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Abstract: Let Wt be a Brownian Motion and εin
iid∼ N (0, 1), i = 1, . . . , n inde-

pendent of Wt. σ, τ > 0 are real, unknown parameters. Suppose we observe

Yi,n = σWi/n + τεin. In this paper we will establish sharp estimators for σ2 and

τ2 in minimax sense, i.e. they attain asymptotically the minimax constant. A

short and direct proof for the minimax lower bound is given. These estimators are

based on a spectral decomposition of the underlying process Yi,n and can be com-

puted explicitly taking O(n log n) operations. We outline how these estimators can

be generalized from Brownian Motion to processes with independent increments.

Further we show that the presented spectral estimators are asymptotically normal.
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1. Introduction

Suppose we observe

Yi,n = σWi/n + τεin, (1.1)

where Wt, t ∈ [0, 1] denotes a standard Brownian motion and εin
iid∼ N (0, 1). Wt

and εin are assumed to be independent processes. We can think of the observed

process as a linear combination of Wi/n and εin, weighted with σ and τ , respec-

tively. In this paper we analyze estimation of σ and τ from the viewpoint of a

statistical inverse problem. From this perspective the process of interest σWi/n

is additionally corrupted by noise τεin which reveals this problem as a particular

deconvolution problem. In deconvolution it is often convenient to work in the

spectral domain where convolution transforms to multiplication (see e.g. Mair

and Ruymgaart (1996) for an early reference) and in this paper we adopt this
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point of view.

Model (1.1) has received much attention during the past because it is the

simplest model of high frequency financial data incorporating market microstruc-

ture noise, see e.g. Barndorff-Nielsen, Hansen, Lunde and Shephard (2007), Aı̈t-

Sahalia, Mykland and Zhang (2005) or Huang, Liu and Yu (2007) for further

reading and more references. The aim is to estimate the parameters σ and τ . It

is well known that σ can be estimated at a n−1/4-rate and τ at a n−1/2-rate, see

e.g. Gloter and Jacod (2001a). In fact these are the minimax rates of conver-

gence, i.e. the best possible rates of convergence of any estimator for τ and σ,

respectively (see Tsybakov (2004) for a precise definition of a minimax rate). It is

well known that the Cramer-Rao lower bound is 2τ4n−1 and 8τσ3n−1/2+o(n−1/2)

for estimation of τ2 and σ2, respectively (Gloter and Jacod (2001a), (2001b)).

These authors consider the more general model

Yin = Xi/n + τnεin, for i = 1, . . . , n,

Xt =
∫ t

0
σ(θ, s)dWs.

Here, σ(., .) is a function satisfying some smoothness and identifiability assump-

tions, θ ∈ Θ is the unknown parameter and Θ ⊂ R is compact. For constant τ

and σ(θ, s) independent of s, we receive model (1.1). If τ is known (although this

is not a serious restriction), the authors obtain an estimator, based on minimiz-

ing a contrast functional, that is sharp with respect to Fisher information. They

even establish LAN for their model, implying that Cramer-Rao lower bounds

provide also the optimal constants in minimax sense. In this paper we will give

an elementary and short proof for the sharp minimax lower bounds for estimation

of τ2 and σ2 in model (1.1) without using LAN.

The most prominent estimator for σ2 in model (1.1) is the maximum like-

lihood estimator, which is asymptotically Cramer-Rao-efficient (Stein (1987) or

Aı̈t-Sahalia, Mykland and Zhang (2005)) and hence a sharp minimax estimator.

This estimator, however, requires numerical maximization of the likelihood func-

tion, which can be quite involved due to a flat likelihood function apart from

its maximum. Further, the likelihood function is not convex albeit unimodal.
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Therefore, a good starting value for a Newton-type iteration (or any other opti-

mization method) is of some importance. Hence, the second goal of this paper

is to construct explicitly computable estimators that are minimax sharp as well.

This is easy for τ2 but not obvious for σ2. In order to do this we will transform

the problem to the spectral domain. We will split the spectrum of the covari-

ance in an appropriate way and mimic the linear oracle estimator. The resulting

estimator is explicitly computable and only depends on the precise spectral in-

formation of the covariance of the data. Hence no numerical minimization step

is involved.

We believe that our spectral approach combined with the viewpoint from

nonparametric regression sheds some new light on this problem and various im-

portant facts become immediately visible. For example we see that only
√

n data

in the transformed model can be used for efficient estimation of σ2, immediately

revealing n−1/4 as the minimax rate, again. In Section 4 we also indicate how

these estimators can be extended to more general models and that they are ro-

bust. For simplicity we restrict ourselves in this paper to model (1.1).

We briefly mention further related work on this subject. Another estimator

was introduced in Aı̈t-Sahalia, Mykland and Zhang (2005). It does not require

τ known and is asymptotically sharp in model (1.1). However, for the estimator

it is necessary to minimize a complicated expression in order to calculate it.

In more general models such as in Barndorff-Nielsen, Hansen, Lunde and

Shephard (2007), Zhang, Mykland and Aı̈t-Sahalia (2005) and Jacod, Li, Myk-

land, Podolskij and Vetter (2007) σ is a smooth function (and possibly random)

and
∫

σ2
sds (or as in Podolskij and Vetter (2006)

∫
σp

sds) will be estimated. In

this case the asymptotic variance for constant σ can be evaluated. So far, there

is no known estimator, which is efficient with respect to this case. In fact, to

our knowledge not even a sharp Cramer-Rao bound is known. The best constant

8.01τσ3 in this context is attained by the so called Tuckey − Hanning∞ esti-

mator (Barndorff-Nielsen, Hansen, Lunde and Stephard (2007)) but to achieve

this bound requires optimal choice of a bandwidth parameter, depending on the

unknown quantities σ and τ itself.
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Another interesting generalization was considered by Gloter and Hoffmann

(2007). These authors replaced the Brownian motion in model (1.1) by a frac-

tional Brownian motion with unknown Hurst index H, 1/2 < H < 1, and proved

minimax rates for estimation of σ2 under quite general assumptions on the noise

term.

