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Abstract

In this paper we consider general Hadamard differentiable functionals φ(ΛR, ΛT ) of the
cumulative hazard functions of two samples of randomly right censored data, which can be
used for the nonparametric assessment of noninferiority. We prove the consistency of various
bootstrap procedures as suggested in Freitag et al. [1] for the practical implementation of
tests for this problem.
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1 Introduction

We consider the problem of showing that a new, test treatment T is at most irrelevantly inferior
to an established standard, reference treatment R, with respect to the corresponding survival
probabilities. As to the motivation and specific methodological concerns related to noninferiority
trials, we refer to the special issue of Statistics in Medicine on this topic in 2003 [2] and to a
number of (draft) guidelines of the Committee for Proprietary Medicinal Products (CPMP)
and the International Conference of Harmonization (ICH), such as [3]-[7]. A survey on existing
methods for the assessment of noninferiority with censored data can be found in Freitag [8].

This paper deals with the approach suggested in Freitag et al. [1], where the comparison of the
two samples is performed nonparametrically, using discrepancy functionals of the two underlying
cumulative hazard functions, such as the cumulative hazard ratio or the cumulative odds ratio.
These can be assessed over a whole time interval within the follow-up period of a clinical trial.

For this we assume the setting of two samples of failure times, which are subject to simple
random right censoring. However, other censoring mechanisms could be treated as well (cf. the
discussion of this issue in Freitag et al. [1]). We denote the cumulative distribution function (cdf)
of a failure time under the reference and test treatment by FR and FT , respectively. Throughout
the following we assume that the Fk are continuous cdfs with Lebesgue densities fk, survivor
functions Sk = 1 − Fk, and continuous hazard functions λk = fk/Sk, k = R,T .

Let Tki ≥ 0, i = 1, ..., nk , be independent and identically distributed (i.i.d.) failure times
according to Fk, k = R,T . Further, let the corresponding censoring times Uki ≥ 0 be distributed
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according to Gk, where Uki is independent of Tki, i = 1, ..., nk, k = R,T . The observations
consist of pairs (Xki, δki), where Xki = Tki ∧ Uki

def= min{Tki, Uki} are the observed failure times
and δki = I{Tki≤Uki} are the associated observable censoring indicators, i = 1, ..., nk, k = R,T .
For estimating the underlying cumulative hazard functions Λk and distribution functions Fk, we
will use the standard nonparametric Nelson-Aalen and Kaplan-Meier estimators, respectively,
which shall be denoted by Λ̂k and F̂k, k = R,T .

For comparing the two samples of failure times nonparametrically, one can consider the difference
of the survival functions, the cumulative odds ratio or the ratio of the survival functions, or the
ratio of the cumulative hazard functions (cf. Remark 2.3). We will deal with these in a unified
framework, using a general discrepancy functional φ = φ(ΛR,ΛT ) of the underlying cumulative
hazard functions. Note that the survivor function Sk can be written as Sk(t) =

tP
0

[1− dΛk(s)],

where
tP
0

denotes the product integral (cf. Andersen et al. [9]). An analogous relation holds

for the estimated survivor function Ŝk = 1 − F̂k, i.e. Ŝk(t) =
tP
0

[1 − dΛ̂k(s)].

Using these notations, the difference functional can be written as

d(t) def= FT (t) − FR(t) =
tP
0

[1 − dΛR(s)] − tP
0

[1 − dΛT (s)] def= φd(ΛR,ΛT )(t). (1)

Here the subscript d in φd(ΛR,ΛT ) indicates the concrete discrepancy functional d(·).
Freitag et al. [1] argue that for the nonparametric assessment of noninferiority of the test
treatment as compared to the reference treatment, it is of interest to assess such a discrepancy
over a whole time interval, instead of only at a single time point. Thus, in terms of a general
discrepancy functional φ, we suggest hypotheses of the form

