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Abstract

We relax the moment conditions from a result in almost sure limit theory
for U-statistics due to Berkes and Csaki (2001). We extend this result to the
case of convergence to stable laws and also prove a functional version.
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1 Introduction

U-statistics generalize the concept of the sample mean of independent identically
distributed (i.i.d.) random variables. The statistical interest in U-statistics stems
from the fact that they form a class of unbiased estimators of a certain parameter
with minimal variances. We begin by introducing some notation and recalling the
concept of U-statistics.
Let X1, X2, . . . be i.i.d. random variables with common distribution function F (x).
Let m ≥ 1 and let h : Rm → R be a measurable function symmetric in its arguments.
The U-statistic with kernel h is defined by

Un(h) =

(
n

m

)−1 ∑
1≤i1<i2<...<im≤n

h(Xi1 , . . . , Xim), n ≥ m.
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The kernel h is called degenerate with respect to F (x) if for all 1 ≤ j ≤ m∫
R

h(x1, . . . , xm)dF (xj) ≡ 0, where −∞ < x1, . . . , xj−1, xj+1, . . . , xm < ∞.

Let
θ = Eh(X1, . . . , Xm)

and for i = 0, . . . ,m let

h̃i(x1, . . . , xi) = Eh(x1, . . . , xi, Xi+1, . . . , Xm),

hi(x1, . . . , xi) =
i∑

k=0

(−1)i−k
∑

(j1,...,jk)⊂{1,...,i}

h̃k(xj1 , . . . , xjk
),

ζi = Var(hi(X1, . . . , Xi)).

Note that h̃0 = θ and h̃m(x1, . . . , xm) = h(x1, . . . , xm). Furthermore, the hi are
degenerate for i = 1, . . . ,m (see Denker (1985)). If ζ1 > 0 the U-statistic Un(h) is
called non-degenerate and degenerate otherwise. The smallest integer c for which
ζc > 0 is called the critical parameter of the U-statistic Un(h). Without loss of
generality we will assume θ = 0 throughout the rest of this article.

The theory of U-statistics started to develop intensively after Hoeffding’s fundamen-
tal article (1948). He showed asymptotic normality of non-degenerate U-statistics
under the assumption

Eh2(X1, . . . , Xm) < ∞, (1)

using the following representation of U-statistics

Un(h) = mUn(h1) +
m∑

k=2

(
m

k

)
Un(hk), (2)

where mUn(h1) is a sum of i.i.d. random variables and Un(h2), . . . , Un(hm) are U-
statistics with degenerate kernels.
In the degenerate case nc/2Un(h) weakly converges to a multiple Wiener integral
whenever h is square integrable (see e.g. Denker (1985)). Here c is the critical pa-
rameter of Un(h).

In the late 80s Brosamler (1988) and Schatte (1988) independently proved a new
type of limit theorem. This type of statement extends the classical central limit
theorem in the i.i.d. case to a pathwise version and is therefore called an almost
sure central limit theorem (ASCLT). In the 90s many studies were done to prove
almost sure limit theorems (ASLT) in different situations, for example in the case of
independent but not necessarily identically distributed random variables (see Berkes
and Dehling (1993)). Excellent surveys on this topic may be found in Atlagh and
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Weber (2000) as well as in Berkes (1998). Recently Berkes and Csaki (2001) ob-
tained a general result in almost sure limit theory. They used it to prove almost sure
versions of several classical limit theorems. In particular they stated the following
theorem for U-statistics.

Theorem 1.1. Let c be the critical parameter of the U-statistic Un(h). Under the
assumption (1)

lim
n→∞

1

log n

n∑
k=1

1

k
1l{kc/2Uk(h)<x} = G(x) a.s. for any x ∈ CG,

where G is the limit distribution of nc/2Un(h) and CG denotes the set of continuity
points of G.

In the present note we relax the moment condition in Theorem 1.1 and extend the
statement in two directions. First we will obtain an ASLT with stable limiting
distribution for a non-degenerate U-statistic. Furthermore we extend Theorem 1.1
to a functional version.