The paper is organized as follows. In Section 2 we present the spectral

estimators and prove that they are sharp with respect to the optimal constants

in minimax sense. Computational aspects will shortly be discussed in Section 3

and we briefly investigate robustness against violations of normality and indicate

the extension to more general processes with independent increments in Section

4. To keep the work more readable, all technical proofs are deferred to the

supplementary material [SM] (http://www.stat.sinica.edu.tw/statistica),

which contains additionally various lemmas, enumerated by A.1, A.2, . . . Some

further technicalities are postponed to Appendix B.

Notation: Throughout this paper we will suppress the index n and for two

sequences (an)n and (bn)n we use the notation an � bn if an = o (bn).

2. Estimators and Sharp Minimax Bounds

Let

K := Kn := Cov
[
Wi/n,Wj/n

]
i,j=1,...,n

=
(

i

n
∧ j

n

)
i,j=1,...,n

.

Then Y := (Y1,n, . . . , Yn,n)t ∼ N (0, σ2K + τ2In). We can write K = DΛDt,

where

D := Dn :=

(√
4

2n + 1
sin
(

(2j − 1) iπ

2n + 1

))
i,j=1,...,n

(2.1)

is an orthogonal matrix, i.e. DtD = In and Λ is a diagonal matrix with diagonal

elements

λi :=
[
4n sin2

(
2i− 1
4n + 2

π

)]−1

=
1
n

Dir2n

(
(2i− 1) π

2n + 1

)
, (2.2)

where Dirn(x) denotes the Dirichlet kernel Dirn(x) = 1/2 +
∑n

i=1 cos(iπx). This

can be derived similarly as in Durbin and Knott (1972) and is based on solving

a second order difference equation under given boundary conditions. Let Z =

http://www.stat.sinica.edu.tw/statistica
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(Z1, . . . , Zn)t = DtY . Then,

Zi
ind.∼ N

(
0, σ2λi + τ2

)
, i = 1, ..., n. (2.3)

Hence Z2
i , i = 1, . . . , n are independent as well and have a scaled χ2

1-distribution

with expectation E
(
Z2

i

)
= σ2λi+τ2 and variance Var

(
Z2

i

)
= 2

(
σ2λi + τ2

)2. We

shall work with the Zi’s from now on. Moreover they form a sufficient statistic

for model (1.1).

We give here a heuristic argument that from this representation the difficulty

of estimating σ2 becomes obvious. Because λi � n/i2 uniformly in i = 1, . . . , n

(for a precise statement see Lemma B.1 in [SM]), only the variables Z2
i /λi with

i = i(n) = O(
√

n) have asymptotically bounded variances. Here we mean by

an � bn that an = O (bn) and bn = O (an). In contrast, for estimation of τ2 only

the ”last” n−
√

n variables Z2
i can be used. This observation is at the heart of

our subsequent considerations.

2.1. Estimation of τ2

First we consider the problem of estimating τ2. There exist many alternatives

how to define an estimator for τ2. For instance scaled quadratic variation would

work. However, in order to derive a sharp estimator of σ2 we will need some

specific preliminary estimator of τ2, which is independent of the random variables

Z1, . . . , Zm for some 0 < m < n. This motivates to set

τ̂2
m :=

1
n−m

n∑
i=m+1

Z2
i , 1 < m < n. (2.4)

Theorem 1. Assume model (1.1) holds and let m = m(n) be a sequence, such

that m/
√

n → ∞ and m/n → 0 for n → ∞. Let further the estimator τ̂2
m of τ2

be given in (2.4). Then

(i) supσ,τ>0 σ−2
∣∣E (τ̂2

m

)
− τ2

∣∣ = o
(
n−1/2

)
,

(ii) n1/2(τ̂2
m − τ2) L−→ N (0, 2τ4), where N

(
µ, σ2

)
denotes a normal r.v. with

expectation µ and variance σ2,

(iii) and for any ε > 0,

sup
σ,τ>ε

(στ)−4
∣∣n Var

(
τ̂2
m

)
− 2τ4

∣∣ = o (1) , sup
σ,τ>ε

(στ)−4 Var
(
τ̂2
m

)
= O

(
n−1

)
.
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Proof. (i) Note that

E
(
τ̂2
m

)
=

1
n−m

n∑
i=m+1

(
σ2λi + τ2

)
= τ2 + σ2 1

n−m

n∑
i=m+1

λi.

By Lemma B.1 and the choice of m, (i) follows.

(iii) It holds

Var
(
τ̂2
m

)
=

2
(n−m)2

n∑
i=m+1

(
τ4 + 2τ2σ2λi + σ4λ2

i

)
and hence

sup
σ,τ>ε

1
σ4

∣∣∣ n

2τ4
Var

(
τ̂2
m

)
− 1
∣∣∣

= sup
σ,τ>ε

∣∣∣∣∣ m

σ4 (n−m)
+

2n

σ2τ2 (n−m)2

n∑
i=m+1

λi +
n

τ4 (n−m)2

n∑
i=m+1

λ2
i

∣∣∣∣∣ = o (1) .

The second statement in (iii) follows by triangle inequality.

(ii) Note that the estimator τ̂2
m can be written as

τ̂2
m =

n∑
i=m+1

√
2(σ2λi + τ2)

n−m
· Xi − 1√

2
+ E

(
τ̂2
m

)
,

where Xi
iid∼ χ2

1. Set ci =
√

2(σ2λi + τ2)n1/2/ (n−m) and Ri = (Xi − 1) /
√

2.

Then Ri are iid with mean zero and unit variance and

n1/2(τ̂2 − τ2) =
n∑

i=m+1

ciRi + n1/2(E
(
τ̂2
)
− τ2).

Due to (i) and (iii) and since maxi=m+1,...,n |ci| = cm+1 → 0 and
∑n

i=m+1 c2
i →

2τ4 < ∞ for n →∞, (ii) follows by using the CLT under Noether condition (see

Theorem C.1 in [SM]).

