansel et al. (1995). These authors contrast the syn-
chronizing behavior of two qualitatively different phase
response functions. Phase response functions of type I
are positive over the whole cycle whereas type II phase
response functions are negative at the beginning of the
cycle and positive towards the end of it. The stability in
each case is determined by the interplay of rise time and
decay time of the synaptic input, the shape of the phase
response function, and the refractory period.

Excitatory connections tend to be desynchronizing for
type I response functions, since the integral is generally
dominated by the destabilizing contribution of the fall
time of the input. For type II phase response functions,
however, sufficiently fast excitation can be synchroniz-
ing. The negative region of the phase response function
also accounts for the formerly surprising result that an
increase in excitation can act as effective inhibition and
decrease the overall firing rate (Hansel et al. 1993).

This method also explains the qualitatively different
behavior of seemingly similar conductance-based mod-
els. The Hodgkin-Huxley neuron model, for example,
exhibits a type II response. However, another quite
similar conductance-based model, the Connor model
(Connor et al. 1977), which includes an additional A-
current, is of type I. On the other hand the Morris-Lecar
equations (Morris and Lecar 1981), a simplified version
of the Hodgkin-Huxley model, can be either of type I or
Il depending on the parameter values (Ermentrout
1996). It has been shown that these qualitative differ-
ences in the phase response functions of the models can
be linked to the mechanism underlying the transition
from the resting state to repetitive firing (Ermentrout
1996). Models that allow for the onset of arbitrarily low
frequencies have a phase response function of type I.
Models that undergo a Hopf bifurcation to stable limit-
cycle oscillations have a phase response function of type
IT close to the bifurcation point where the interaction is
approximately sinusoidal.
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Let us now compare the results to the studies pre-
sented above. The phase response function can be
computed analytically for the standard integrate-and-
fire model given in (8) to Z(¥) = fexp ¥. Generally,
these models have a response of type I since they are
always advancing the next spike. We obtain consistent
results with the previous example. However, the linear
stability analysis can only be performed if the phase
response function and the synaptic input function are
sufficiently smooth. Therefore, the results do not apply
to pulse coupling (Mirollo and Strogatz 1990; Ernst
et al. 1995). With the results of the previous sections in
mind it becomes apparent that the network’s behavior
may be very sensitive to the choice of the neuron model,
the form of interaction, and crucial parameters such as
transmission delay and refractory period.

3.5 Analysis of the spike response model

The subtle interplay between mutually excitatory or
inhibitory connections, transmission delays, and the
PSP shape has been further illuminated by van Hemmen
and his coworkers (Gerstner et al. 1993a, b, 1996a; Ritz
et al. 1994). Using the spike response model introduced in
Sect. 2.3, these authors derived analytically that perfect
synchrony is only possible if the total synaptic input is still
increasing with time when the firing threshold is reached.

Consider now the existence and stability of the syn-
chronous solution in a homogeneous network of N units
in the formalism of the spike response model. Suppose
that for ¢ < 0 the neurons have fired in synchrony with
period T. The membrane potential of a neuron for
0 <t < T is the given by

X=3

k=0

n(kT + 1) + > wye(kT + 1)
i

(56)

The threshold 0 should be reached again at time ¢t =T
for the assumption to be consistent. This leads to the
condition

0=x(1)=3" [wcn £ 3 welk) (57)

k=1 A

This condition specifies the periods 7' for which syn-
chronous firing in the network is a consistent solution.

Let us now turn to the stability of the solution and
assume that the firing of neuron i occurred at slightly
different times given by —kT + 6;(—k) where
k=0,1,2,...,and |0;(—k)| < T is a small perturbation.
Then, the time shift J;(1) for the next firing satisfies the
condition

0 =Xi(T +0,(1))
-y n((1+ k)T +6;(1) — 6;(—k)).
k=0

> wye((1+ k)T +6:(1) = 8;(—k))| . (58)

JFi
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We linearize this equation with respect to 6;(1) — 6;(—k)

and 0;(1) — 6;(—k), and subtract (56) which leads to

4;(1)

_ 2ol (AR T)o (k) + (L+R)T) 3, 4iwiy0,(—F)]
Zisol (TR T) +e (1 +R)T) 3wy

(59)

This is a linear map which gives the dependence of the
present perturbation on all previous perturbations. For
stability we must have that, on iteration, the perturba-
tions will eventually die out. Note that in this form it has
been assumed that firing of other neurons at the present
time step does not affect the membrane potential. Since
the firing irregularities are small this will be true as long
as there is a true transmission delay between the
neurons. However, for comparison with results from
the previous sections another term would have to be
included in the analysis.