2 Preliminaries

Let (Yn)n≥1 be a sequence of random elements taking values in a Polish space (S, d)
and let G be a probability measure on the Borel σ-field in S. We say that (Yn)n≥1

satisfies the ASLT with limiting distribution G if with probability 1,

(log n)−1

n∑
k=1

δYk
/k ⇒ G, n →∞.

Here δYk
is the Dirac measure at Yk and ” ⇒ ” denotes weak convergence of measures.

Throughout this note the following lemma will be of fundamental interest.

Lemma 2.1. Let (Yn)n≥1 be a sequence of S-valued random elements which satisfies
the almost sure limit theorem (ASLT) with some limiting distribution G. Assume
that Zn is another sequence of S-valued random elements on the same probability
space such that almost surely, d(Yn, Zn) → 0. Then Zn also satisfies the ASLT with
limiting distribution G.

Proof. By a well known principle in almost sure limit theory (see e.g. Lacey and
Philipp (1990)), (Yn)n≥1 satisfies the ASLT with limiting distribution G if and only
if

(log n)−1

n∑
k=1

1

k
Ψ

(
Yk(ω)

)
→

∫
S

Ψ(x) dG(x) a.s.
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for any bounded Lipschitz function Ψ. Using the Lipschitz property of Ψ and the
assumption that d(Yn, Zn) → 0 we conclude that

1

log n

∣∣∣∣ n∑
k=1

1

k

[
Ψ

(
Yk(ω)

)
−Ψ

(
Zk(ω)

)]∣∣∣∣ ≤ C

log n

n∑
k=1

1

k
d
(
Yk(ω), Zk(ω)

)
→ 0 a.s.,

where C is a Lipschitz constant for Ψ. This proves the Lemma.

In the sequel we will make use of the following lemma which is a consequence of a
more general result due to Giné and Zinn (1992).

Lemma 2.2. Let h(x1, . . . , xl) be measurable and degenerate. Let q ∈ ( l
2
, l). If

E|h(X1, . . . , Xl)|l/q < ∞, (3)

then with probability 1

n−q
∑

1≤i1<...<il≤n

h(Xi1 , . . . , Xil) → 0.

3 Relaxing the moment assumption

In this section we will relax the moment assumption of Theorem 1.1. For the weak
convergence of nc/2Un(h) (where c denotes the critical parameter of Un(h)) Korolyuk
and Borovskich (1994) weakened the assumption (1) to

E|hk(X1, . . . , Xk)|2k/(2k−c) < ∞, k = c, . . . , m. (4)

We are going to prove the validity of Theorem 1.1 under these assumptions:

Theorem 3.1. Let c be the critical parameter of the U-statistic Un(h). If (4) is
satisfied then the statement of Theorem 1.1 is true.

Proof. First of all note that, if c is the critical parameter of Un(h), then the func-
tions hi(x1, . . . , xi) = 0 a.s. for all i = 1, . . . , c − 1, and so from the Hoeffding
decomposition

nc/2Un(h)− nc/2

(
m

c

)
Un(hc) = nc/2

m∑
k=c+1

(
m

k

)
Un(hk). (5)

By Theorem 1.1, nc/2
(

m
c

)
Un(hc) satisfies the ASLT.

To complete the proof it suffices to show that the sum on the right-hand side of (5)
converges to zero a.s. This follows from Lemma 2.2 by letting l = k and q = k− c/2
for k = c + 1, . . . ,m. An application of Lemma 2.1 finishes the proof.

4



4 Convergence to stable distributions

As we shall see in this section, under some mild moment conditions weak convergence
of a sequence of non-degenerate U-statistics to a stable limit distribution implies the
validity of the corresponding ASLT. Let Gα denote a stable law with characteristic
exponent α.

Theorem 4.1. Let for some α ∈ (1, 2]

n1− 1
α

mL(n)
Un(h)− An ⇒ Gα, (6)

where L(n) is a slowly varying function for which lim infn→∞ L(n) > 0. If

E|hk(X1, . . . , Xk)|
αk

α(k−1)+1 < ∞, k = 2, . . . ,m, (7)

then

lim
n→∞

1

log n

n∑
k=1

1

k
1l{ k1−1/α

mL(k)
Uk(h)−Ak<x

} = Gα(x) a.s.