Note that the preceeding theorem implies that

sup
σ,τ>ε

(στ)−4
∣∣n MSE

(
τ̂2
m

)
− 2τ4

∣∣
≤ sup

σ,τ>ε
(στ)−4 n Bias2

(
τ̂2
m

)
+ sup

σ,τ>ε
(στ)−4

∣∣n Var
(
τ̂2
m

)
− 2τ4

∣∣ = o (1) (2.5)
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and similarly

sup
σ,τ>ε

(στ)−4 MSE
(
τ̂2
m

)
= O

(
n−1

)
. (2.6)

Moreover, the constant 2τ4 is sharp. More precisely, we have the following the-

orem.

Theorem 2. Assume model (1.1).

(i) Then, for any estimator τ̂2, and any σ ≥ 0

lim
n→∞

inf
τ̂2

sup
τ>ε

1
2τ4

E
(
n
(
τ̂2 − τ2

)2) ≥ 1, (2.7)

(ii) and moreover for any ε > 0,

lim
n

inf
τ̂2

sup
σ,τ>ε

(στ)−4
(
E
(
n
(
τ̂2 − τ2

)2)− 2τ4
)

= 0.

(iii) Finally, for any 0 < ε < c < ∞,

lim
n

inf
τ̂2

sup
σ,τ>ε, σ<c

1
2τ4

E
(
n
(
τ̂2 − τ2

)2) = 1.

Proof. (i) We proof this by the Information Inequality Method (see Lehmann

(1983), p. 266). Note that Zi
ind.∼ N (0, σ2λi + τ2), i = 1, ..., n, can be written

as Zi = Ui + Vi, where Ui∼N (0, σ2λi), Vi∼N (0, τ2), and {Ui, Vi, i = 1, ..., n}
are mutually independent. Estimating τ2 based on Z1, ..., Zn is not easier than

estimating τ2 based on V1, ..., Vn since Zi can be generated from Vi by adding

random noise Ui and is thus less informative than Vi. Hence we may assume

σ = 0. The Fisher information for τ2 is then I
(
τ2
)

= n/
(
2τ4
)
. Assume that (i)

does not hold. Then there exists an estimator τ̂2 and a subsequence {nk} such

that

lim
k→∞

sup
τ>ε

1
2τ4

E
(
nk(τ̂2 − τ2)2

)
≤ (1− 2δ)2

for some 0 < δ < 1/2. Hence there exists k1 such that for all k ≥ k1

E(τ̂2 − τ2)2 ≤ (1− δ)2 2τ4n−1
k , for all τ > ε
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and nk > 50/δ2. For such an nk, the Cramer-Rao information inequality yields

b2
(
τ2
)

+

(
1 + b′

(
τ2
))2

Ink
(τ2)

≤ (1− δ)2 2τ4n−1
k for all τ > ε,

where b
(
τ2
)

denotes the bias of τ̂2. This implies both

b2
(
τ2
)
≤ 2τ4n−1

k as well as b′
(
τ2
)
≤ −δ, for all τ > ε. (2.8)

Integrating the second inequality yields b
(
τ2
)
≤ −δ

(
τ2 − 2ε2

)
+ b
(
2ε2
)

for τ2 ≥
2ε2. This gives a contradiction due to

b
(
3ε2
)
≤ −δε2 + b

(
2ε2
)
≤ −δε2 +

√
2
(
2ε2
)
n
−1/2
k < −

√
2
(
3ε2
)
n
−1/2
k ≤ b

(
3ε2
)
,

where we used (2.8) in the second and last inequality and nk > 50/δ2 in the third

one. Hence (i) holds.

In order to show (ii), note that by (i)

lim
n

inf
τ̂2

sup
σ,τ>ε

(στ)−4
(
E
(
n
(
τ̂2 − τ2

)2)− 2τ4
)

≥ 2 (2ε)−4 lim
n

inf
τ̂2

sup
τ>ε, σ=2ε

(
1

2τ4
E
(
n
(
τ̂2 − τ2

)2)− 1
)
≥ 0.

On the other hand, we have due to (2.5)

lim
n

inf
τ̂2

sup
σ,τ>ε

(στ)−4
(
E
(
n
(
τ̂2 − τ2

)2)− 2τ4
)

≤ lim
n

sup
σ,τ>ε

(στ)−4 (n MSE
(
τ̂2
m

)
− 2τ4

)
= 0.

Finally, (iii) follows from (ii) and (i).

2.2. Estimation of σ2

We now turn to the estimation of σ2. Define the linear oracle “estimator”

σ̂2
oracle := C−1

n

n∑
i=1

λi

(σ2λi + τ2)2
(Z2

i − τ2), (2.9)

where

Cn :=
n∑

i=1

λ2
i

(σ2λi + τ2)2
. (2.10)
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It follows from Lemma A.1 that σ̂2
oracle attains the risk of 2C−1

n = 8τσ3n−1/2(1+

o(1)). Note that the oracle “estimator” σ̂2
oracle depends on the unknown param-

eters τ2 and σ2 and is thus not a statistical estimator.

We shall construct below a data-driven estimator of σ2 that mimics the

performance of the oracle. For 1 < k < m < n, set

σ̄2
k,m =

1
k

k∑
i=1

λ−1
i

(
Z2

i − τ̂2
m

)
. (2.11)

Then

E
(
σ̄2

k,m

)
= σ2 +

(
τ2 − E

(
τ̂2
m

)) 1
k

k∑
i=1

λ−1
i , (2.12)

Var
(
σ̄2

k,m

)
=

1
k2

k∑
i=1

2(σ2 + τ2λ−1
i )2 + Var

(
τ̂2
m

) 1
k2

(
k∑

i=1

λ−1
i

)2

. (2.13)

The idea is to divide the observations into three parts. Using the observations

Z1, . . . , Zk and Zm+1, . . . , Zn in order to obtain estimates σ̄2
k,m of σ2 and τ̂2

m of

τ2 and using the middle part to construct an estimator σ̂2 by plugging in σ̄2
k,m

and τ̂2
m in the oracle estimator of σ2. The advantage of this procedure is that the

estimates σ̄2
k,m and τ̂2 are independent of the observations used for estimating