In a homogeneous network one may assume that
Zﬁéi w;j0;(—k) = Wy, where (0_) is independent of i. In
this Wy ~ >, wi; represents the average total connec-
tion strength to a neuron and (0_4) denotes the mean
firing shift. For stochastic noise as the source of per-
turbations it is a plausible assumption that the pertur-
bations are random, which implies that (6_;) = 0. The
above expression then reduces to

SR +RDR) )
S or (L + A7) + o (T + R)T))

Realistic shapes for the functions ¢ and 5 have then
decaying to zero after they reach their maxima. If
transmission delays are relatively short and the decay
fairly rapid as compared to the oscillation period one
may focus on the situation that the sums will be
dominated by the contribution from only the last firing.
This ““‘short-term memory”’ of the neurons then leads to

n'(T)
GETEGR o

The numerator as well as denominator of this fraction
are positive, the numerator because of standard dy-
namics and the denominator because it gives the
derivative of the membrane potential when the thresh-
old is reached from below. We will, therefore, obtain
stability if Wpe'(T) > 0, which makes the fraction
smaller than one and, thus, leads to decaying pertur-
bations. Likewise Wye'(T) < 0 indicates instability. An
analogous condition can also be verified for the more
complex case for which short-term memory is not
assumed, which reads

a;(1)

oi(1) =

iWOe’((l +K)T) >0 . (62)

This mathematical condition can be put into biological
terms by stating that for a stable synchronous state the
total synaptic input still has to be rising at the time of the
next firing.

In this framework it follows that purely inhibitory
connections generally produce stable coherent oscilla-
tions if the delay is smaller than an upper bound that
depends on the network parameters. Coherent oscilla-
tions exist for purely excitatory connections provided
that the transmission delays are long enough for the
chosen setup.

The formalism can also be used for a network con-
taining excitatory as well as inhibitory connections with
different transmission delays for each connection type.
From the above result it follows immediately that short-
range inhibitory connections combined with long-range
excitatory connections sustain stable collective oscilla-
tions.

Considering delays in a neuronal network does not
only add complexities, but also allow qualitatively new
features. Using the spike response model to investigate a
network with realistic distributions of axonal delays,
Gerstner et al. (1993b) demonstrated learning of se-
quences of patterns. Furthermore, depending on a pa-
rameter of the neurons (threshold), these patterns could
be replayed at varying speed. Remarkably, the relevant
information about spike patterns is lost when only mean
firing rates or ensemble activities are considered. The full
information on a pattern is contained in the spike raster
of a single run. This work stresses the importance — and
advantage — of coding by spatio-temporal spike patterns
instead of by firing rates and average ensemble activity,
and of considering the fast temporal dynamics of neu-
ronal activity.

However, the above analysis cannot be applied di-
rectly to the case of zero delay with very fast rise time.
Linear approximations are not valid for functions that
are not smooth enough; specifically, they do not apply to
pulse coupling. For this class of interactions a separate
analysis was performed by Gerstner et al. (1996a) for
collective oscillations with excitatory connections. The
results showed that these states are locally unstable and
therefore in agreement with the studies mentioned
above.

3.6 Temporal dynamics in larger networks

Many investigations of synchronization of neuronal
activity have concentrated on small and/or homoge-
neous networks. For simulation studies, computational
resources are a constraint; for analytical studies, the
treatment of pairs of oscillators is often taken as a first
step. However, the investigation of the temporal dy-
namics in large networks is important for several
reasons.

First, several types of noise are present in biological
systems. Static noise, such as inhomogeneous distribu-
tion of parameters, is found in real systems and its ef-
fects on highly ordered states like synchronous activity
have to be considered. Stochastic noise has a slightly
different nature and arises from small random fluctua-
tions of the dynamic variables in time that are omni-
present in biological systems. Actually, a discussion of
whether the high variability of neuronal activity ob-



served is noise or a signal is an issue in itself, and beyond
the scope of the present article. Here we concentrate
only on some phenomena that can be found when sto-
chastic and static noise are taken into consideration.