Hφ : φ(ΛR,ΛT )(t) ≥ ∆φ for some t ∈ [τ0, τ1] vs. Kφ : φ(ΛR,ΛT )(t) < ∆φ ∀t ∈ [τ0, τ1], (2)

where ∆φ is a fixed irrelevance bound which has to be defined in advance. For absolute discrep-
ancy measures (such as the difference) this will be a small positive value, whereas for relative dis-
crepancy measures such as the cumulative odds ratio it will be a value slightly larger than 1. For
testing the above hypotheses we will use the nonparametric estimator φ̂(ΛR,ΛT ) = φ(Λ̂R, Λ̂T ).

In the following we will show the (weak) consistency of the bootstrap based methods suggested
in Freitag et al. [1].

2 Weak convergence

An essential prerequisite is the weak convergence (denoted by D=⇒) of the two underlying cu-
mulative hazard processes, n

1/2
k (Λ̂k − Λk), k = R,T , in the space D[τ0, τ1] of càdlàg functions

on [τ0, τ1], which will be considered as equipped with the supremum norm ‖ · ‖∞ and the sigma
field of open balls (cf. e.g. Shorack & Wellner [10] or Gill [11]).

Assumption 2.1 Suppose Λk(t) < ∞ for t ≤ τ1, and 1 − (1 − Fk(τ1))(1 − Gk(τ1)) < 1 for
k = R,T .

Under Assumption 2.1, it is well known that, in D[τ0, τ1],

n
1/2
k (Λ̂k − Λk)

D=⇒ Zk, k = R,T, (3)
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where Zk is a mean zero Gaussian process with Zk(0) = 0 and covariance structure
COV(Zk(s1), Zk(s2)) = Dk(s1 ∧ s2), with

Dk(t) =
∫ t

0

λk(s)
(1 − Fk(s))(1 − Gk(s))

ds (4)

(cf. Theorem IV.1.2 in Andersen et al. [9]).

The following result on the weak convergence of the discrepancy process follows immediately
from the functional delta method for Hadamard differentiable functionals (cf. e.g. Gill [11]).

Lemma 2.2 Suppose that the functional φ : D[τ0, τ1] × D[τ0, τ1] → D[τ0, τ1] is Hadamard dif-
ferentiable at (ΛR,ΛT ) with derivative dφ(ΛR,ΛT ). Further, assume that Assumption 2.1 holds.
Then, if

nR, nT → ∞, nT/(nR + nT ) → ρ ∈ (0, 1), (5)

we have that, in D[τ0, τ1],

√
κn(φ̂(ΛR,ΛT ) − φ(ΛR,ΛT )) D=⇒ dφ(ΛR,ΛT )(

√
ρ ZR,

√
1 − ρ ZT ) def= Wφ, (6)

where κn
def= nRnT /(nR + nT ) and Zk is defined in (3), k = R,T .

Thus, the limiting random element Wφ is a mean zero Gaussian process, and at each t ∈ [τ0, τ1]
we have asymptotic normality of Wφ(t) with expectation zero and variance σ2

φ(t), which depends
on the underlying failure time and censoring distributions.

Remark 2.3 In the following we consider several special cases of the functional φ.

1. In case of the difference functional d from (1) the Hadamard differentiability is given
immediately, using Assumption 2.1, the continuity of Λk, k = R,T , and Lemma 3.9.30 of
van der Vaart & Wellner [12], which gives the Hadamard differentiability of the product
integral. The covariance structure of the limiting random element Wd is given by

COV(Wd(s), Wd(t)) = (1 − ρ)ST (s)ST (t)DT (s ∧ t) − ρSR(s)SR(t)DR(s ∧ t),

where Dk, k = R,T , and ρ are defined in (4) and (5), respectively. Here the independence
of the two processes Zk, k = R,T , was used.

