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SHAPE CONSTRAINED REGULARISATION BY STATISTICAL

MULTIRESOLUTION FOR INVERSE PROBLEMS

KLAUS FRICK, PHILIPP MARNITZ AND AXEL MUNK

Abstract. This paper is concerned with a novel regularisation technique for solving linear
ill-posed operator equations in Hilbert spaces from data that is corrupted by white noise.
We combine convex penalty functionals with extreme-value statistics of projections of the
residuals on a given set of sub-spaces in the image-space of the operator. We prove general
consistency and convergence rate results in the framework of Bregman-divergences which
allows for a vast range of penalty functionals.

Various examples that indicate the applicability of our approach will be discussed. Espe-
cially it will turn out that in the context of image processing the presented method constitutes
a fully data-driven method for denoising that additionally exhibits local adaptive behaviour.

1. Introduction

In this paper, we are concerned with the solution of the problem

(1) Ku = g,

where K : U → V is a linear and bounded operator mapping between two Hilbert-spaces
U and V . Equations of type (1) are called well-posed if for given g ∈ V there exists a
unique solution u ∈ U that depends continuously on the right-hand side g. If one of these
conditions is not satisfied, the problem is called ill-posed. In the case of ill-posedness, arbitrary
small deviations in the right hand side g may lead to useless solutions u (if solutions exist).
(Statistical) regularisation methods are one approach for computing stable approximations of
true solutions u from (statistically) perturbed data g.

To be more precise, assume that u ∈ U is a solution of (1) and that we are given the
observation

(2) Y = Ku+ σε.

Here, σ > 0 denotes the noise-level and ε : V → L2(Ω,A,P) a white noise process, i.e. ε is
linear and continuous and for all v,w ∈ V one has

ε(v) ∼ N (0, ‖v‖2) and Cov (ε(v), ε(w)) = 〈v,w〉 .
Model (2) is very common in the theory of statistical inverse problems (see e.g. [5, 16, 17, 19,
44]) and covers numerous models arising in many applications (see [5] for various examples).

The literature on statistical regularisation methods is vast and we only give a few, se-
lective references: Penalized least-squares estimation (that includes Tikohonov-Philipps and
maximum entropy regularisation) [6, 45, 53], wavelet methods [24, 25, 36], estimation in
Hilbert-scales [5, 34, 38, 40–42] and regularisation by projection [15, 16, 19, 40] to name but
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Constrained Regularisation; Bregman-divergence.
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a few. In this work, we study a variational estimation scheme that defines estimators û as
solutions of

(3) J(u) → inf! subject to T (Y,Ku) ≤ q.

Here, T (v,w) denotes some notion of distance on the image space V that measures the
deviation of the data Y and the estimated imageKu, q ∈ R is a threshold value and J denotes a
measure of complexity for candidate estimators u ∈ U . In other words, regularisation methods
of type (3) pick among all estimators u for which the distance T of Ku and the data Y does
not exceed a given threshold value q one with smallest complexity J .

Whereas much of the literature is concerned with the proper choice of the regularisation
functional J , in this work we will discuss the issue of the data fidelity term T . The most
common choice in a Hilbert-space setting is the squared-norm fidelity

T (Y,Ku) = ‖Y −Ku‖2 .
and mostly the choice of J is considered to be more relevant for proper reconstruction of u.
We claim, however, that from a statistical perspective the choice of T is of equal importance.
To this end, we will introduce a particular family of distance functions T , the so called
multi-resolution (MR)-statistics within the framework of statistical inverse problems. In
their simplest form, MR-statistics coincide with extreme-value statistics of projections of the
residuals Y −Ku onto a set of linear sub-spaces {λφn : λ ∈ R} for given elements φn ∈ V
(with ‖φn‖ = 1 and 1 ≤ n ≤ N), that is

T (Y,Ku) = σ−1 sup
1≤n≤N

|〈Y −Ku,φn〉| .

Under the hypothesis that u is the true solution of (1), we have that 〈Y −Ku,φn〉 ∼ N (0, σ2)
for 1 ≤ n ≤ N and T (Y,Ku) does not exceed a (yet to be defined) threshold with high
probability. If, however, the residual Y − Ku contains a non-random signal and for some
1 ≤ n0 ≤ N

(4) E (〈Y −Ku,φn0
〉) 6= 0

the statistic T (Y,Ku) becomes relatively large and u happens to lie outside the admissible
domain of the optimisation problem (3). Hence, the multi-resolution constraint in (3) protects
against too parsimonious reconstructions due to minimising J .

The choice of the test-elements φ1, . . . , φN is subtle, since they should not miss any non-
random information in the residual, if present. In principle, T would be most sensible against
a large variety of signals u , if we employ a large number N such that the image space V
is approximated sufficiently well by span {φ1, . . . , φN}. This approach, however, turns (3)
into an optimisation problem with a huge number of constraints which is hard to tackle
numerically. Besides these numerical difficulties, there is also a statistical limitation: If the
entropy of the system {φn}n∈N becomes too large, the asymptotic distribution of T will be
degenerated and hence useless for our purposes. Instead, it is necessary and possible to
incorporate a-priori knowledge on the true solution of (1) in order to come up with sparse
and efficient systems of test-elements.

The study of MR-statistics has attracted much attention recently. In [50] MR-statistics
(called scanning-statistics there) are studied in order to detect a signal against a noisy back-
ground on multi-dimensional spatial regions, where the background is modelled as indepen-
dent observation of exponential family distribution. In [27, 28] MR-statistics are used in or-
der to test qualitative hypothesis (as monotonicity or concavity) in non-parametric regression
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problems. MR-statistics in non-parametric regression problems are also studied in [22] where
the focus is put on controlling local extremes. In [7] the authors use MR-statistics in order
to formulate a stopping criterion for the EM-Algorithm for Positron-Emission-Tomography.

The regularisation scheme (3) with MR-statistic T was first studied in [23] for non-para-
metric regression in one space dimension. The authors focused on the total-variation semi-
norm as complexity measure J . We will extend these results in several ways: First, our
analysis allows for indirectly observed data, that is linear inverse problems of the form (1).
We mention that this approach can be combined with many choices of J . To illustrate our
idea, we discuss total variation penalisation for two (and possibly higher) dimensions, which
is of particular interest for image processing tasks.

Furthermore, we present very general consistency and convergence rates results for SMR-
estimation and discuss their impact on particular applications. To our best knowledge, results
of this type have never been obtained before. We note, that in the situation of inverse problems
it is necessary to assume additional regularity of the true solution of (1) in order to come up
with convergence rates results. This is usually done by formulating so-called source conditions
that determine smoothness classes of solutions for (1) that allow fast reconstruction. In this
work we study the standard source conditions used in the framework of Bregman-divergences
that yield for each penalty functional J in (3) one specific smoothness class. As shown in
Section 4 this can be considered as a generalization of the Sobolev-class of functions with
exponent 1/2. The formulation of conditions that give optimal convergence rates in a scale
of smoothness classes for a general but fixed J to our knowledge is still open and will not be
treated in this work.

We mentioned that for large values of N , the optimisation problem (3) in general is hard
to be solved numerically. In particular, our experience shows that standard algorithms such
as interior point or conjugate gradient methods are far from being satisfactory. Currently, we
develop a feasible numerical scheme based on a combination of the Augmented Lagrangian
Method and Dykstra’s projection algorithm [9]. For the sake of brevity, we will not discuss
the details here and refer to upcoming work.

This paper is organized as follows. After reviewing some basic definitions from convex
analysis and the theory of inverse problems in Section 2 we develop a general scheme for
estimation of solutions of (1) in Section 3. We use the regularisation scheme (3) where
we employ multi-resolution statistics as distance measures T (Section 3.1). In Section 3.2 we
then prove consistency and convergence rate results in terms of the Bregman-divergence w.r.t.
the complexity functional J . In Section 4 we study the performance of the so constructed
estimators for typical examples, as the Gaussian sequence model (Section 4.1) and linear
inverse regression problems (Section 4.2) In Section 4.3 we investigate the particular situation
when the complexity function J is chosen to be the total-variation semi-norm, which has a
particular appeal for imaging problems. Finally, the proofs of the main results and some
auxiliary lemmata are collected in the Appendix A.