σ2 in σ̂2. For 1 ≤ k � n1/2 � m ≤ n, define in analogy to (2.9) the linear oracle

estimator based on the observations Zk+1, . . . , Zm by

σ̃2
k,m := A−1

n

m∑
i=k+1

λi

(σ2λi + τ2)2
(Z2

i − τ2),

where An := An (k, m) :=
∑m

i=k+1

(
σ2 + τ2λ−1

i

)−2
. Let τ̂2

m and σ̄2
k,m be given

as in (2.4) and (2.11), respectively and set Ân := Ân (k, m) :=
∑m

i=k+1(σ̄
2
k,m +

τ̂2
mλ−1

i )−2. Then for 1 ≤ k � n1/2 � m ≤ n, define the estimator of σ2 by

σ̂2 := σ̂2
k,m := Â−1

n

m∑
i=k+1

λi

(σ̄2
k,mλi + τ̂2

m)2
(Z2

i − τ̂2
m). (2.14)

Theorem 3. Let k = [n1/2−b] and m = [n1/2+b] with 0 < b < 1/20. Let the

estimator σ̂2 of σ2 be given in (2.14). Then, for any ε > 0

(i) supσ,τ>ε (στ)−2
∣∣E (σ̂2 − σ2

)∣∣ = o
(
n−1/4

)
,
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(ii) supσ,τ>ε (στ)−8
∣∣Var

(
σ̂2
)
− 8τσ3n−1/2

∣∣ = o
(
n−1/2

)
,

(iii) n1/4(σ̂2 − σ2) L−→ N (0, 8τσ3).

Proof: For ease of notation, we write in the following σ̃2, σ̄2 and τ̂2 instead of

σ̃2
k,m, σ̄2

k,m and τ̂2
m, respectively. Let us introduce the oracle estimator

σ̂2
τ := Â−1

n

m∑
i=k+1

λi

(σ̄2λi + τ̂2)2
(Z2

i − τ2).

(i) By construction we have that σ̄2 and Zi as well as τ̂2 and Zi for i = k+1, . . . ,m

are independent. Hence E
(
σ̂2

τ

)
= σ2 and due to∣∣σ̂2 − σ̂2

τ

∣∣ = Â−1
n

m∑
i=k+1

λi

(σ̄2λi + τ̂2)2
∣∣τ̂2 − τ2

∣∣ ≤ λ−1
m

∣∣τ̂2 − τ2
∣∣ (2.15)

also

sup
σ,τ>ε

1
σ2τ2

∣∣E (σ̂2 − σ2
)∣∣ ≤ sup

σ,τ>ε

1
σ2τ2

E
(∣∣σ̂2 − σ̂2

τ

∣∣) ≤ sup
σ,τ>ε

λ−1
m

σ2τ2
MSE1/2

(
τ̂2
)
.

By (2.6) this gives (i).

(ii) We have the decomposition σ̂2 − σ̃2 =
(
σ̂2 − σ̂2

τ

)
+
(
σ̂2

τ − σ̃2
)
. In order to

show that σ̂2 and σ̃2 have the same asymptotic variances, we will bound the

variance of the differences σ̂2 − σ̂2
τ and σ̂2

τ − σ̃2. Therefore, note

Var
(
σ̂2 − σ̃2

)
≤ 2 Var

(
σ̂2 − σ̂2

τ

)
+ 2 Var

(
σ̂2

τ − σ̃2
)
. (2.16)

First we see that by (2.15)

Var
(
σ̂2 − σ̂2

τ

)
≤ E

(
σ̂2 − σ̂2

τ

)2 ≤ λ−2
m MSE

(
τ̂2
)
. (2.17)

Write Z2
i =

(
σ2λi + τ2

)
Ui, where Ui ∼ χ2

1, i.i.d. Let win = A−1
n λi/(σ2λi + τ2)

and ŵin = Â−1
n λi

(
σ2λi + τ2

)
/(σ̄2λi + τ̂2)2. Then

σ̂2
τ − σ̃2 = σ̂2

τ − σ2 + σ2 − σ̃2 =
m∑

i=k+1

(ŵin − win) (Ui − 1) .

By construction we have that ŵin and Ui, i = k + 1, . . . ,m are independent.

Therefore E
(
σ̂2

τ − σ̃2
)

= 0 and because of E
(∑m

i=k+1 winŵin

)
= A−1

n

Var
(
σ̂2

τ − σ̃2
)

= 2E

(
m∑

i=k+1

(ŵin − win)2
)

= 2E

(
m∑

i=k+1

ŵ2
in

)
− 2A−1

n .
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Furthermore, using the inequality

x2 = y2 + 2y (x− y) + (x− y)2 ≤
(
1 + a−1

)
y2 + (1 + a) (x− y)2 , x, y ∈ R, a > 0

we obtain(
σ2λi + τ2

)2 ≤ (1 + n−b
) (

σ̄2λi + τ̂2
)2 + 2

(
1 + nb

) [
(σ2 − σ̄2)2λ2

i + (τ2 − τ̂2)2
]
.

(2.18)

With

γn := Â−2
n

m∑
i=k+1

λ2
i

(σ̄2λi + τ̂2)4
[
(σ2 − σ̄2)2λ2

i + (τ2 − τ̂2)2
]

it holds
m∑

i=k+1

ŵ2
in = Â−2

n

m∑
i=k+1

λ2
i

(σ̄2λi + τ̂2)4
(σ2λi + τ2)2

≤ Â−1
n

(
1 + n−b

)
+ 2

(
1 + nb

)
γn. (2.19)

It follows from (2.19) and Lemmas A.2 and A.3 in [SM] that

sup
σ,τ>ε

(στ)−8 Var
(
σ̂2

τ − σ̃2
)

= o
(
n−1/2

)
and hence with (2.6) and (2.17) this gives for (2.16)

sup
σ,τ>ε

1
σ8τ8

Var
(
σ̂2 − σ̃2

)
≤ sup

σ,τ>ε

2
σ8τ8

λ−2
m MSE

(
τ̂2
)

+ o
(
n−1/2

)
= o

(
n−1/2

)
. (2.20)

Therefore (ii) follows by Lemma A.1 and∣∣∣Var
(
σ̂2
)
− 8τσ3n−1/2

∣∣∣
≤ Var

(
σ̂2 − σ̃2

)
+ 23/2 Var1/2

(
σ̂2 − σ̃2

)
A−1/2

n + 2
∣∣∣A−1

n − 4τσ3n−1/2
∣∣∣ ,

where we used Var
(
σ̃2
)

= 2A−1
n .