2. For the relative risk functional

r(t) def= FT (t)/FR(t) =
1 − tP

0
[1 − dΛT (s)]

1 − tP
0

[1 − dΛR(s)]

def= φr(ΛR,ΛT )(t),

the additional assumption FR(t) > 0, t ∈ [τ0, τ1], is required. The covariance structure of
the corresponding limiting random element Wr is then given by

COV(Wr(s), Wr(t)) = (1 − ρ)
ST (s)ST (t)
FR(s)FR(t)

DT (s ∧ t) − ρ
FT (s)SR(s)FT (t)SR(t)

F 2
R(s)F 2

R(t)
DR(s ∧ t).
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3. For the cumulative odds ratio functional,

o(t) def=
FT (t)(1 − FR(t))
(1 − FT (t))FR(t)

=

tP
0

[1 − dΛT (s)](1 − tP
0

[1 − dΛR(s)])

(1 − tP
0

[1 − dΛT (s)])
tP
0

[1 − dΛR(s)]

def= φo(ΛR,ΛT )(t),

we need the additional assumption FR(t)(1 − FT (t)) > 0, t ∈ [τ0, τ1]. The covariance
structure of the resulting limiting random element Wo is then given by

COV(Wo(s), Wo(t)) = (1 − ρ)
SR(s)SR(t)

ST (s)ST (t)FR(s)FR(t)
DT (s ∧ t)

− ρ
FT (s)FT (t)SR(s)SR(t)
ST (s)ST (t)F 2

R(s)F 2
R(t)

DR(s ∧ t).

4. For the cumulative hazard ratio,

h(t) def= ΛT (t)/ΛR(t) def= φh(ΛR,ΛT )(t),

it has to be assumed in addition that ΛR(t) > 0, t ∈ [τ0, τ1]. The covariance structure of
the limiting random element Wh is then given by

COV(Wh(s), Wh(t)) = (1 − ρ)
1

FR(s)FR(t)
DT (s ∧ t) − ρ

FT (s)FT (t)
F 2

R(s)F 2
R(t)

DR(s ∧ t).

2.1 Suprema

The hypotheses in (2) suggest to base a test on supt∈[τ0,τ1] φ̂(t), which has be pursued in Freitag
et al. [1]. In order to proof the consistency of such a test, we use results by Raghavachari [13]
on the convergence in distribution of Kolmogorov-Smirnov type statistics under the alternative.
Following the lines of the proof given therein, we can derive the convergence in distribution of
our general supremum statistics.

Lemma 2.4 Under the assumptions of Lemma 2.2 it follows that

√
κn

(
sup

t∈[τ0,τ1]
φ̂(t) − sup

t∈[τ0,τ1]
φ(t)

)
D−→ sup

t∈K+
φ

Wφ(t), (7)

with Wφ from (6) and K+
φ

def= {t ∈ [τ0, τ1] : sups∈[τ0,τ1] φ(s) = φ(t)}.

The proof of Lemma 2.4 essentially mimics the proof of Theorem 1 in Raghavachari [13]. How-
ever, the details will be required in the proof of the subsequent Theorem 3.2, hence we give the
complete proof here. Moreover, instead of a result on the empirical process (cf. Lemma 1 in
[13]), a more general result on weakly convergent processes is required in the following.

Proof:
Let

λ+ = sup
t∈[τ0,τ1]

φ(t),

4



D+
n = sup

t∈[τ0,τ1]
φ̂(t),

Z+
n = sup

t∈K+
φ

(φ̂(t) − φ(t)),

D++
n = D+

n − λ+ − Z+
n .

Thus, we have to show that
√

κnD++
n

P−→ 0 as nR, nT → ∞, since the limiting distribution of√
κnZ+

n is given by supt∈K+
φ

Wφ(t) (cf. Lemma 2.2).