2. Basic Definitions

In this section we summarize some relevant definitions and assumptions needed throughout
the paper. We start with the basic

Assumption 2.1. (i) U and V denote separable Hilbert spaces. The norms on U and V
are not further specified, and will be always denoted by ‖·‖, since the meaning is clear
from the context.



4 KLAUS FRICK, PHILIPP MARNITZ AND AXEL MUNK

(ii) Let J : U → R be a convex functional from U into the extended real numbers R =
R ∪ {∞}. The domain of J is defined by

D(J) = {u ∈ U : J(u) 6= ∞} .
J is called proper if D(J) 6= ∅ and J(u) > −∞ for all u ∈ U . Throughout this paper
J denotes a convex, proper and lower semi-continuous (l.s.c.) functional with dense
domain D(J).

(iii) K : U → V is a linear and bounded operator.

In the course of this paper we will frequently make use of tools from convex analysis. For
a standard reference see [29].

• The sub-differential (or generalized derivative) ∂J(u) of J at u is the set of all elements
p ∈ U satisfying

J(v) − J(u)− 〈p, v − u〉 ≥ 0 for all v ∈ U

The domain D(∂J) of the sub-gradient consists of all u ∈ U for which ∂J(u) 6= ∅.
• We will prove consistency of estimators with respect to the Bregman-divergence. For
u ∈ D(J) the Bregman-divergence of J between u and v is defined by

DJ(v, u) = J(v)− J(u)− J ′(v)(v − u)

where J ′(v)(v−u) denotes the directional derivative of J at v in direction v−u. The
directional derivative is defined as

J ′(v)(w) = lim
h→0+

J(v + hw)− J(v)

h
.

and is well defined for convex functions (in [−∞,∞]).
• For u ∈ D(∂J) the Bregman-divergence of J between u and v w.r.t. ξ ∈ ∂J(u) is
defined as

Dξ
J(v, u) = J(v)− J(u)− 〈ξ, v − u〉 .

The following basic estimates hold

0 ≤ DJ(v, u) ≤ Dξ
J(v, u), for all ξ ∈ ∂J(u).

Remark 2.2. Clearly, the Bregman-divergence does not define a (quasi-)metric on U : It is
non-negative but in general it is neither symmetric nor satisfies the triangle inequality. The
big advantage, however, of formalising asymptotic results w.r.t. to the Bregman-divergence
(such as consistency or convergence rates) for estimators defined by a variational scheme of
type (3), is the fact, that the regularising properties of the used penalty functional J are
incorporated automatically. If, for example, the functional J is slightly more than strictly
convex, it was shown in [46] that convergence w.r.t. the Bregman-divergence already implies
convergence in norm. If, however, J fails to be strictly convex (e.g. if it is of linear growth)
it is in general hard to establish norm-convergence results but convergence results w.r.t. the
Bregman-divergence, though weaker, may still be at hand. In Examples 2.4-2.6 as well as in
Section 4.3 we compute the Bregman-divergence for some particular choices of J .

The concept of Bregman-divergence in optimisation was introduced in [10] and has recently
attracted much attention e.g. in the inverse problems community (cf. [12, 14, 21, 33, 47]) or
in statistical and machine learning ([20, 37, 54]).

Next, we introduce different classes of solutions for Equation (1) discussed in this paper.
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Definition 2.3. (i) Let u ∈ D(J) be a solution of (1). Then g is called attainable.
(ii) An element u ∈ D(J) is called J-minimising solution of (1), if u solves (1) and

J(u) = inf {J(ũ) : Kũ = g} .
(iii) Let g ∈ V be attainable. An element p ∈ V is called a source element if there exists a

J-minimising solution u of (1) such that

(5) K∗p ∈ ∂J(u).

Then, we say that u satisfies the source condition (5).

It is well-known in the theory of inverse problems with deterministic noise (cf. [30]) that the
source condition (5) is sufficient for establishing convergence rates for regularisation methods.
It can be understood as a regularity condition for J-minimising solutions of Equation (1).

Put differently, for each regularisation functional J , the source condition (5) characterises
one particular smoothness-class of solutions for (1) for which fast reconstruction is guaranteed.
We note, that for standard choices for J (as e.g. in Example 2.4) there exist more sophisticated
source conditions than (5) that allow for improved convergence rate results (as e.g. Hölder
source conditions). Such extensions, however, are not straightforward to generalise and are—
to a large extent—not well understood so far.

We clarify the notions Bregman-divergence and source condition by some examples.

Example 2.4. Let J(u) = 1
2 ‖u‖

2. Then, J is differentiable on U and for all u ∈ U the set
∂J(u) consists of the single element {u}. We have that J ′(v)(w) = 〈v,w〉 and consequently

DJ(v, u) = Dξ
J(v, u) =

1

2
‖v − u‖2 for ξ = u ∈ ∂J(u).

Moreover, the source condition (5) can be rewritten to

u† ∈ ran(K∗).

Since ran(K∗) = ran(K∗K)1/2, this shows that the source condition (5) corresponds to the
Hölder-source condition u† ∈ ran(K∗K)β for β = 1/2 (cf. [30]).

Example 2.5. Assume that U = L2(Ω) for an open and bounded set Ω ⊂ R
n with Lipschitz

boundary ∂Ω and outer unit-normal ν and let Hβ(Ω) denote the Sobolev-space of order β ∈ R.
We define

J(u) =

{

∫

Ω |∇u|2 dx if u ∈ H1(Ω)

+∞ else.

Then (cf. [3, pp.63]), the set D(∂J) consists of all elements u ∈ H2(Ω) that have vanishing
normal derivative 〈∇u, ν〉 on ∂Ω and if u ∈ D(∂J), then ∂J(u) = {−∆u}. With this, it
follows that J ′(v)(w) = 〈∇v,∇w〉 and

DJ (v, u) = Dξ
J(v, u) =

1

2
‖∇(v − u)‖2 for ξ = −∆u ∈ ∂J(u).

Moreover, u† satisfies the source condition (5) with source element p† ∈ V if and only if

−(K∗p†)(x) = ∆u†(x) in Ω

∇u† · ν = 0 Hn−1-a.e. on ∂Ω

(here Hn−1 stands for the (n− 1)-dimensional Hausdorff-measure on ∂Ω).
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Example 2.6. Let U be as in Example 2.5 and define the negentropy by

J(u) =

{

−
∫

Ω u log udx if u ≥ 0 a.e. and u log u ∈ L1(Ω)

+∞ else.

Then (cf. [4, Chap. 2 Prop 2.7]), the setD(∂J) consists of all non-negative functions in L∞(Ω)
that are bounded away from zero. One has J ′(v)(w) = 〈1 + log v,w〉 and if u ∈ D(∂J), then
∂J(u) = {1 + log u}. After some re-arrangements we find

DJ (v, u) = Dξ
J(v, u) =

∫

Ω

(

v log
(v

u

)

− v + u
)

dx,

that is, the Bregman-divergence coincides in this particular case with the Kullback-Leiber-
divergence. It was proven in [8, Lem. 2.2] that

‖v − u‖2L1 ≤
(

2

3
‖v‖L1 +

4

3
‖u‖L1

)

DJ(v, u).

In other words, Bregman-consistency (or convergence rates) w.r.t. the negentropy yields
strong consistency (convergence rates) in L1(Ω). Finally, we note that u† ∈ D(∂J) satisfies
the source condition (5) with source element p† ∈ V if and only if

e(K
∗p†)(x)−1 = u†(x) for a.e. x ∈ Ω.

In Section 4.3 we will study a more complex example in more detail, where J is the total-
variation of a measurable function on a domain Ω.

Under fairly general conditions existence of J minimising solution can be guaranteed. We
formalize these conditions in the following result, however, we omit the proof since it is
standard in convex analysis (cf. [29, Chap. II Prop. 2.1]).