(iii) Since by (i) and (2.20) E
(
σ̂2 − σ̃2

)
= E

(
σ̂2 − σ2

)
= o

(
n−1/4

)
and

Var
(
σ̂2 − σ̃2

)
= o

(
n−1/2

)
we have σ̂2 − σ̃2 = oP (n−1/4). Therefore we can

write n1/4
(
σ̂2 − σ2

)
= n1/4

(
σ̃2 − σ2

)
+ oP (1). For the asymptotic normality
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we apply again the CLT under Noether condition (Theorem C.1 in [SM]). We

write n1/4
(
σ̃2 − σ2

)
= n1/4

∑m
i=k+1 win (Ui − 1). Because of E

(
σ̃2
)

= σ2 and

Var
(
σ̃2
)

= 2A−1
n we only need to show that maxi=k+1,...,m n1/4win → 0. To see

this note that

max
i=k+1,...,m

n1/4win ≤
1
σ2

n1/4A−1
n → 0,

where we used Lemma A.1 (ii). This proves the asymptotic normality.

The constant 8τσ3 is sharp. As mentioned, the sharp minimax lower bound

already follows by Theorem 12.1 in Ibragimov and Has’minskii (1981) from the

LAN-property proved in Gloter and Jacod (2001a). However, we will give a short

and easily accessible proof which does not require the LAN property and instead

of assuming σ to be in a compact set, we may allow σ, τ ∈ [ε,∞), for some ε > 0.

Theorem 4. (i) For any estimator σ̂2, we have

lim
n→∞

sup
τ,σ>ε

1
8τσ3

E
(
n1/2(σ̂2 − σ2)2

)
≥ 1 (2.21)

and equality holds if in addition σ, τ ≤ K < ∞. Furthermore,

(ii)

lim
n→∞

inf
σ̂2

sup
τ,σ>ε

(στ)−8
(
E
(
n1/2(σ̂2 − σ2)2

)
− 8τσ3

)
= 0.

Proof. (i) The method of proof is similar to that of Theorem 2. Note that

Zi
ind.∼ N (0, σ2λi + τ2), i = 1, ..., n. Straightforward calculations show that

the Fisher information about σ2 contained in Z1, ..., Zn is In(σ2) = 1/2Cn =

1/2
∑n

i=1 1/
(
σ2 + τ2λ−1

i

)2
, where Cn is as defined in (2.10). Suppose (2.21)

does not hold. Then there exists an estimator σ̂2 such that for a subsequence

{nk}

lim
k→∞

sup
τ,σ>ε

1
8τσ3

E
(
n

1/2
k (σ̂2 − σ2)2

)
≤ 1− 4δ

for some 0 < δ ≤ 1/4. Hence there exists k1 such that for all k ≥ k1

E
(
σ̂2 − σ2

)2 ≤ (1− 3δ)8τσ3n
−1/2
k , for all τ, σ > ε. (2.22)
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Let τ0 > ε be fixed. It follows from Lemma A.1 (i) that for all ε2 < σ2 ≤ 3ε2 and

all sufficiently large nk

Ink
(σ2) ≤ (1 + δ)

1
8τ0σ3

n
1/2
k . (2.23)

Hence there exists an n0 > 0 such that (2.22), (2.23) and

nk >
64τ2

0 ε4
(
23/2 + 33/2

)4
δ4

(2.24)

hold for all nk > n0 where (2.24) will be required later on. For such an nk, the

Cramer-Rao information inequality yields

b2(σ2) +
(1 + b′(σ2))2

Ink
(σ2)

≤ (1− 3δ)8τ0σ
3n
−1/2
k , for all ε2 < σ2 ≤ 3ε2,

where b(σ2) denotes the bias of σ̂2. This implies that

b2(σ2) ≤ 8τ0σ
3n
−1/2
k and b′(σ2) ≤ −δ, for all ε2 < σ2 ≤ 3ε2, (2.25)

where the latter inequality follows from (1 + b′ (θ))2 ≤ (1− 3δ) (1 + δ) . Further,

b′(σ2) ≤ −δ gives

b(σ2) ≤ −δ
(
σ2 − 2ε2

)
+ b(2ε2) for 2ε2 ≤ σ2 ≤ 3ε2. (2.26)

Now with σ2 = 3ε2 in (2.26) we obtain a contradiction for nk > n0 since

b
(
3ε2
)
≤ −δε2 + b

(
2ε2
)
≤ −δε2 +

√
8τ0

(
2ε2
)3/2

n
−1/4
k

< −
√

8τ0

(
3ε2
)3/2

n
−1/4
k ≤ b

(
3ε2
)
,

where the second and the last inequality follow from (2.25) and the third one

follows from (2.24). This proves the first part of (i).

(ii) can be deduced in the same way as (ii) in Theorem 2 by using Theorem 3

and (i).

Combining (ii) and the first part of (i) gives equality in (i), if σ, τ ≤ K < ∞.