As φ(t) is a continuous, bounded function on [τ0, τ1], the set K+
φ is a (non-empty) compact

subset of [τ0, τ1]. From the week convergence result of Lemma 2.2 and Theorem V.1.3 in Pollard
[14] we have that for every ε, η > 0, there exists a partition τ0 = t0 < t1 < ... < tl = τ1 such that

lim sup
nR,nT→∞

P
(√

κn max
i

sup
t∈Ji

|φ̂(t) − φ(t) − φ̂(ti) + φ(ti)| > ε
)

< η, (8)

where Ji = [ti, ti−1) for i = 0, 1, ..., l − 1. Choose those Ji for which there exists a t ∈ Ji ∩ K+
φ ,

and denote these by J̃1, ..., J̃p and t̃i, ..., t̃p, respectively (p ≤ l). Thus, K+
φ ⊂ ∪p

i=1J̃i
def= Mp. Let

M c
p = [τ0, τ1] \ Mp. Then we have

P
{√

κnD++
n > ε

}
= P

{√
κn( sup

t∈[τ0,τ1]
φ̂(t) − λ+ − Z+

n ) > ε
}

≤ P
{√

κn( sup
t∈Mp

φ̂(t) − λ+ − Z+
n ) > ε

}

+ P
{√

κn( sup
t∈Mc

p

φ̂(t) − λ+ − Z+
n ) > ε

}
.

From (8) it follows, for sufficiently large nR, nT ,

P
{√

κn( sup
t∈Mp

φ̂(t) − λ+ − Z+
n ) > ε

}

≤ P
{√

κn(max
i

sup
t∈J̃i

(φ̂(t) − φ(t) + φ(t)) − λ+ − Z+
n ) > ε

}

≤ P
{√

κn(max
i

sup
t∈J̃i

(φ̂(t) − φ(t) + φ(t)) − φ(t̃i) − φ̂(ti) + φ(ti)) > ε
}

≤ P
{√

κn max
i

sup
t∈J̃i

|φ̂(t) − φ(t) − φ̂(ti) + φ(ti)| > ε
}

< η.

Further, on M c
p , φ(t) is bounded above by a number ρ with 0 < ρ < λ+. This follows from the

continuity of φ(t), compactness of K+
φ and K+

φ ⊂ Mp.

Let ν > 0 such that ν < λ+ − ρ. By the Glivenko-Cantelli Theorem we have, for sufficiently
large nR, nT ,

sup
t∈Mc

p

φ̂(t) − λ+ < sup
t∈Mc

p

φ̂(t) − λ+ + ν < ρ − λ+ + ν < 0

with probability one. Thus,

lim
nR,nT→∞P

{
sup
t∈Mc

p

√
κn(φ̂(t) − λ+ − Z+

n ) > ε
}

= 0.
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Hence,

lim sup
nR,nT→∞

P
{√

κnD++
n > ε

}
< η.

Since η was chosen arbitrary, P{√κnD++
n > ε} → 0 as nR, nT → ∞. �

3 Bootstrap approximations

The methods proposed in Freitag et al. [1] are based on bootstrapping. In the case of randomly
right censored data, the so-called simple method suggested by Efron [15] can be used. Accord-
ing to Theorem 2.1 in Akritas [16], this method yields consistent estimators of the underlying
distribution functions in the following sense.

Theorem 3.1 For sample k ∈ {R,T}, a bootstrap sample (X∗
kj, δ

∗
kj), j = 1, ...,mk , is drawn

from the pairs (Xki, δki), i = 1, ..., nk. The corresponding Kaplan-Meier estimator F̂ ∗
k is then

calculated. Then we have, as mk, nk → ∞,

m
1/2
k (F̂ ∗

k − F̂k)
D=⇒ Xk,

in D[τ0, τ1], for almost all sample sequences (Xki, δki), i = 1, ..., nk . Here Xk denotes the limiting

random element of the product-limit process n
1/2
k (F̂k −Fk), and we have Xk = Zk/Sk on [τ0, τ1]

(cf. (3) and Th.IV.3.2 in Andersen et al. [9]).