Second, in larger systems phenomena that are quali-
tatively new can be found. Different rules for the spatial
summation of mean activity and oscillatory activity have
been observed in primary visual cortex of the cat (Bauer
et al. 1995). Apart from a completely asynchronous or
synchronous firing pattern, a variety of more complex
behaviors such as more irregular, partially synchronized,
and alternating states may emerge in large networks.
These phenomena may occur in networks whose con-
figuration has been found to be synchronizing under
homogeneous conditions, as well as in frustrated net-
works consisting of units that do not exhibit synchro-
nous activity in a two-unit system. These mixed states
may account for some aspects of dynamics in the brain,
as experimental findings show that synchronous behav-
ior is a rather transient phenomenon that alternates with
irregular activity.

Third, the anatomy of the cerebral cortex seems to be
neither completely random nor completely regular.
Thus, realistic models have to incorporate the specifics
of our knowledge of anatomical connectivity. This nat-
urally leads to large neural networks.

The effect of static noise arising from distributed in-
dividual frequencies due to different external input has
been studied (Tsodyks et al. 1993) for integrate-and-fire
units (compare (8) with T = 1). The neurons are coupled
all-to-all by excitatory synaptic input currents given by

du;
G = UL (63)
dr, I,
oK) (64)
1
PO = > s—-1) . (65)
all spikes

We observe by integrating (64) that input currents / are
of decaying exponential form, referring to the instanta-
neous rise and exponential fall of the input. If equal and
constant external inputs are assumed, this setup tends
towards synchrony (compare Sect. 3.2). For a certain
frequency distribution the system is divided into two
subpopulations, one which is still locked to a common
frequency but not perfectly phase locked, and one for
which the oscillators are bursting at their natural
frequencies, creating a periodic background spiking
density if the network is large. To see this, suppose that
the synaptic input is given by a T-periodic function 7(¢).
Let #, denote the time of firing relative to this periodic
background such that a neuron fires at time n7 + t,. By
integrating (63) we find the consistency condition

(”+ 1 ) T+tyyi

exp(fyr1) = exp(—T) exp(s — (nT + t,))
nT+t,

x (I(s — (nT + 1,)) + I™Y)ds . (66)

167

For phase locking to period T we are interested in a fixed
point of the time shifts, implying that t, = ¢, =: t,.
Using the periodicity of / we get a condition for 7y in
relation to the external input 7

1 —exp(—T) fOT exp(s)I (s + to)ds
1 —exp(=T) '

= (67)

Assuming that / is largest immediately after firing at
time 0, after which / decays, it can be inferred that the
stable fixed time shift ¢, is monotonically decreasing with
increasing external input I§*' around the average input
level, and there exists a critical value I&' above which
there is no fixed phase solution. This implies that
neurons are frequency locked up to a certain input
threshold. Furthermore, neurons within this subpopu-
lation fire earlier for larger external input, as has been
noted before in experiments (Konig et al. 1995a) and
models (Wennekers and Palm 1999). It is also noted that
the unlocked neurons whose input is still close to the
critical value /& have a tendency to fire at times n7. The
spike density p for both of these populations, and
therefore I, can be determined from these results and
substituted back into (66), which gives a consistency
condition for the parameters — specifically the size of the
phase locked population. The assumption of a periodic
synaptic input also has to be investigated. In this study
the assumption has been justified for a small frequency
distribution around the critical value /&*'. Interestingly,
it turns out that the size of the phase-locked population
reaches a maximum for a finite rise time of the synaptic
coupling, for which the system cannot be completely
synchronized even in the case of homogeneous input, as
has been seen in Sect. 3.4.

The introduction of noise can also cause alternating
oscillatory and stochastic activity (Deppisch et al. 1993).
In a large simulated network conductance-based neu-
rons (see McGregor and Oliver 1974) are connected via
delayed excitatory pulse coupling. The external input
stems from stochasticly spiking elements that project to
a variable number of units in the network. For a low
divergence of this projection and low internal coupling
strengths the network engages in stochastic firing. For
high coupling strength and large convergence of the in-
put projection a globally correlated activity pattern is
observed. The neurons engage in synchronized oscilla-
tory activity, in which each neuron contributes one or
more spikes per cycle. In between these two extremes, a
region exists for which the network spontaneously
switches between irregular and synchronized behavior.
This compares well with experimental observations in
cat visual cortex (Eckhorn 1994; Singer and Gray 1995).