Proposition 2.7. Let g ∈ V be attainable and assume that for all c ∈ R the sets

(6) {u ∈ U : ‖Ku‖+ J(u) ≤ c}
are sequentially weakly compact. Then, there exist a J-minimising solution of (1).

3. A General Scheme for Estimation

In this section we construct a family of estimators û for J-minimising solutions (cf. Defi-
nition 2.3) of Equation (1) from noisy data Y given by the white noise model (2). We define
the estimators in a variational framework and prove consistency as well as convergence rates
results in a rather general setting.

3.1. Multi-resolution Statistic and SMR-Estimation. We introduce a class of similarity
measures in order to determine whether the residuals Y − Kû for a given estimator û ∈ U
resemble a white noise process or not. We will consider the extreme-value distribution of
projections of the residuals onto a predefined collection of lines in V . To this end, assume
that

Φ = {φ1, φ2, . . .} ⊂ ran(K)\ {0}
is a fixed dictionary such that ‖φn‖ ≤ 1 for all n ∈ N. For the sake of simplicity, we will
frequently make use of the abbreviation φ∗n = φn/ ‖φn‖.
Definition 3.1. Let {tN : R+ × (0, 1] → R}N∈N be a sequence of functions that satisfy the
following conditions
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(1) For all r ∈ (0, 1], the function s 7→ tN (s, r) is convex, increasing and Lipschitz-
continuous with Lipschitz-constants LNr such that

(7) sup
r∈(0,1]
N∈N

LNr =: L <∞

and

(8) 0 > λN (r) := inf
s∈R+

tN (s, r) > −∞.

(2) There exist constants c1, c2 > 0 and σ0 ∈ (0, 1) such that for all 0 < σ < σ0

(9) tN (s, r) ≥ c1s+ c2tN (σs, r) for (s, r) ∈ R
+ × (0, 1] and N ∈ N.

Then, for N ∈ N, the mapping TN : V → R defined by

TN (v) = sup
1≤n≤N

tN (|〈v, φ∗n〉| , ‖φn‖)

is called a multi-resolution (MR)- statistic.

Remark 3.2. Let ε : V → L2(Ω,A,P) be a white noise process and consider the random
variables

TN (ε) = sup
1≤n≤N

tN (|ε(φ∗n)| , ‖φn‖) .

Then, for a level α ∈ (0, 1) we denote the (1− α)-quantile of TN (ε) by qN (α), that is,

(10) qN (α) := inf {q ∈ R : P (TN (ε) ≤ q) ≥ 1− α}

Definition 3.1 allows for a vast class of MR-statistics and the conditions in (7)-(9) appear
rather technical. The following example sheds some light on a special class of MR-statistics
that later on will be studied in more detail. We note, however, that our general setting also
allows for more involved models, as e.g. introduced in [28].

Example 3.3. Assume that {fN : (0, 1] → R}N∈N is a sequence of positive functions and
define

tN (s, r) := s− fN(r).

Then, the assumptions in Definition 3.1 are satisfied; to be more precise, we can set L = 1,
λN (r) = −fN(r) and c1 = 1− σ0 and c2 = 1, where σ0 ∈ (0, 1) is arbitrary but fixed.

Our key paradigm is that an estimator û for a solution of (1) fits the data Y sufficiently
well, if the statistic TN (Y −Kû) does not exceed the threshold qN(α) (α ∈ (0, 1) and N ∈ N

fixed). Among all those estimators we shall pick the most parsimonious by minimising the
functional J .

Definition 3.4. Let N ∈ N and α ∈ (0, 1). Moreover, assume that TN is an MR-statistic
and that Y is given by (2). Then every element ûN (α) ∈ U solving the convex optimisation
problem

(11) J(u) → inf! s.t. TN (σ
−1(Y −Ku)) ≤ qN (α)

is called a statistical multi-resolution estimator (SMRE).
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An SMRE ûN (α) depends on the regularisation parameters N ∈ N and α ∈ (0, 1) that
determine the admissible region

AN (α) =
{

u ∈ U : TN (σ
−1(Y −Ku)) ≤ qN (α)

}

of the optimisation problem (11). From construction it follows that the exact solution(s) of
(1) lie within AN (α) with a probability of at least 1 − α. Thus, AN(α) serves as a 1 − α
confidence region for ûN (α) and therefore α exhibits an intrinsic statistical meaning (see also
[23]). This stands in contrast to many other regularisation techniques where regularisation
parameters merely govern the trade-off between fit-to-data and smoothness and do not allow
such an interpretation.

In order to guarantee existence of a solution of the convex problem in Definition 3.4, that
is existence of an SMRE, it is necessary to impose further (standard) assumptions:

Assumption 3.5. There exists N0 ∈ N such that for all c ∈ R the sets

Λ(c) =

{

u ∈ U : sup
1≤n≤N0

|〈Ku,φ∗n〉|+ J(u) ≤ c

}

are sequentially weakly compact.

Assumption 3.5 guarantees (weak) compactness of the level sets of the objective functional
J restricted to the admissible region AN (α). We note, that if J is strongly coercive (e.g.
when J is as in Example 2.4 or 2.6) then Assumption 3.5 is satisfied without any restrictions
on the operator K. If J lacks strong coercivity (as it is e.g. the case with the total-variation
semi-norm studied in Section 4.3) additional properties of K are required in order to meet
Assumption 3.5.

Application of standard arguments from convex optimisation yields

Proposition 3.6. Assume that Assumption 3.5 holds and let N ≥ N0 and α ∈ (0, 1]. Then,
an SMRE ûN (α) exists.

Finally, we note that Assumption 3.5 already implies the requirements in Proposition 2.7
and consequently existence of J-minimising solutions.

3.2. Consistency and Convergence Rates. We investigate the asymptotic behaviour of
ûN (α) as the noise level σ in (2) tends to zero. According to the argumentation following
Definition 3.4, the parameters N ∈ N and α ∈ (0, 1) can be interpreted as regularisation
parameters and have to be chosen accordingly: The model parameter N has to be increased
in order to guarantee a sufficiently accurate approximation of the image space V , whereas the
test-level α tends to 0 such that the true solution (asymptotically) satisfies the constraints
of (11) almost surely. We formulate consistency and convergence rate results by means of
the Bregman-divergence of the SMRE ûN (α) and a true solution u† in terms of almost sure
convergence.

Throughout this section we shall assume that Assumptions 2.1 and 3.5 hold and that
{σk}k∈N is a sequence of positive noise-levels in (2) such that σk → 0+ as k → ∞. Moreover,
we assume that {αk}k∈N ⊂ (0, 1) is a sequence of significance levels and that Nk ≥ N0 is such
that

(12)

∞
∑

k=1

αk <∞ and lim
k→∞

Nk = ∞.
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Theorem 3.7. Let u† be a J-minimising solution of (1) where g ∈ spanΦ and assume that

(13) sup
N∈N

TN (ε) <∞ a.s.

and that

(14) ηk := σkmax

(

inf
1≤n≤Nk

λNk
(‖φn‖),

√

− log αk

)

→ 0.

Then, for ûk := ûNk
(αk) as in (11) one has

(15) sup
k∈N

‖ûk‖ <∞, J(ûk) → J(u†) and DJ(u
†, ûk) → 0 a.s.

as well as

(16) lim sup
k→∞

sup
1≤n≤Nk

∣

∣

〈

φ∗n,Kûk −Ku†
〉∣

∣

ηk
<∞ a.s.

Theorem 3.7 states that if for a given vanishing sequence of noise levels σk, suitable (in
the sense of (14)) sequences of regularisation parameters Nk and αk can be constructed, then
the sequences of corresponding SMRE converges to a true J-minimising solution u† w.r.t.
the Bregman-divergence. We note that the assumption on the MR-statistic TN (ε) in (13) is
crucial and in general non-trivial to show.