3. Computational Aspects

Finally, we will discuss the computational complexity for calculating the

spectral estimator. First we stress that this estimator can be implemented easily

and in a straightforward manner. Note that the transform matrices D and Dt
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defined in (2.1) are discrete sine transforms (DST-IIo, DST-IIIo). For a reference

see Britanak, Yip and Yao (2006) and Curci and Corsi (2006). Discrete sine trans-

forms behave similar as Fourier transforms and fast algorithms are available. In

fact, if we have n observations performing the transformation requires O(n log n)

operations. Additionally, computing τ̂2, σ̃2 and finally σ̂2 in the transformed

model needs O(n) steps. Hence the overall complexity is O(n log n).

Alternatively to our approach one could investigate numerically the perfor-

mance of maximum likelihood methods in the difference model, where we have

observations (Y1,n, Y2,n − Y1,n, . . . , Yi,n − Yi−1,n, . . . , Yn,n − Yn−1,n) as well as in

the transformed model (2.3), see Aı̈t-Sahalia, Mykland and Zhang (2005). This

leads to maximum likelihood estimation of the parameters of an AR(1) process.

We mention that for computation of the maximum likelihood estimator a good

starting value is of crucial importance due to the flat likelihood function in re-

gions far apart from the maximum. One might use our estimator as a starting

value and then iterate a few times to obtain the maximum likelihood estimator.

4. Discussion: Extension to Other Processes

Transforming the difference vector (Yn,n − Yn−1,n, . . . , Y2,n − Y1,n, Y1,n) by

Dt as defined in (2.1) gives us again a vector with independent observations and

we can follow the same arguments to obtain a sharp estimator. From the dis-

cussion so far it is not clear how this estimation method behaves if we consider

more general models since, at a first glance, Dt seems to define a global transfor-

mation. However, suppose that τ and σ are sufficiently smooth functions, slight

modifications of the in (2.4), (2.11) and (2.14) proposed estimators generalize

to rate optimal estimators of
∫

τ2
s ds and

∫
σ2

sds. Obviously our technique can

be directly extended if we substitute the Brownian motion in model (1.1) by a

centered Lévy-Process X with initial value X0 = 0 a.s. and E
(
X4

1

)
< ∞ (for

instance a compensated Poisson process), which is independent of εi,n. As seen

above Dt defines a discrete sine transform. There is a strong connection be-

tween Karhunen-Loeve expansions and sine transforms. In fact, for wide classes

of processes, Dt diagonalizes them approximately, for instance for general MA(q)

processes. This gives us reason to believe that our approach is robust against

various cases of model misspecification. However, our aim was not to discuss

these models in full generality rather than to lay out these ideas as simple as
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possible.
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Sharp Minimax Estimation of the Variance of Brownian Motion

Corrupted with Gaussian Noise: Supplementary Material

T. Tony Cai1, A. Munk2 and J. Schmidt-Hieber2

1Wharton School, University of Pennsylvania and 2Universität Göttingen

Abstract: This note provides details of proofs and supplementary technicalities

for the paper ”Sharp Minimax Estimation of the Variance of Brownian Motion

Corrupted with Gaussian Noise”.

Appendix A. Additional Lemmas for the Risk Estimation of σ̂2

Notation: We will suppress the index n and for two sequences (an)n and (bn)n

we use the notation an � bn if an = o (bn).

Lemma A.1. Let An := An(k, m) :=
∑m

i=k+1(σ
2+τ2λ−1

i )−2 and Cn := An (1, n),

where λi is as defined in (2.2). Then, for any ε > 0

(i)

sup
σ,τ>ε

∣∣∣∣Cn −
1

4τσ3
n1/2

∣∣∣∣ = o
(
n1/2

)
,

sup
σ,τ>ε

1
σ5τ5

∣∣∣C−1
n − 4τσ3n−1/2

∣∣∣ = o
(
n−1/2

)
, (A.1)

(ii) and if k � n1/2 � m also

sup
σ,τ>ε

1
σ8τ8

∣∣∣A−1
n − 4τσ3n−1/2

∣∣∣ = o
(
n−1/2

)
,

and

sup
σ,τ>ε

1
σ4τ4

A−1
n = O

(
n−1/2

)
.
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Proof. (i) Let us fix the notation

In := 2n

∫ 1/2

0

1(
σ2 + τ24n sin2 (xπ)

)2 dx =
32n3τ4σ2 + 10n2τ2σ4 + 32n4τ6 + nσ6

(σ2 + 4nτ2)7/2 σ3
.

By Taylor expansion and monotonicity in σ2, we have(
σ2 + 4nτ2

)7/2 −
(
4nτ2

)7/2 ≤ 7
(
σ2 + 4nτ2

)5/2
σ2. (A.2)

Note that Lemma B.2 implies for n ≥ 2

sup
σ,τ>ε

∣∣∣∣Cn −
1

4τσ3
n1/2

∣∣∣∣ ≤ O (log n) + sup
σ,τ>ε

∣∣∣∣In −
1

4τσ3
n1/2

∣∣∣∣
= O (log n) + sup

σ,τ>ε

∣∣∣∣∣32n3τ4σ2 + 10n2τ2σ4 + 32n4τ6 + nσ6

(σ2 + 4nτ2)7/2 σ3
− 1

4τσ3
n1/2

∣∣∣∣∣
≤ O (log n) +

1

ε (1 + 4n)1/2
sup
σ,τ>ε

∣∣∣∣32n3τ4 + 10n2τ2σ2 + nσ4

(σ2 + 4nτ2)3 σ

∣∣∣∣
+ sup

σ,τ>ε

1
σ3

∣∣∣∣∣
(
σ2 + 4nτ2

)7/2 − 27τ7n4

4τ (σ2 + 4nτ2)7/2

∣∣∣∣∣
= O (log n) + sup

σ,τ>ε

7n1/2

4στ (σ2 + 4nτ2)
= O (log n) .