Let us now consider the behaviors of large networks
that are not necessarily synchronized, in the limit of only
two interacting oscillators. Many studies dealing with
these “‘frustrated networks” have not only found the
completely asynchronous state, but also rotating-wave
states as well as clustering states. Clustering states occur
when the system breaks up into several subpopulations
that are each fully synchronized. In this state the system as
a whole exhibits activity at a multiple of the frequencies of
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the subpopulations. Whenever the ratios of the subfre-
quencies are not rational the overall activity appears to be
aperiodic. Note that the amplitude of the activity is de-
pendent on the size of the clusters. Clustering states can
represent the transition from the synchronous to the
asynchronous state, since complete synchrony can be re-
garded as a single cluster state whereas many small clus-
ters with non-related frequencies correspond to the
asynchronous state for a large network.

Clustering has been reported in the phase description
at a variety of large systems of globally coupled oscil-
lators. In phase models for which the coupling function
depends only on the difference of the phases, the oc-
currence of clustering (other than the one-cluster state)
has been linked to higher Fourier modes of the inter-
action function (Okuda 1993). He investigated the sta-
bility of n symmetrical clusters of equal size starting with
(32) for N homogeneous oscillators with coupling
strength N. For the phases ‘PE"), (i=1,...,n) of the
clusters we have the equation

re® —wiy (68)

a1
dr n 4=

j=1

The analysis of small disturbances around these states
suggests that higher Fourier modes of the interaction
function I' may be essential for clustering states. Thus,
clustering is not a general property of the widely
considered oscillators with sinusoidal coupling. This is
also thought to account for the results of this study,
namely, that clustering does not occur in the vicinity of a
Hopf bifurcation at which the dynamics can be approx-
imated by the first harmonic.

A similar analysis for a phase description, in which
the coupling term depends on the phases themselves
rather than only on their differences, has been performed
by Golomb et al. (1992). They used the form

d(ii:w+f(®i)_%;g(®j) (i=1,...,N) . (69)

Such a phase description can be valid in a wider regime
since the assumptions made about the system are less
strong. In this configuration it has also been found that
for higher harmonics in the periodic interaction func-
tions f and g, the system is often divided up into
subpopulations of synchronous activity. The phase
distributions for these clusters widen if stochastic noise
is introduced, but the asynchronous state becomes stable
only above a certain noise threshold.

This agrees well with a study by Golomb and Rinzel
(1994), who investigated a large network of conduc-
tance-based model neurons that had been introduced by
Wang and Rinzel (1992). The interaction is all-to-all and
of inhibitory type. For a two-unit system it has been
observed that slow and strong synapses favor synchro-
ny, whereas out-of-phase states have been reported with
other parameters ranges. In the large network there exist
a variety of behaviors, enabling the system to overcome
its frustration. Clustered states as well as partially clus-

tered states have been observed beside fixed points of the
dynamics. In numerical simulations the system con-
verges mainly to the synchronous or two-cluster state,
which is gradually destroyed with increasing noise as
neurons start to miss a cycle or drop out of the collective
oscillation. For high noise levels a stationary distribu-
tion is reached for all parameter regimes.

In this section we have seen that it cannot generally be
inferred that out-of-phase solutions in a small network
indicate complete asynchrony in a large network. Clus-
tering is a very widely observed phenomenon in models
of larger neuron networks. Higher levels of noise tend to
break up the system into smaller and smaller clusters,
transcending into complete asynchrony. It has been
speculated that the seemingly arbitrary grouping of os-
cillators in different clusters may be related to the pat-
terns of the external input. Thus, recognition and
amplification of such external patterns might be possi-
ble, which could also provide a mechanism for binding
and segregation within the assembly concept.

New issues are raised when inhomogeneous networks
are considered. Indeed, cortical connectivity is far from
being random or all-to-all. A prominent example is the
asymmetric reciprocal coupling between areas on dif-
ferent levels of the hierarchy of the visual system. Lumer
et al. (1997) constructed a network taking into account
such anatomical data, in order to investigate the inter-
action between synchronous firing and the mean activity
level. By jittering the action potentials of neurons, they
found that even if the membrane time constants of in-
dividual units are rather long, a population can act with
surprisingly high precision.

Another source of specific connectivity are manipu-
lations of visual experience during development. Dis-
rupting coherent stimulation of the two eyes by induced
strabismus leads to a segregation of tangential fibers so
that only those regions with similar ocular dominance
are connected (Lowel and Singer 1992). As a conse-
quence, only neurons that are activated by the same eye
show synchronized activity (Konig et al. 1993). Indeed,
when such animals are exposed to rivalrous stimulation,
synchronization of neuronal activity of the primary vi-
sual cortex is a better predictor of induced eye move-
ments (which presumably reflect the perception of the
animal) than their activity level (Fries et al. 1997). This
can be understood in a simulation of spiking units.
Congruent input leads to a synchronous representation,
which in turn protects the coactivated neurons from
lateral inhibition (Lumer 1998). In contrast, conflicting
stimuli are represented by asynchronous assemblies,
which leads to rivalry and suppression at later process-
ing stages.