It is well known that without further regularity restrictions on u†, the speed of conver-
gence in (15) can be arbitrarily slow. Source conditions as in Definition 2.3 (iii) are known to
constitute sufficient regularity conditions in deterministic noise models (cf. [30]). In our situ-
ation we additionally have to assume that the source elements exhibit certain approximation
properties:

Assumption 3.8. There exists a J-minimising solution u† of (1) that satisfies the source
condition (5) with source element p†. Moreover, for n,N ∈ N there exist bn,N ∈ R such that

(17) lim
N→∞

∥

∥

∥

∥

∥

p† −
N
∑

n=1

bn,Nφ
∗
n

∥

∥

∥

∥

∥

= 0 and sup
N∈N

N
∑

n=1

|bn,N | <∞.

Remark 3.9. i) Assumption 3.8 amounts to say that there exists a J-minimising solution
u† that satisfies the source condition (5) with a source element p† that can be approxi-
mated sufficiently well by the used system of test-functions Φ. From (5) it becomes clear

that we can always assume that p† ∈ ran(K), such that the first condition in (17) is not
very restricitve, in fact.

For the sake of convenience, we introduce an abbreviation for the approximation error
w.r.t. the dictionary Φ

(18) errN (p
†) :=

∥

∥

∥

∥

∥

p† −
N
∑

n=1

bn,Nφ
∗
n

∥

∥

∥

∥

∥

.

ii) It is important to note that, given prior knowledge of the true solution u†, the conditions
in Assumption 3.8 indicate how to choose an efficient system of test-functions, which will
become apparent for particular applications.
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Theorem 3.10 (Convergence rates for SMRE). Let the requirements of Theorem 3.7 be
satisfied and assume further that Assumption 3.8 holds with g ∈ spanΦ. If

(19) ηk := max

(

−σk inf
1≤n≤Nk

λNk
(‖φn‖), errNk

(p†), σk
√

− logαk

)

→ 0

as k → ∞, then (16) holds and additionally

(20) lim sup
k→∞

DK∗p†

J (ûk, u
†)

ηk
<∞ a.s.

Remark 3.11. The convergence rate result in Theorem 3.10 is rather general, in the sense
that the rate function ηk in (20) has to be determined for each choice of K, J and Φ separately.
We outline a general procedure how this can be done in practice: assume that u† is a J-
minimising solution of (1) that satisfies Assumption 3.8 with a source element p†.

(1) The sequence {− inf1≤n≤N λN (‖φn‖)}N∈N is positive according to (8). Hence

Nk := inf

{

N ∈ N : errN (p
†) ≤ −σk inf

1≤n≤N
λN (‖φn‖)

}

is well-defined and since {σk}k∈N is non-increasing one has Nk ≤ Nk+1 and Nk → ∞
as k → ∞.

(2) After setting ηk = −σk inf1≤n≤Nk
λNk

(‖φn‖) it remains to check that the sequence of
test-levels defined by

αk = e
−
(

κηk
σk

)2

is summable (for a constant κ > 0).

For the above construction of Nk, ηk and αk, it follows from Theorem 3.10 that for the
SMR-estimators ûk = ûNk

(αk) the estimate in (20) holds.

4. Applications and Examples

In Section 3 we developed a general method for estimation of J-minimising solutions of
linear and ill-posed operator equations from noisy data. Our estimation scheme thereby
employed the MR-statistic TN (cf. Definition 3.1). In this section we will study particular
instances of MR-statistics covered by the general theory in Section 3.

We first study the case where TN constitutes the extreme-value statistic of the coefficients
w.r.t. an orthonormal systems of test-functions Φ (Section 4.1). In Section 4.2 we skip the
assumption of orthonormality and examine general SMR-estimation w.r.t. (non-orthonormal)
systems of test-functions that satisfy certain entropy conditions. Finally, we study the case
when the penalty functional J is chosen to be the total-variation semi-norm on U = L2(Ω) in
Section 4.3.

Throughout this section we assume that Assumptions 2.1 and 3.5 hold. Moreover we shall
agree upon {σk}k∈N being a sequence of noise levels such that σk → 0+ and that for k ∈ N

there are αk ∈ (0, 1) and Nk ∈ {N0, N0 + 1, . . .} such that (12) holds.

4.1. Introductory Example: Gaussian Sequence Model. In this section we shall con-
sider the case where the dictionary Φ = {φ1, φ2, . . .} constitutes an orthonormal basis of

ran(K). Evaluation of Equation (2) at the elements φn hence yields

yn = θn + σεn,
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where Y (φn) = yn, θn = 〈Ku,φn〉 and εn = ε(φn). We define the multi-resolution statistic
TN by setting tN (s, r) = s − √

2 logN in Definition (3.1). In other words, we consider the
maximum of the coefficients w.r.t to the system Φ, that is

TN (v) = sup
1≤n≤N

|〈v, φn〉| −
√

2 logN.

Since {φ1, φ2, . . .} are linearly independent and normalized, it follows that the random vari-
ables ε1, ε2, . . . are independent and standard normally distributed. This implies that supN∈N TN (ε) <
∞ holds almost surely, since

lim
N→∞

TN (ε) = lim
N→∞

(

sup
1≤n≤N

|εn| −
√

2 logN

)

= 0 a.s.

In what follows, we will apply Theorems 3.7 and 3.10 to the present case. To this end, we
observe that for σ > 0 and N ∈ N it follows that

−σ inf
1≤n≤N

λN (‖φn‖) = σ
√

2 logN.

With the above preparations, we are able to reformulate the consistency result in Theorem
3.7.

Corollary 4.1. Let u† ∈ U be a J-minimising solution of (1) where g ∈ spanΦ. Moreover,
assume that

lim
k→∞

σ2kmax(logNk,− log αk) = 0

Then, the SMRE ûk = ûNk
(αk) almost surely satisfies (15) and (16).

In order to apply the convergence rate result in Theorem 3.10, Assumption 3.8 has to be
verified. We set bnN ≡

〈

p†, φn
〉

in Assumption 3.8. Note that for p ∈ V the expression
errN (p) (as defined (18)) denotes the approximation error of the N -th partial Fourier-series
w.r.t. Φ. Thus, Assumption 3.8 is linked to absolute summability of the Fouerier-coefficients
w.r.t. the basis Φ, i.e.

(21)
∞
∑

n=1

∣

∣

∣

〈

p†, φn

〉∣

∣

∣
<∞

The Bernstein-Stechkin criterion is a classical method for testing for absolute summability.
We present a version suitable for our purpose in the following

Proposition 4.2. Let p† ∈ V . Then, (21) is satisfied if

(22)
∞
∑

N=1

errN (p
†)√

N
<∞.

Proof. The classical version of the Bernstin-Stechkin Theorem (see e.g. [43, Thm. 7.4])
states that for each f ∈ L2(0, 1) and each ON-basis v = {v1, v2, . . .} of L2(0, 1), the Fourier-
coefficients of f are absolutely summable, if (22) holds. Since each seperabel Hilbert space is
isometrical isomorph to L2(0, 1), the assertion finally follows. �

Following the procedure outlined in Remark 3.11, Section 3, we define

(23) Nk := inf
{

N ∈ N : errN (p
†) ≤ σk

√

2 logN
}

and ηk := σk
√

2 logNk.
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Corollary 4.3. Let g ∈ V be attainable and u† ∈ U be a J-minimising solution of (1) that
satisfies the source condition with a source element p† such that (4.2) holds. Moreover, let
Nk and ηk be defined as in (23). If

αk := e
−
(

κηk
σk

)2

= N−2κ2

k ∈ ℓ1(0, 1)

for a constant κ > 0, then the SMRE ûk = ûNk
(αk) almost surely satisfies (20).

The problem of characterising those elements p† ∈ V that satisfy (22) is a classical issue in
Fourier-analysis and approximation theory. Sufficient conditions for (22) to hold are usually
formalized by characterising the decay properties of the Fourier-coefficients. In a function
space setting, this leads to particular smoothness classes of functions and in the general
situation can be given in terms of Sobolev elliposids: for a constants β,Q > 0 we define
Θ(β,Q) as the infinite-dimensional ellipsoid

(24) Θ(β,Q) =

{

θ ∈ ℓ2 :
∑

n∈N

n2βθ2n ≤ Q2

}

.