Finally we will show (A.1). Note∣∣∣C−1
n − 4τσ3n−1/2

∣∣∣ ≤ ∣∣C−1
n − I−1

n

∣∣+ ∣∣∣I−1
n − 4τσ3n−1/2

∣∣∣ (A.3)

and by Lemma B.2 for n ≥ 2∣∣C−1
n − I−1

n

∣∣ ≤ 16 log n σ−4I−1
n C−1

n . (A.4)

By the Cauchy-Schwarz inequality we have for all k < m

C−1
n ≤ An (k, m)−1 ≤

m∑
i=k+1

t2i

(
σ2λi + τ2

)2
λ2

i

, whenever
m∑

i=k+1

ti = 1. (A.5)

Hence with Lemma B.1 it follows for k, m, k � n1/2 � m, n sufficiently large

An (k, m)−1 ≤
2[n1/2]∑

i=[n1/2]+1

[
n1/2

]−2 (
σ2 + τ2λ−1

i

)2
≤ 2

[
n1/2

]−1
(

σ4 + τ4λ−2

2[n1/2]

)
≤ 4n−1/2

(
σ4 + 16π4τ4

)
(A.6)
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and C−1
n ≤ 4n−1/2

(
σ4 + 16π4τ4

)
. We now estimate (στ)−5

∣∣C−1
n − I−1

n

∣∣ using

(A.4) and (a + b)r ≤ 2r (ar + br) for a, b, r ≥ 0, as

sup
σ,τ>ε

16 log n

σ9τ5
I−1
n C−1

n ≤ sup
σ,τ>ε

27/264 log n
(
σ7 + 27n7/2τ7

)
n−1/2

(
σ4 + 16π4τ4

)
σ6τ5 (32n3τ4σ2 + 10n2τ2σ4 + 32n4τ6 + nσ6)

and some elementary calculations finally yield

sup
σ,τ>ε

1
σ5τ5

∣∣C−1
n − I−1

n

∣∣ = O
(
n−1 log n

)
.

Note in order to bound the second term in (A.3)∣∣∣I−1
n − 4τσ3n−1/2

∣∣∣ ≤ ∣∣∣∣∣
(
σ2 + 4nτ2

)7/2
σ3

32n3τ4σ2 + 10n2τ2σ4 + 32n4τ6 + nσ6
− 4τσ3n−1/2

∣∣∣∣∣
≤

∣∣∣∣∣∣
((

σ2 + 4nτ2
)7/2 −

(
4nτ2

)7/2
)

σ3

32n3τ4σ2 + 10n2τ2σ4 + 32n4τ6 + nσ6

∣∣∣∣∣∣
+

∣∣∣∣∣
(
4nτ2

)7/2
σ3

32n3τ4σ2 + 10n2τ2σ4 + 32n4τ6 + nσ6
− 4τσ3n−1/2

∣∣∣∣∣ .
Using (A.2) yields

sup
σ,τ>ε

1
σ5τ5

∣∣∣∣∣∣
((

σ2 + 4nτ2
)7/2 −

(
4nτ2

)7/2
)

σ3

32n3τ4σ2 + 10n2τ2σ4 + 32n4τ6 + nσ6

∣∣∣∣∣∣
≤ 25/27 sup

σ,τ>ε

1
σ5τ5

∣∣∣∣∣σ10 + 25n5/2τ5σ5

32n4τ6 + nσ6

∣∣∣∣∣ = O
(
n−1

)
.

Finally,

sup
σ,τ>ε

1
σ5τ5

∣∣∣∣∣
(
4nτ2

)7/2
σ3

32n3τ4σ2 + 10n2τ2σ4 + 32n4τ6 + nσ6
− 4τσ3n−1/2

∣∣∣∣∣
= sup

σ,τ>ε

4n−1/2

σ2τ4

∣∣∣∣ 32n3τ4σ2 + 10n2τ2σ4 + nσ6

32n3τ4σ2 + 10n2τ2σ4 + 32n4τ6 + nσ6

∣∣∣∣ = O
(
n−1

)
.

(ii) Note that since C−1
n ≤ A−1

n and due to (i)

sup
σ,τ>ε

1
σ8τ8

∣∣∣A−1
n − 4τσ3n−1/2

∣∣∣
≤ sup

σ,τ>ε

1
σ8τ8

∣∣A−1
n − C−1

n

∣∣+ sup
σ,τ>ε

1
σ8τ8

∣∣∣C−1
n − 4τσ3n−1/2

∣∣∣
≤ sup

σ,τ>ε

1
σ8τ8

(Cn −An) A−2
n + o

(
n−1/2

)
.
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By (A.6) it holds further for sufficiently large n

Cn −An =
k∑

i=1

(
σ2 + τ2λ−1

i

)−2 +
n∑

i=m+1

(
σ2 + τ2λ−1

i

)−2 ≤ σ−4k + τ−4
n∑

i=m+1

λ2
i .

This finally yields applying Lemma B.1 again

sup
σ,τ>ε

1
σ8τ8

∣∣A−1
n − C−1

n

∣∣
≤ sup

σ,τ>ε

(
σ−4k + τ−4

n∑
i=m+1

λ2
i

)
16n−1

(
τ−4 + 16π4σ−4

)2 = o
(
n−1/2

)
.

The second statement follows directly from (A.6).

Lemma A.2. Let k =
[
n1/2−b

]
and m =

[
n1/2+b

]
, 0 < b < 1/2. Then, for any

ε > 0

sup
σ,τ>ε

(στ)−8
∣∣∣E(Â−1

n

)
−A−1

n

∣∣∣ = o
(
(nk)−1/2

)
.

Proof. Arguing as in (A.5) yields

Â−1
n ≤

m∑
i=k+1

t2i

(
σ̄2λi + τ̂2

)2
λ2

i

, whenever
m∑

i=k+1

ti = 1

and with the choice ti = A−1
n λ2

i /
(
σ2λi + τ2

)2, i = k + 1, . . . ,m we have

Â−1
n ≤ A−2

n

m∑
i=k+1

λ2
i

(σ2λi + τ2)4
(
σ̄2λi + τ̂2

)2
.

Hence with similar arguments as in (2.18)

E
(
Â−1

n

)
≤ A−1

n

(
1 + k−1/2

)
+ 2

(
1 + k1/2

)
A−2

n

m∑
i=k+1

λ2
i

(σ2λi + τ2)4
(
MSE

(
σ̄2
)
λ2

i + MSE
(
τ̂2
))

≤ A−1
n

[
1 + k−1/2 + 2

(
1 + k1/2

)( 1
σ4

MSE
(
σ̄2
)

+
1
τ4

MSE
(
τ̂2
))]

.