Reviewing neuronal dynamics within neocortex, we
have hardly touched upon the wealth of phenomena ob-
served in hippocampus and cortico-thalamic interactions.
Indeed, cortico-thalamic interactions have been investi-
gated intensively for many years, and a large number of
results are available (Steriade 1997, 1999). Neurons in
thalamus and cortex display oscillatory activity over
several different frequency ranges. Cortical neurons os-
cillating at fast and slow rhythms can entrain thalamic



neurons. Thalamic neurons partly show oscillatory ac-
tivity of their own. These complicated phenomena can
only be appreciated when the detailed anatomy of this
system is taken into account (Destexhe et al. 1996). Fur-
thermore, cortical synchronization may depend on sub-
cortical modulatory influences, which are related to
learning and plasticity (Munk et al. 1996; Herculano
et al. 1999; Steriade 1999). In the CA3 region of the hip-
pocampus the seemingly random connectivity has in-
spired work on associative neural networks. Viewed on a
larger scale, however, this network is embedded in a
highly structured circuit which is interacting with neo-
cortical structures (Buzsaki 1996). As discussed above,
inhibitory mechanisms play an important role for the
synchronization of y-activity (Buszaki and Chrobak 1995;
Traub et al. 1996). Mechanisms to synchronize neuronal
activity in other frequency ranges, and their complex in-
teractions in the different parts of the hippocampus, are
the focus of current work (Dragoi et al. 1999).

4 Conclusions and open issues

In spite of the impressive amount of work done, which
could not possibly be fully covered within this review, it
is clear that many questions in this rich field of study
have not been settled and therefore remain open.

We have seen that the choice of the neuron model as
well as the modeling of the interaction can have a pro-
found impact on the dynamics of the network. In par-
ticular, by concentrating on the synchronization of
neuronal activity it has been shown that small changes in
parameters such as transmission delay and the form of
synaptic interaction can lead to opposite results. Nev-
ertheless, general trends do emerge. For example, fast-
acting excitatory connections tend to synchronize,
whereas, in the case of slow interactions, inhibitory
connections have been shown to be synchronizing. As
axonal propagation, synaptic transmission, and den-
dritic integration inflict signal transmission with finite
delays, the latter effect might be of physiological
significance. This leads to the question of whether
inhibitory neurons really play a decisive role in syn-
chronization, as has been stressed in many other recent
studies. However, the inhibitory neurons are outnum-
bered four to one by the excitatory neurons in the cor-
tex. Also, these inhibitory neurons come in a large
variety of types with different morphological and phys-
iological properties (Gupta et al. 2000). Not all of these
seem to be suited to influencing cortical dynamics on a
millisecond time scale. Thus, do we have to view the
cortical neuronal network as a two-class society, where a
special and presumably small set of neurons decisively
dominates the temporal dynamics?

Linking the principal insights from studies of homo-
geneous networks with the complexities of known
anatomy poses new and exciting problems. Neurons
within a cortical column tend to have similar response
properties. The connectivity within a column is dense
and complex. This does not, however, justify the treat-
ment of such a population of neurons as if it were be-
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having like a single unit. Indeed, depending on their
origin afferent projections target different subpopula-
tions and have characteristic laminar termination pat-
terns. Given our improving knowledge of intracellular
communication mechanisms (Stuart and Sakmann 1994;
Larkum et al. 1999), different interactions of synchro-
nous and not-synchronous inputs arriving at different
parts of the dendritic tree are expected. A prominent
example is the interaction of bottom-up input arriving in
the granular layer, and top-down input prominently
terminating in the uppermost layers of the grey matter
(Cauller and Conners 1994; von Stein et al. 1999).

Other aspects have not even begun to be investigated.
For example, in all models the detection of coincident
input and the generation of spike timing were assumed
to be one process. This, however, might turn out to be
an unwarranted assumption. If coincidence detection
relies on fast processes in the distal dendritic tree, and
the spike timing is determined at the soma, they might be
independent processes. Thus, as so often is the case, with
each answer more questions turn up, and there is a field,
at least as large as the one covered in this review, to be
explored in future studies.
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