Remarks
(1) Assumption (6) is very common in almost sure limit theory, when one deduces
an ASLT from the validity of the corresponding weak limit theorem (see e.g. Berkes
and Dehling (1993)).
(2) One has weak convergence in (6) if the distribution function of h1(X1) belongs
to the domain of attraction of Gα and if the moment condition

E|h(X1, . . . , Xm)|
2α

α+1 < ∞ (8)

holds (see Heinrich and Wolf (1993)).
(3) It is not difficult to show that if the kernel h satisfies (8), then (7) holds.
(4) Theorem 4.1 will be true for any slowly varying function, if E|hk(X1, . . . , Xk)|pk <
∞ for some pk > αk

α(k−1)+1
, k = 2, . . . ,m.

Proof of Theorem 4.1. Let us start by showing that

n1− 1
α

mL(n)

(
Un(h)−mUn(h1)

)
→ 0 a.s. (9)

Indeed
n1− 1

α

mL(n)

(
Un(h)−mUn(h1)

)
=

m∑
k=2

(
m

k

)
n1− 1

α

mL(n)
Un(hk),

and letting q = k − 1 + 1
α

and l = k we can apply Lemma 2.2. This proves (9).
Making use of (6) and (9) we conclude that also

n1− 1
α

L(n)
Un(h1)− An ⇒ Gα. (10)
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It is known that weak convergence of normalized sums of real valued i.i.d. random
variables to some stable law Gα implies the corresponding ASLT (see Ibragimov and
Lifshits (1999)). Hence (10) implies

lim
n→∞

1

log n

n∑
k=1

1

k
1l
{ k

1− 1
α

L(k)
Uk(h1)−Ak<x}

= Gα(x) a.s.

An application of Lemma 2.1 completes the proof.

5 Functional version of the ASLT

5.1 The non-degenerate case

In the non-degenerate case the functional version of Theorem 1.1 can be deduced
directly from Theorem 2 of Lacey and Philipp (1990), which deals with sums of i.i.d.
random variables. Throughout this section we assume that (1) holds. Let D[0, 1]
denote the space of cadlag functions on [0, 1] and let W denote the Wiener measure
on D[0, 1] (see Billingsley (1999)). We introduce the following D[0, 1]-valued random
functions

Yn(t) =

{
(m
√

nζ1)
−1bntcUbntc(h) : t ∈ [m/n, 1],

0 : t ∈ [0, m
n
[,

(11)

where b·c denotes the integer part of a real number.

Theorem 5.1. Suppose that Eh2(X1, . . . , Xm) < ∞ and ζ1 > 0, then the sequence
of random functions defined in (11) satisfies the ASLT with limiting measure W .

Proof. First we want to see that, under suitable normalization, the difference be-
tween Un(h) and its first term in the Hoeffding decomposition (2) tends to 0 a.s.
Since

Un(h)−mUn(h1) =
m∑

k=2

(
m

k

)
Un(hk),

and all kernels hc on the right-hand side are degenerate with degree c ≥ 2, we can
apply Lemma 2.2 with q = c − 1/2 and l/q = 3/2 to conclude that n1/2(Un(h) −
mUn(h1)) → 0 a.s. Then also

n−1/2 max
m≤k≤n

k
(
Uk(h)−mUk(h1)

)
→ 0 a.s. (12)

Let

Zn(t) =
1√
nζ1

bntcUbntc(h1), t ∈ [0, 1].

Note that nUn(h1) =
∑n

i=1 h̃1(Xi) is a sum of i.i.d. random variables. From the
ASCLT for i.i.d. random variables (see Theorem 2 in Lacey and Philipp (1990)),
the Zn(t) satisfy the ASLT with limiting measure W . From (12) we deduce that
‖Yn − Zn‖∞ → 0, where ‖.‖∞ denotes the supremum norm on D[0, 1]. Hence we
can apply Lemma 2.1 to Yn(t) and Zn(t) to prove the Theorem.
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5.2 The degenerate case

In order to obtain a functional ASLT in the degenerate case, we need the following
version of a general result by Berkes and Csaki (2001) for function valued random
elements.