It follows from (2.12) and (2.13) that for sufficient large n,

Bias2
(
σ̄2
)
≤ Bias2

(
τ̂2
)
, Var

(
σ̄2
)
≤ Var

(
τ̂2
)

+
2
k

(
σ2 + τ2

)2
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and hence by (2.6)

sup
σ,τ>ε

1
σ4τ4

MSE
(
σ̄2
)

= O
(
k−1

)
. (A.7)

This yields for σ, τ > ε

1
σ8τ8

∣∣∣E(Â−1
n

)
−A−1

n

∣∣∣
≤
(

1
σ4τ4

A−1
n

)[
k−1/2ε−8 + 2

(
1 + k1/2

)( 1
σ8τ4

MSE
(
σ̄2
)

+
1

σ4τ8
MSE

(
τ̂2
))]

and thus supσ,τ>ε (στ)−8
∣∣∣E(Â−1

n

)
−A−1

n

∣∣∣ = O
(
n−1/2k−1/2

)
.

Lemma A.3. Let k =
[
n1/2−b

]
and m =

[
n1/2+b

]
, 0 < b < 1/18 and define

γn := Â−2
n

m∑
i=k+1

λ2
i

(σ̄2λi + τ̂2)4
[
(σ2 − σ̄2)2λ2

i + (τ2 − τ̂2)2
]
.

Then, for any ε > 0

sup
σ,τ>ε

(στ)−8 E (γn) = O(n9b−1).

Proof. We argue with similar techniques as in the proof of Lemma A.2. Note

that

Â−2
n

m∑
i=k+1

λ2
i

(σ̄2λi + τ̂2)4

≤ Â−1
n A−2

n

m∑
j=k+1

λ2
j

(σ2λj + τ2)4
(
σ̄2λj + τ̂2

)2 m∑
i=k+1

λ2
i

(σ̄2λi + τ̂2)4

≤ A−1
n max

j=k+1,...,m

(
σ̄2λj + τ̂2

)2
(σ2λj + τ2)2

max
i=k+1,...,m

1
(σ̄2λi + τ̂2)2

≤ A−1
n

λ2
k+1

λ2
m

1
(σ2λm + τ2)2

≤ A−1
n

λ2
k+1

λ2
m

1
τ4

and in the same way

Â−2
n

m∑
i=k+1

λ4
i

(σ̄2λi + τ̂2)4
≤ 1

σ4

λ2
k+1

λ2
m

A−1
n .
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This yields with Lemma A.1, (2.6) and (A.7)

sup
σ,τ>ε

1
σ8τ8

E

(
Â−2

n

m∑
i=k+1

λ2
i

(σ̄2λi + τ̂2)4
[
(σ2 − σ̄2)2λ2

i + (τ2 − τ̂2)2
])

≤ sup
σ,τ>ε

1
σ8τ8

(
A−1

n

λ2
k+1

λ2
m

(
1
σ4

MSE
(
σ̄2
)

+
1
τ4

MSE
(
τ̂2
)))

= O

(
n−1/2 m4

k5

)
.

Appendix B. Further Technicalities

Lemma B.1. Let λi as defined in (2.2). Then, it holds for all n ≥ 1 and

i = 1, . . . , n

π−2 n

i2
≤ λi ≤ 4

n

i2
.

Proof. It holds xπ/2 ≤ sin (xπ) ≤ xπ whenever x ∈ [0, 1/2]. Set xi := (2i− 1) / (4n + 2) .

Hence
i2

4n
≤ ni2π2

(4n + 2)2
≤ nx2

i π
2 ≤ 1

λi
≤ 4nx2

i π
2 ≤ i2π2

n
.

Lemma B.2. Let g(x) := 1/
(
σ2 + 4nτ2 sin2 (xπ)

)2. Define xi := (2i− 1) / (4n + 2)

and let ξi ∈ [(i− 1) / (2n) , i/ (2n)]. Then, it holds for n ≥ 2
n∑

i=1

|g (xi)− g (ξi)| ≤
16
σ4

log n.

Proof. Obviously |g (x1)− g (ξ1)| ≤ |g (x1)| + |g (ξ1)| ≤ 2/σ4. Because ξi ∈
[(i− 1) / (2n) , i/ (2n)] for i = 1, . . . , n, we have by Taylor expansion for a suitable

ηi ∈ [(i− 1) / (2n) , i/ (2n)],

|g (xi)− g (ξi)| ≤
∣∣g′ (ηi)

∣∣ ( i

2n
− i− 1

2n

)
= 4τ2π sin (2ηiπ) g (ηi)

3/2 .

If x ∈ [0, 1/2] then xπ/2 ≤ sin (xπ). Hence for sufficiently large n

n∑
i=2

|g (xi)− g (ξi)| ≤
n∑

i=2

4τ2π sin (2ηiπ)
3σ44nτ2 sin2 (ηiπ)

≤
n∑

i=2

8
3σ4nηi

≤ 16
3σ4

n∑
i=1

1
i
≤ 16

3σ4
(1 + log n) .
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Appendix C. A Central Limit Theorem

Theorem C.1. Let {Zmk : 1 ≤ k ≤ m} be a triangular array of i.i.d. random

variables with mean 0 and variance σ2 and let cmk be some regression coefficients

which satisfy the Noether condition

(i)

max
k=1,...,m

|cmk| → 0.

(ii)
m∑

k=1

c2
mk → C , (C.1)

where C is a non-zero constant.

Then, it holds that

Sm =
m∑

k=1

cmkZmk
D→ N

(
0, Cσ2

)
.

The Noether condition implies Lindeberg’s condition and hence the Theorem

follows by applying the Lindeberg CLT (Theorem 11.1.1 in Athreya and Lahiri

(2006)).
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