The Sobolev class W (β,Q) ⊂ V is then defined as the collection of elements v ∈ V such that
{〈v, φn〉}n∈N ⊂ Θ(β,Q) (cf. [51, Sec.1.10.1]). For v ∈ W (β,Q) we have that (22) holds if
β > 1/2.

Example 4.4. Assume that J(u) = 1
2 ‖u‖

2 and let K be a compact operator with singular

value decomposition (SVD) {(ψn, φn, sn)}n∈N: {ψn}n∈N is an ONB of ker(K)⊥, {φn}n∈N is

an ONB of ran(K) and the singular values {sn}n∈N are positive and sn → 0 as n → ∞.
Moreover

(25) Kψn = snφn and K∗φn = snψn,

for all n ∈ N. For N ∈ N and α ∈ (0, 1] it turns out (e.g. by applying the method of
Lagrangian multipliers) that the SMRE ûN (α) is a shrinkage estimator given by

ûN (α) =

N
∑

n=1

s−1
n yn

(

1− qN (α) +
√
2 logN

|yn|

)

+

ψn.

We note that ûN (α) resembles James-Stein type estimators, however uses |yn| in contrast to

|yn|2.
Now, let u† ∈ U be a minimum-norm solution of (1) that satisfies the source condition

K∗p† = u† (cf. Example 2.4) with source element p† ∈ W (β,Q) for Q > 0 and β = 1/2 + ε
(with ε > 0 small). Then, errN (p

†) ≤ QN−β and it follows from (23) that

Nk ∼
(

Q

σk

)2

and ηk ∼ σk
√

− log σk.

If σk has polynomial decay, we can choose a constant κ > 0 such that αk = exp(−(κηk/

σk)
2) = σκ

2

k is summable and it follows from Corollary 4.3 and Example 2.4 that

lim sup
k→∞

1

σk
√− log σk

∥

∥

∥
u† − ûNk

(αk)
∥

∥

∥

2
<∞ a.s.

This corresponds to the choice γk = σk
√− log σk in [6].
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As mentioned above, sufficient conditions for the Bernstein-Stechkin criterion (22) in a
function space setting, are usually formalized in characterising smoothness properties. The
following example shows how this applies to Hölder-continuity.

Example 4.5. Let V = L2
per([0, 1]) be the Hilbert space of all square-integrable and periodic

functions on the unit interval. Moreover, we assume that ran(K) = L2([0, 1]) and consider
the trigonometric basis

φ2n =
√
2 cos(nπx) and φ2n+1 =

√
2 sin(nπx).

Assume that p† ∈ Hβ([0, 1]) ∩ V (cf. Definition A.4) with β = 1/2 + ε. Then we have

that errN (p
†)Q ≤ N−β logN for a suitable constant Q > 0 and therefore it follows from

Proposition 4.2 that (21) holds.
Hence, if u† is a J-minimising solution of (1) that satisfies the source condition (5) with

source element p† ∈ Hβ([0, 1]) and if the sequences Nk, ηk and αk are chosen as in Example
4.4, then ûk = ûNk

(αk) almost surely satisfy (20).

Remark 4.6. i) The assertions of Example 4.5 still hold if the trigonometric basis is re-

placed by any other orthonormal basis {φn}n∈N of ran(K) such that (22) is satisfied. This

holds for example for a vast class of orthonormal wavelet bases of L2([0, 1]) as studied in
[18].

ii) For the trigonometric basis in Example 4.5, the Bernstein-Stechkin criterion 4.2 can be
replaced by the requirement that p† ∈ Hβ([0, 1]) for β > 0 is of bounded variation (cf.
[56, Vol.1 Thm.3.6]).

4.2. Non-orthogonal Models. In contrast to Section 4.1, where we considered orthonormal
systems of test-functions, we will now focus on more general (non-orthonormal) systems. In
other words, we consider sequences

Φ = {φ1, φ2, . . .} ⊂ ran(K)\ {0}
and assume that ‖φn‖ ≤ 1 for all n ∈ N. Moreover, we will make use of the MR-statistic TN
(cf. Definition 3.1) defined by

(26) tN (s, r) = s−
√

−2γ log r, (s, r) ∈ R
+ × (0, 1]

where γ > 0 is a constant. As outlined in Example 3.3, one verifies that tN (s, r) satisfies the
assumptions of Definition 3.1. In particular, we find that λN (r) = −√−2γ log r > −∞ for all
r ∈ (0, 1].

The parameter γ that appears in (26) has to be chosen appropriately in dependence on
Φ in order to guarantee that the MR-statistic TN (ε) is bounded almost surely. Sufficient
conditions on γ have been given in [27, 28] and we provide a brief summary of the respective
results. To this end, we recall the following

Definition 4.7. Let (T, d) be a semi-metric space, T ′ ⊂ T and ε > 0. The capacity number
is defined by

D(ε, T ′) := sup
T ′′⊂T ′

({

#T ′′ : d(a, b) ≥ ε for all a 6= b ∈ T ′
})

.

With this preparation we can apply [28, Thm 7.1] and find
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Proposition 4.8. If there exists constants A,B > 0 such that

(27) D(uδ, {φ ∈ Φ : ‖φ‖ ≤ δ}) ≤ Au−Bδ−γ , for all u, δ ∈ (0, 1]

then

sup
N∈N

TN (ε) <∞ a.s.

Corollary 4.9. Let u† ∈ U be a J-minimising solution of (1) where g ∈ spanΦ and γ > 0 be
chosen such that the assumption of Proposition 4.8 is satisfied. Moreover, assume that

lim
k→∞

σ2kmin( min
1≤n≤Nk

log (‖φn‖) , logαk) = 0.

Then, the SMRE ûk = ûk(αk) almost surely satisfies (15).

In order to apply the convergence rate results in Theorem 3.10, it is necessary that a J-
minimising solution u† of (1) satisfies the source condition (5) with a source element p† that
can be approximated by the system of test-functions Φ sufficiently well (cf. Assumption 3.8).
Good estimates of approximation errors for general systems Φ are hard to come up with in
general and will not be treated in this work. Instead, we illustrate the assertion of Theorem
3.10 when U = V = L2([0, 1]d) (d ≥ 1) and when Φ consists of a countable selection of
indicator functions on cubes in [0, 1]d.

First, we shall examine when the MR-statistic TN (ε) (almost surely) stays finite, a sufficient
condition of which is formulated in Proposition 4.8. To this end, we will focus first on the
(uncountable) collection Φs of indicator functions on cubes in [0, 1]d. Then, according to
Proposition A.8, the assumptions of Proposition 4.8 are satisfied for Φ = Φs and γ = d.
Particularly, it follows that the assertion of Proposition 4.8 also holds for arbitrary (countable)
sub-systems Φ ⊂ Φs, that is the statistic

TN (ε) = sup
1≤n≤N

|ε(χQn)| −
√

−d log(λd(Qn)) where χQn ∈ Φ

stays bounded a.s. as N → ∞ (note here, that ‖χQn‖ =
√

λd(Q)).
Next, we study Assumption 3.8 in the present setting. Let P = {Q1, Q2, . . .} be a countable

system of cubes and set Φ = {χQn : n ∈ N}. We shall assume that P satisfies the conditions

of Lemma A.5 (where X = [0, 1]d and Ai = Qi for i ∈ N). Let {nl}l∈N and {δl}l∈N be defined
accordingly. Moreover, we define

εl = inf
nl<j≤nl+1

√

λd(Qj) = inf
nl<j≤nl+1

∥

∥χQj

∥

∥ ,

where we assume that {εl}l∈N is non-increasing. This means that we decompose the set [0, 1]d

into sub-cubes {Ij}nl<j≤nl+1
whose size (or scale) is bounded by [εl, δl]. It is more natural to

formulate convergence rate results in terms of the total number m of used scales rather than
in the total number of sub-cubes N = N(m) = nm+1. Following Remark 3.11 and applying
Lemma A.5 we therefore define for a given continuous function p† : [0, 1]d → R

(28) mk := inf

{

m ∈ N :
m+ 1

∑m
ν=0 ω

−2(δν , p†)
≤ −2σ2k log εm

}

and ηk := σk
√

−2 log εmk
.