An analogous result can be proved in the same way (via martingale representations; cf. [16]) for
the bootstrapped Nelson-Aalen processes. This yields, as mk, nk → ∞,

m
1/2
k (Λ̂∗

k − Λ̂k)
D=⇒ Zk,

in D[τ0, τ1], for almost all sample sequences (Xki, δki), i = 1, ..., nk.

Plugging the bootstrap estimators Λ̂∗
k, k = R,T , into the definition of φ(t) yields a bootstrap

estimator φ̂∗(t). In Freitag et al. [1] two methods are proposed to solve the testing problem
(2), the pointwise and the supremum approach. Both methods require the weak consistency of
the bootstrap approximations they use. This is defined via the convergence of the sequences of
distributions of the random elements under consideration as follows.

Let L[X] be the distribution of a random variable in R, and suppose {Xn} ⊂ R with Xn
D−→ X in

R. Further, let {X∗
m} be a bootstrap version of {Xn}, and denote the conditional distribution,

given {Xn}, by L∗. Then the sequence {L∗[X∗
m]} is called weakly consistent for {L[Xn]}, if

ρP (L∗[X∗
m],L[X]) P−→ 0 for m,n → ∞, where ρP is the Prohorov metric (cf. Gill [11], p.113).

3.1 Pointwise approach

Here an upper (1 − α)-confidence bound φ(t)(1−α) for φ(t) is constructed for each t ∈ [τ0, τ1].
Then the pointwise test of (2) consists of rejecting Hφ if φ(t)(1−α) < ∆φ for all t ∈ [τ0, τ1]. We

6



suggest using bootstrap confidence bounds for calculating φ(t)(1−α). Thus, it has to be assured
that the bootstrapped discrepancy process at t,

√
κn(φ̂∗(t) − φ̂(t)) is weakly consistent for the

distribution of Wφ(t), which is normal with mean zero and and variance σ2
φ(t) (cf. Lemma 2.2).

Note that here the bootstrap sample sizes have been chosen as mk = nk, k = R,T . The required
result follows immediately under the assumptions of Lemma 2.2 and Theorem 3.1, applying the
functional delta method for the bootstrap as given in Theorem 5 in Gill [11]. Based on this,
there are several possibilities to construct φ(t)(1−α), t ∈ [τ0, τ1] (cf. Efron & Tibshirani [17] or
Shao & Tu [18]). In Freitag et al. [1] the percentile and the bias-corrected accelerated percentile
methods were applied.

3.2 Supremum approach

Here the aim is to calculate an upper (1−α)-confidence bound φ(1−α) directly for the supremum
of the discrepancy process, i.e. for supt∈[τ0,τ1] φ(t). Then Hφ can be rejected if φ(1−α) < ∆φ.
Thus, it has to be shown that the bootstrap approximation of the supremum functional is weakly
consistent for the limiting random element in (7). Note that, in contrast to the case ∆φ = 0,
there arise technical difficulties due to the unknown set K+

φ . These can be circumvented by
choosing the bootstrap sample sizes smaller than the original sample sizes, as stated in the
following Theorem.

Theorem 3.2 Suppose that the assumptions of Lemma 2.2 are satisfied. Further, assume that

mk is chosen such that mk = o(nk) and mT /(mR + mT ) → ρ as mk, nk → ∞, k = R,T . Then

it follows that the bootstrap approximation

√
κm

(
sup

t∈[τ0,τ1]
φ̂∗(t) − sup

t∈[τ0,τ1]
φ̂(t)

)

is weakly consistent for the distribution of the limiting random element supt∈K+
φ

Wφ(t) from

Lemma 2.4.