Theorem 5.2. Let Xn, n ≥ 1, be independent random variables taking values in
some measurable space (E,B) and let fl : El → D[0, 1], l ∈ N, be measurable
mappings such that fl(X1, . . . , Xl) ⇒ G for some distribution G on D[0, 1]. Assume
that for each 1 ≤ k < l, where l − k ≥ m for some fixed m, there exists a mapping
fk,l : El−k → D[0, 1] such that

E
(
‖fl(X1, . . . , Xl)− fk,l(Xk+1, . . . , Xl)‖∞

)
≤ C

(
k

l

)α

for some C, α > 0. Then the sequence
(
fl(X1, . . . , Xl)

)
l≥1

satisfies the ASLT with
limiting distribution G.

Proof. The proof proceeds along the lines of the proof in Berkes and Csaki (2001).

From now on we restrict ourselves to kernels of degree 2. In this case the distribution
invariance principle for degenerate U-statistics was obtained by Neuhaus (1977) (for
the general case see Denker, Grillenberger and Keller (1985)). It states that for a
degenerate kernel h : R2 → R the sequence of D[0, 1]−valued random elements

2

n

∑
1≤i<j≤bntc

h(Xi, Xj) (13)

converges in distribution to ∑
k≥1

λk

(
wk(t)− t

)2
,

where the wk are independent Brownian motions and the λk are the eigenvalues of
the integral operator associated with h (see Neuhaus (1977)). The distribution of
this limiting process will be denoted by G.

Theorem 5.3. Assume that the kernel h : R2 → R is degenerate and satisfies (1).
Then the sequence defined in (13) satisfies the ASLT with limiting distribution G.

Proof. We want to apply Theorem 5.2. Denote ‖h‖2
2 = Eh2(X1, X2) and let

fl(x1, . . . , xl)(t) =
2

l

∑
1≤i<j≤bltc

h(xi, xj),

fk,l(xk+1, . . . , xl)(t) =
2

l

∑
k+1≤i<j≤bltc

h(xi, xj),
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where l − k ≥ 2, t ∈ [0, 1] and the empty sum is 0. By Theorem 5.2, it will be
enough to show that

E
(
‖fl(x1, . . . , xl)− fk,l(xk+1, . . . , xl)‖2

∞
)
≤ Ck/l. (14)

Evidently

‖fl(x1, . . . , xl)− fk,l(xk+1, . . . , xl)‖2
∞ ≤ 4l−2E

[
max

2+k≤n≤l

(∑′

n
h(xi, xj)

)2

+ max
2≤n<2+k

( ∑
1≤i<j≤n

h(xi, xj)
)2

]

where
∑′

n denotes summation over all indices 1 ≤ i ≤ k, 1 ≤ j ≤ n with i < j.
Observe that due to the degeneracy of h,∑′

n
h(Xi, Xj), 2 + k ≤ n ≤ l,

is a martingale with respect to the canonical filtration Fn = σ(X1, . . . , Xn). Using
Doob’s inequality and once more the degeneracy of h we estimate

E

[
max

2+k≤n≤l

(∑′

n
h(Xi, Xj)

)2
]

≤ 4E
(∑′

l
h(Xi, Xj)

)2

= 4
∑′

l
Eh2(Xi, Xj)

≤ 4kl‖h‖2
2. (15)

Similarly

E

[
max

2≤n<2+k

( ∑
1≤i<j≤n

h(xi, xj)
)2

]
≤ 4

(
k + 2

2

)
‖h‖2

2. (16)

From (15) and (16) it follows that

E
(
‖fl(x1, . . . , xl)− fk,l(xk+1, . . . , xl)‖2

∞
)
≤ 4l−24‖h‖2

2

(
kl +

(
k + 2

2

))
≤ Ck/l.

The Theorem is proved.

Acknowledgements

We are grateful to H. Dehling for drawing our attention to a helpful publication by
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