Here ω(·, p†) denotes the modulus of continuity of p† (cf. Definition A.4). With this and the
general convergence rate result in Theorem 3.10 we immediately obtain
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Corollary 4.10. Let u† ∈ L2([0, 1]d) be a J-minimising solution of (1) where g ∈ spanΦ and
that satisfies the source condition (5) with source element p† ∈ C([0, 1]d). Moreover, let mk

and ηk be defined as in (28). If

lim
k→∞

ηk = 0 and αk := e
−
(

κηk
σk

)2

= ε−2κ2
mk

∈ ℓ1(0, 1)

for a constant κ > 0, then the SMRE ûk = ûN(mk)(αk) almost surely satisfy (20).

Example 4.11. We consider the system of all dyadic partitions P = P2 of [0, 1]d as in
Example A.9. In particular, we note that the assumptions of Lemma A.5 are fulfilled with
nl = (2d(l+1) − 1)/(2d − 1), δl = 2−l

√
d and εl = 2−ld/2.

If p† ∈ Hβ([0, 1]
d) for 0 < β ≤ 1, then there exists a constant Q = Q(p†) > 0 such that

ω(δl, p
†) ≤ Qδβl . This shows that

m+ 1
∑m

ν=0 ω
−2(δν , p†)

≤ Q2dβ(22β − 1)
m+ 1

22β(m+1) − 1

for m ∈ N large enough. From this and (28) it is easy to see, that

mk + 1 ∼ 1

2β log 2
log

(

Q2d2(22β − 1)

d log 2σ2k
+ 1

)

and ηk ∼ σk
√

− log σk

Thus, if there exists a constant κ > 0 such that

αk = e
−
(

κηk
σk

)2

= σκ
2

k

is summable and if the true J-minimising solution u† satisfies the source condition (5) with
source element p† ∈ Hβ([0, 1]), then it follows that the SMRE ûk = ûN(mk)(αk) almost surely

satisfy (20) with ηk = σk
√− log σk.

4.3. TV-Regularisation. In this section we will study SMR-estimation for the special case
where J denotes the total-variation semi-norm of measurable, bi-variate functions. This has
a particular appeal for linear inverse problems arising in imaging (such as deconvolution),
since discontinuities along curves (edges, that is) are not smoothed by minimising J .

Over the last years regularisation of (inverse) regression problems in a single space di-
mension invoking the total-variation semi-norm has been studied intensively and efficient
numerical methods, such as the taut-string algorithm in [22], have been proposed (see e.g.
[22, 23, 39] and references therein). In two or more space dimensions, however, the situation is
much more involved and a generalisation of numerical methods is usually not straightforward
(see e.g. [35]). In [23] SMR-estimation with total variation penalty was studied for the case
of pure regression problems (K = Id) in one space dimension. We study here an extension
by applying the results in Section 3 to the following setting:

We assume henceforth that Ω ⊂ R
2 is an open and bounded domain with Lipschitz-

boundary ∂Ω and outer unit normal ν. Moreover, we set U = L2(Ω) and define BV(Ω)
to be the collection of u ∈ U whose derivative Du (in the sense of distributions) is a signed
R
2-valued Radon-measure with finite total-variation |Du|, that is

|Du| (Ω) = sup
ψ∈C1

0 (Ω,R
2)

|ψ|≤1

∫

Ω
div (ψ)u dx <∞.
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We note that the norm

‖u‖BV := ‖u‖L1 + |Du| (Ω)
turns BV(Ω) into a Banach-space and that with this norm BV(Ω) is continuously embedded
into L2(Ω). The embedding is even compact if L2(Ω) is replaced by Lp(Ω) with p < 2 (a proof
of these embedding results can be found in [1, Thm. 2.5]. For an exhaustive treatment of
BV(Ω) see [31, 55]). With this, we define

J(u) =

{

|Du| (Ω) if u ∈ BV(Ω)

+∞ else.

The functional J is convex and proper and, as it was shown e.g. in [1, Thm. 2.3], J is lower
semi-continuous on L2(Ω). This shows, that J satisfies Assumption 2.1 (ii). Next, we examine
Assumption 3.5:

Lemma 4.12. If there exists n0 ∈ N such that

|〈K1, φn0
〉| > 0,

then Assumption 3.5 holds. Here, 1 denotes the constant 1-function on Ω.

Proof. Let c ∈ R and {uk}k∈N ⊂ Λ(c). Then in particular it follows that supk∈N J(ukn) ≤ c <
∞ and thus we find with Poincaré’s inequality (cf. [55, Thm. 5.11.1])

‖uk − ūk‖L2 ≤ c1J(uk) ≤ c2 <∞
for suitable constants c1, c2 ∈ R, where ūk = λ2(Ω)

−1
∫

Ω uk(τ) dτ . Now choose φ ∈ {φ1, . . . , φN}
and observe that

|ūk| |〈φ,K1〉|
‖φ‖ =

|〈φ,Kūk〉|
‖φ‖ ≤ |〈φ,K(ūk − uk)〉|

‖φ‖ +
|〈φ,Kuk〉|

‖φ‖

≤ ‖K‖ ‖uk − ūk‖L2 + sup
1≤n≤N

|〈Kuk, φn〉|
‖φn‖

≤ ‖K‖ c2 + c.

Let 1 ≤ n0 ≤ N be such that |〈K1, φn0
〉| =: γ > 0. Then, |ūn| ≤ (‖K‖ c2 + c) ‖φn0

‖ /γ =: c3
and we find

‖un‖L2 ≤ (‖un − ūn‖L2 + ‖ūn‖L2) ≤ c2 + c3λ2(Ω).

�

We note that the assumptions in Lemma 4.12 already imply the weak compactness of the
sets (6) and thus guarantee existence of a J-minimising solution of (1). From the above cited
embedding properties of the space BV(Ω) it is easy to derive an improved version of the
consistency result in Theorem 3.7.

Corollary 4.13. Let g ∈ spanΦ and assume that u† ∈ BV(Ω) is the unique J-minimising
solution of (1). Moreover, let {αk}k∈N and {Nk}k∈N be as in Theorem 3.7 and define ûk =
ûNk

(αk). Then, additionally to the assertions in Theorem 3.7 we have that

lim
k→∞

∥

∥

∥ûk − u†
∥

∥

∥

Lp
= 0 a.s.

for every 1 ≤ p < 2.
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Proof. From Theorem 3.7 it follows that {ûk}k∈N is bounded a.s. in L2(Ω) and that each

weak cluster point is a J-minimising solution of (1). Since we assumed that u† is the unique
J-minimising solution of (1), it follows that ûk ⇀ u† in L2(Ω) a.s. and therefore also in Lp(Ω)
for each 1 ≤ p < 2.

Since Ω is assumed to be bounded, it follows that L2(Ω) is continuously embedded into
L1(Ω). Thus, it follows from Theorem 3.7 that

sup
k∈N

‖ûk‖BV <∞ a.s.

From the compact embedding BV(Ω) →֒ Lp(Ω) for 1 ≤ p < 2, it hence follows that {ûk}k∈N
is compact in Lp(Ω). Thus, the assertion follows, since weak and strong limits coincide. �

Unfortunately, the above embedding technique can not be used in order to improve the
convergence rate result in Theorem 3.10 to strong Lp-convergence and thus we have to settle
for the general results in Theorem 3.10. Therefore, we aim for an interpretation of convergence
w.r.t. the Bregman-divergence in (20). We summarize:

Lemma 4.14. (i) One has ξ ∈ ∂J(u) if and only if there exists z ∈ L∞(Ω,R2) with
‖z‖L∞ ≤ 1 such that 〈z, ν〉 = 0 on ∂Ω,

div (z) = ξ and

∫

Ω
ξudx = |Du| (Ω).

(ii) Let ξ ∈ ∂J(u). Then,

Dξ
J(v, u) = |Dv| (Ω)−

∫

Ω
ξv dx.