Proof:
As in the proof of Theorem 5 in Gill [11] (but now focussing on the cumulative hazard functions
instead of the distribution functions), application of the almost sure construction by Skorohod,
Dudley and Wichura (cf. Shorack & Wellner [10]) yields sequences Λ̂′

k
D= Λ̂k with n

1/2
k (Λ̂′

k −
Λk)

‖·‖∞−→ Z
′
k a.s., nk → ∞, Z

′
k

D= Zk, k = R,T (cf. (3)). Then it follows for the bootstrapped
Nelson-Aalen estimators, Λ̂∗

k, that

m
1/2
k (Λ̂∗

k − Λ̂′
k)

D=⇒ Zk a.s., as nk,mk → ∞, k = R,T.

Another application of the almost sure construction theorem yields for the given sequences Λ̂′
k

new sequences Λ̂∗′
k

D= Λ̂∗
k with m

1/2
k (Λ̂∗′

k −Λ̂′
k)

‖·‖∞−→ Z
∗
k a.s., nk,mk → ∞, where Z

∗
k

D= Zk, k = R,T .
Using the assumption mk = o(nk), k = R,T , yields, given Λ̂k, k = R,T ,

m
1/2
k (Λ̂∗′

k − Λk) = m
1/2
k (Λ̂∗′

k − Λ̂′
k) + m

1/2
k (Λ̂′

k − Λk)

= m
1/2
k (Λ̂∗′

k − Λ̂′
k) +

√
mk

nk
n

1/2
k (Λ̂′

k − Λk)

‖·‖∞−→ Z
∗
k

D= Zk a.s., as nk,mk → ∞, k = R,T.
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Let φ̂∗′ be the discrepancy functional applied to Λ̂∗′
k , k = R,T and φ̂′ the functional applied to

Λ̂′
k, k = R,T . Now we can use the Hadamard differentiability of φ and get, given Λ̂k, k = R,T ,

√
κm(φ̂∗′ − φ̂′) =

√
κm(φ̂∗′ − φ) −

√
κm

κn

√
κn(φ̂′ − φ)

‖·‖∞−→ dT(ΛT ,ΛR)(Z
∗
T , Z∗

R) D= Wφ a.s., as nk,mk → ∞, k = R,T.

Then it follows that, given Λ̂k, k = R,T ,

√
κm

(
sup

t∈[τ0,τ1]
φ̂∗′(t) − sup

t∈[τ0,τ1]
φ̂′(t)

)

D=
√

κm

(
sup

t∈[τ0,τ1]
φ̂∗′(t) − sup

t∈[τ0,τ1]
φ(t)

)
−√

κm

(
sup

t∈[τ0,τ1]
φ̂′(t) − sup

t∈[τ0,τ1]
φ(t)

)
(9)

D−→ sup
t∈K+

φ

Wφ(t), a.s., as nk,mk → ∞, k = R,T.

To this end, repeat the arguments in the proof of Lemma 2.4 and use the fact that the second
summand in (9) equals

−
√

κm

κn

√
κn

(
sup

t∈[τ0,τ1]
φ̂′(t) − sup

t∈[τ0,τ1]
φ(t)

)
,

which tends to zero in probability. From this the weak consistency of the bootstrap approxima-
tion follows, i.e.

ρP

(
L∗
[√

κm( sup
t∈[τ0,τ1]

φ̂∗(t) − sup
t∈[τ0,τ1]

φ̂(t))
]
,L
[

sup
t∈K+

φ

Wφ(t)
])

P−→ 0

a.s., as nk,mk → ∞, k = R,T. �

The results of Lemma 3.2 give rise to the use of the hybrid bootstrap method for addressing
the testing problem (2). To this end the upper (1 − α)-confidence bound for supt∈[τ0,τ1] φ(t) is
constructed as follows. Denote the α-quantile of the distribution of supt∈K+

φ
Wφ(t) by wα. Then

we have

P

(
√

κn

(
sup

t∈[τ0,τ1]
φ̂(t) − sup

t∈[τ0,τ1]
φ(t)

)
≥ wα

)
≥ 1 − α. (10)

Now, wα can be estimated by the α-quantile of B bootstrap replications
√

κm

(
sup

t∈[τ0,τ1]
φ̂∗

b(t) − sup
t∈[τ0,τ1]

φ̂(t)
)
, b = 1, ..., B.