Proof. Assertion (ii) directly follows from the definition of the Bregman-divergence and (i).
The equivalence relation in (i) was proven e.g. in [32, Thm. 4.4.2]. �

Remark 4.15. The result in Lemma 4.14 (ii) allows a geometrical interpretation of the
Bregman-divergence w.r.t. the functional J . As it was worked out in [13, Sec. 5.1], one can
show that

Dξ
J (v, u) =

∫

Ω
(1− cos(γ(v, u, x))) d |Dv| (x)

where γ(v, u, x) denotes the angle between the unit normals of the sub-levelsets of u and v at
the point x ∈ Ω (cf. Figure 1(a)).

We recall that a function u ∈ BV(Ω) satisfies the source condition, if there exists ξ ∈
ran(K∗) such that ξ ∈ ∂J(u). It is important to note, that in many applications the elements
in ran(K∗) exhibit high regularity such as continuity or smoothness. Thus it is of particular
interest, if such regular elements in ∂J(u) exist.

If u is itself a smooth function, application of Green’s Formula and Lemma 4.14 yield (see
also [48, Lem.3.71])

Lemma 4.16. Let u ∈ C1
0 (Ω) and set E[u] = {x ∈ Ω : ∇u(x) 6= 0}. Assume that there

exists z ∈ C1
0 (Ω,R

2) with |z| ≤ 1 and

z(x) = − ∇u(x)
|∇u(x)| for x ∈ E[u].

Then, ξ := div (z) ∈ ∂J(u).



18 KLAUS FRICK, PHILIPP MARNITZ AND AXEL MUNK

(a) Angle γ = γ(v, u, x) between the unit normals of
the level lines of u (solid) and v (dashed) at a point
x ∈ Ω.

(b) Indicator function u = χD on a compact set D

with smooth boundary ∂D and corresponding vec-
tor field z with compact support satisfying div (z) ∈
∂J(u)

Figure 1. TV-Regularisation.

In many applications (such as imaging) the true solution u ∈ BV(Ω) is not continuous, as
e.g. if u is the indicator function of a smooth set D ⊂ Ω. The following examples shows that
in this case we still have ∂J(u) ∩ C∞

0 (Ω) 6= ∅. For the analytical details we refer to [48, Ex.
3.74]

Example 4.17. Assume that D ⊂ Ω is a closed and bounded set with C∞-boundary ∂D and
set u = χD. The outward unit-normal n of D then can be extended to a compactly supported
C∞-vector field z with |z| ≤ 1 (cf. Figure 1(b)). Independent of the choice of the extension,
we then have ξ := div (z) ∈ ∂J(u) and ξ ∈ C∞

c (Ω).

Example 4.18 (continue Example 4.11). We consider Ω = [0, 1]2 and V = L2(Ω). Moreover,
we assume that P2 denotes the set of all dyadic partitions of Ω (cf. Example A.9) and that
Φ is the collection of indicator functions w.r.t. elements in P2.

For a function k : R2 → R, we consider the convolution operator on U defined by

(Ku)(x) =

∫

R2

k(x− y)ū(y) dx for x ∈ Ω

where ū denotes the extension of u on R
2 by zero-padding. Assume further that u† is the

indicator function on a closed and bounded set D ⊂ Ω with C∞-boundary ∂D and that
ξ ∈ ∂J(u†) is as in Example 4.17. If the Fourier-transform F(k) =: k̂ of k is non-zero a.e. in
R
2 and if there exists β ∈ (1, 2] such that

(1 + |·|2)−β/2
(

ξ̂/k̂
)

∈ L2(R2) and supp
(

p† := F−1
(

ξ̂/k̂
))

⊂ Ω,

then Assumption 3.8 is satisfied. To be more precise, we have that p† ∈ Hβ−1(Ω) (cf. [2,
Thm. 7.63]) and if there exists a constant κ > 0 such that αk := σ2κk is summable it follows
from Example 4.11 and Lemma 4.14 that

lim sup
k→∞

|Dûk| (Ω)−
∫

Ω ξûk dx

σk
√− log σk

= lim sup
k→∞

∫

Ω 1− cos(γ(ûk, u
†, x)) d |Dûk| (x)

σk
√− log σk

<∞ a.s.

for the SMRE ûk = ûNk
(αk) (where Nk is as in Example 4.11).
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Appendix A. Proofs

A.1. Proofs of the main results. In this section the proofs of the main results, that is
existence, consistency and convergence rates for SMRE, are collected. We start with a basic
estimate for the quantile function qN(·) of the MR-statistic as defined in (10). Unless otherwise
stated, we shall assume that Assumptions 2.1 and 3.5 hold.

Lemma A.1. Assume that TN is an MR-statistic and let α ∈ (0, 1) and N ∈ N. Then,

qN (α) ≤ med(TN (ε)) + L
√

−2 log(2α).

Proof. First, we introduce the function f : RN → R as

f(x1, . . . , xN ) = sup
1≤n≤N

tN (xn, ‖φn‖)

Then, f is Lipschitz continuous with ‖f‖Lip ≤ L. Next, define for 1 ≤ n ≤ N the random

variables εn := ε(φ∗n). Then, (ε1, . . . , εN ) ∼ N (0,Σ) for a symmetric and positive matrix
Σ ∈ R

N×N with ‖Σ‖2 = 1. Hence

TN (ε) = sup
1≤n≤N

tN (ε(φ
∗
n), ‖φn‖) = f(ε1, . . . , εN ) = f(Σ1/2Z),

where Z is an N -dimensional random vector independent standard normal components. In
other words, the statistic TN (ε) can be written as the image of Z under the Lipschitz function

f(Σ1/2·). Applying Borel’s inequality (c.f. [52, Lem. A.2.2]) we find that for all η ∈ R

P (TN (ε)−med(TN (ε)) > Lη) ≤ 1

2
exp

(

−η
2

2

)

.

Now let α ∈ (0, 1). Then,

α ≤ P (TN (ε) > qN (α)) ≤
1

2
exp

(

−1

2

(

qN (α)−med(TN (ε))

L

)2
)

.

Rearranging the above inequality yields the desired estimate. �

We proceed with the proof of the existence result in Theorem 3.6. To this end we use
a standard compactness argument from convex optimisation. For the sake of completeness,
however, we will present the proof.

Proof of Theorem 3.6. Let N ≥ N0 and y ∈ V be arbitrary. Due tu Assumption 2.1 (ii),
D(J) ⊂ U is dense and hence there exists for all given δ > 0 an element u0 ∈ D(J) such

that ‖Ku0 − ỹ‖ ≤ δ, where ỹ denotes the orthonormal projection of y onto ran(K). Since

φn ∈ ran(K) and ‖φ∗n‖ = 1 for all n ∈ N, this implies that

|〈Ku0 − y, φ∗n〉| = |〈Ku0 − y, φ∗n〉| ≤ δ

for all n ∈ N.
Now let σ > 0 and α ∈ (0, 1). Since TN is an MR-statistic (cf. Definition 3.1) we find that

tN (0, r) < 0 for all r ∈ (0, 1]. Thus, according to according to the reasoning above, there
exists u0 ∈ D(J) such that for 1 ≤ n ≤ N

(29) Lσ−1 |yn − 〈Ku0, φ∗n〉| ≤ qN (α) − sup
1≤n≤N

λN (‖φn‖),
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if the right-hand side is positive. To see this, assume that qN (α) ≤ sup1≤n≤N λN (‖φn‖). Since
for 1 ≤ n ≤ N we have that tN (|ε(φ∗n)| , ‖φn‖) ≥ λN (‖φn‖) almost surely according to (9), it
then follows that

P (TN (ε) ≥ qN (α)) ≥ P

(

TN (ε) ≥ sup
1≤n≤N

λN (‖φn‖)
)

= 1.

This is a contradiction to the definition of qN (α) in (10) and thus u0 ∈ D(J) as in (29) can
be chosen. Since s 7→ tN (s, r) is Lipschitz-continuous with constant L and increasing for all
r ∈ (0, 1], we find for 1 ≤ n ≤ N

tN (σ
−1 |yn − 〈Ku0, φ∗n〉| , ‖φn‖) ≤ tN (0, ‖φn‖) + Lσ−1 |yn − 〈Ku0, φ∗n〉| ≤ qN (α).