If [xb]α denotes the α-quantile of a sample {xb, b = 1, ..., B}, then[√
κm( sup

t∈[τ0,τ1]
φ̂∗

b(t) − sup
t∈[τ0,τ1]

φ̂(t))
]
α

=
√

κm

[
sup

t∈[τ0,τ1]
φ̂∗

b(t)
]
α
−√

κm sup
t∈[τ0,τ1]

φ̂(t).

Plugging this into (10) yields

sup
t∈[τ0,τ1]

φ(t) ≤
√

κn +
√

κm√
κn

sup
t∈[τ0,τ1]

φ̂(t) −
√

κm√
κn

[
sup

t∈[τ0,τ1]
φ̂∗

b(t)
]
α

def= φ(1−α),

which is the upper confidence bound for supt∈[τ0,τ1] φ(t) as suggested in Freitag et al. [1].

8



References

[1] G. Freitag, S. Lange, and A. Munk. Nonparametric assessment of noninferiority with
censored data. (submitted), 2003.

[2] Non-Inferiority Trials: Advances in Concepts and Methodology. In R. B. D’Agostino et al.,
editors, Stat. Med., volume 22 (2), 2003.

[3] CPMP. Biostatistical Methodology in Clinical Trials in Applications for Marketing Autho-
rizations for Medicinal Products. CPMP Working Party on Efficacy of Medicinal Products
Note for Guidance III/3630/92-EN. Stat. Med., 14:1659–1682, 1995.

[4] CPMP. Points to Consider on Switching between Superiority and Non-inferiority. CPMP
/ EWP / 482 / 99, 2000.

[5] ICH. ICH Harmonised Tripartite Guideline. Statistical Principles for Clinical Trials (E9).
Stat. Med., 18:1905–1942, 1999.

[6] CPMP. (Draft) Points to Consider on the Choice of Non-Inferiority Margin. CPMP / EWP
/ 2158 / 99, 2004.

[7] ICH. ICH Harmonized Tripartite Guideline. Choice of Control Group and Related Issues
in Clinical Trials (E10). http: // www.fda.gov / cder / guidance / iche10.pdf. (Electronic
Citation), 2001.

[8] G. Freitag. Methods of assessing noninferiority with censored data. Biom. J. (to appear),
2004.

[9] P. K. Andersen, O. Borgan, R. D. Gill, and N. Keiding. Statistical Methods Based on
Counting Processes. Springer Verlag, New York, 1993.

[10] G. R. Shorack and J. A. Wellner. Empirical Processes with Applications to Statistics. Series
in Probability and Mathematical Statistics. Wiley, New York, 1986.

[11] R. D. Gill. Non- and semi-parametric maximum likelihood estimators and the von Mises
method – I. Scand. J. Stat., 16:97–128, 1989.

[12] A. W. van der Vaart and J. A. Wellner. Weak Convergence and Empirical Processes. Series
in Statistics. Springer-Verlag, New York, 1996.

[13] M. Raghavachari. Limiting distributions of Kolmogorov-Smirnov-type statistics under the
alternative. Ann. Stat., 1:67–73, 1973.

[14] D. Pollard. Convergence of Stochastic Processes. Series in Statistics. Springer-Verlag, New
York, 1984.

[15] B. Efron. Censored data and the bootstrap. J. Amer. Stat. Assoc., 76:312–319, 1981.

[16] M. G. Akritas. Bootstrapping the Kaplan-Meier estimator. J. Amer. Stat. Assoc., 81:1032–
1038, 1986.

9



[17] B. Efron and R. J. Tibshirani. An Introduction to the Bootstrap. Chapman & Hall, New
York, 1993.

[18] J. Shao and D. Tu. The Jackknife and Bootstrap. Series in Statistics. Springer-Verlag, New
York, 1995.

10