In other words, there exists at least one element u0 ∈ D(J) such that

u0 ∈ S :=

{

u ∈ U : sup
1≤n≤N

tN (σ
−1 |yn − 〈Ku,φ∗n〉| , ‖φn‖) ≤ qN (α)

}

.

Now, choose a sequence {uk}k∈N ⊂ S such that

lim
k→∞

J(uk) = inf
u∈S

J(u).

This shows that supk∈N J(uk) =: a < ∞. Moreover, we find from (9), that there exist
constants c1, c2 > 0 such that for all 1 ≤ n ≤ N

c1σ
−1 |yn − 〈Kuk, φ∗n〉|+ c2tN (|yn − 〈Kuk, φ∗n〉| , ‖φn‖)

≤ tN (σ
−1 |yn − 〈Kuk, φ∗n〉| , ‖φn‖) ≤ qN (α).

Together with (8), this shows

c1σ
−1 |yn − 〈Kuk, φ∗n〉|+ c2λN (‖φn‖) ≤ qN (α).

Rearranging the inequality above yields

sup
1≤n≤N

|〈Kuk, φ∗n〉| ≤ sup
1≤n≤N

|yn|+
σ

c1

(

qN (α) − c2 inf
1≤n≤N

λN (‖φn‖)
)

=: b <∞.

Summarising, we find that uk ∈ Λ(a + b) for all k ∈ N, as a consequence of which we can
drop a weakly convergent sub-sequence (indexed by ρ(k) say) with weak limit û. Since we
assumed that tN (·, r) is convex for all r ∈ (0, 1], it follows that the admissible region S is
convex and closed and therefore weakly closed. This shows that û ∈ S. Moreover, the weak
lower semi-continuity of J (cf. Assumption 2.1 (ii)) implies

J(û) ≤ lim inf
k→∞

J(uρ(k)) = inf
u∈S

J(u)

and the assertion follows with ûN (α) = û �

In order to prove Bregman-consistency of SMR-estimation in Theorem 3.7, we first establish
a basic estimate for the data error.

Lemma A.2. Let N ≥ N0 and α ∈ (0, 1). Moreover, assume that u† is a solution of (1) and
that ûN (α) is an SMRE. Then, for 1 ≤ n ≤ N

c1σ
−1
∣

∣

∣

〈

Ku† −KûN (α), φ
∗
n

〉∣

∣

∣
≤ TN (ε)− 2c2λN (‖φn‖) + med(TN (ε)) + L

√

−2 log(2α).
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Proof. From Definition 3.4 it becomes clear that

tN (σ
−1
∣

∣

∣

〈

Ku† −KûN (α) + σε, φ∗n

〉∣

∣

∣
, ‖φn‖) ≤ qN (α)

for 1 ≤ n ≤ N . The convexity of tN hence implies that

tN ((2σ)
−1
∣

∣

∣

〈

Ku† −KûN (α), φ
∗
n

〉∣

∣

∣ , ‖φn‖)

≤ 1

2

(

tN (σ
−1 |〈Y −KûN (α), φ

∗
n〉| , ‖φn‖) + tN (|ε(φ∗n)| , ‖φn‖)

)

≤ 1

2
(qN (α) + TN (ε)).

By setting v = (2σ)−1
∣

∣

〈

Ku† −KûN (α), φ
∗
n

〉∣

∣ and r = ‖φn‖ in (9), the above estimate shows
that

c1(2σ)
−1
∣

∣

∣

〈

Ku† −KûN (α), φ
∗
n

〉∣

∣

∣
+c2tN

(

1

2

∣

∣

∣

〈

Ku† −KûN (α), φn

〉∣

∣

∣
, ‖φ∗n‖

)

≤ qN (α) + TN (ε)

2
.

Since tN (v, r) ≥ λN (r) for all v ∈ R
+ and r ∈ (0, 1] (cf. (8)) this implies

c1σ
−1
∣

∣

∣

〈

Ku† −KûN (α), φ
∗
n

〉∣

∣

∣
≤ qN (α) + TN (ε) − 2c2λN (‖φn‖)

for 1 ≤ n ≤ N . Finally, the assertion follows from Lemma A.1. �

With these preparations, we are now able to prove Bregman-consistency.

Proof of Theorem 3.7. By the definition of the SMRE ûk = ûNk
(αk), it follows that

P

(

J(ûk) > J(u†)
)

≤ P

(

TNk
(σ−1
k (Y −Ku†)) > qNk

(αk)
)

= P (TNk
(ε) > qNk

(αk)) ≤ αk

for all k ∈ N. Since
∑∞

k=1 αk <∞, it follows from the Borel-Cantelli Lemma (cf. [49, p 255])
that

(30) P

(

J(ûk) > J(u†) i.o.
)

≤ P (TNk
(ε) > qNk

(αk) i.o.) = 0,

or in other words

(31) P

(

∃k0 ∈ N : J(ûk) ≤ J(u†) for all k ≥ k0

)

= 1.

In particular, it follows that supk∈N J(ûk) =: a <∞ a.s.
Next, we note that supN∈N TN (ε) <∞ a.s. implies that supN∈Nmed(TN (ε)) <∞. Hence,

it follows from Lemma A.2 and (14) that

(32) sup
1≤n≤Nk

∣

∣

∣

〈

Ku† −Kûk, φ
∗
n

〉∣

∣

∣ = O(ηk) a.s.

as k → ∞ which proves (16). In particular, (32) and the fact hat Nk > N0 imply

sup
k∈N

sup
1≤n≤N0

|〈Kûk, φ∗n〉| =: b <∞ a.s.

Summarising, we find that ûk ∈ Λ(a+ b) which is sequentially weakly pre-compact according
to Assumption 3.5 (ii). Choose a sub-sequence indexed by ρ(k) with weak limit û ∈ U . Since
Nk → ∞ as k → ∞ it follows from (32) and (14) that

|〈g −Kû, φ∗n〉| = lim
k→∞

∣

∣

∣

〈

Ku† −Kûρ(k), φ
∗
n

〉∣

∣

∣
= 0 for all n ∈ N.
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Since we assumed that g ∈ spanΦ this shows that Kû = g. Furthermore, according to (31)
there exists (almost surely) an index k0 such that J(ûρ(k)) does not exceed J(u

†) for all k ≥ k0.
Together with the weak lower semi-continuity of J this shows

J(û) ≤ lim inf
k→∞

J(ûρ(k)) ≤ lim sup
k→∞

J(ûρ(k)) ≤ J(u†).

Since u† is a J-minimising solution of (1) we conclude that the same holds for û and that

J(û) = J(u†) = lim
k→∞

J(ûρ(k)).

In particular, for each sub-sequence {J(uk)}k∈N there exists a further sub-sequence that

converges to J(u†). This already shows that

(33) lim
k→∞

J(ûk) = J(u†) a.s.

We next prove that

lim
k→∞

DJ(u
†, ûk) = 0 a.s.

To this end, recall (30), i.e. almost surely there exists an index k0 such that for k ≥ k0 one has
TNk

(ε) ≤ qNk
(αk). In order to exploit strong duality arguments, however, we have to make

sure that the interior of the admissible region is non-empty (Slater’s constraint qualification).
But since we assumed that s 7→ tN (s, r) is (strictly) increasing for each fixed r ∈ (0, 1] it
follows that

P (tNk
(|ε(φ∗n)| , ‖φ∗n‖) = qNk

(αk)) = 0

for all n ∈ N and thus

(34) P (∃k0 : TNk
(ε) < qNk

(αk) for all k ≥ k0) = 1.

By introducing the functional

Gk(v) =

{

0 if TNk
(σ−1
k (Y − v)) ≤ qNk

(αk)

+∞ else,

we can rewrite (11) to

ûk ∈ argmin
u∈U

J(u) +Gk(Ku).

From (34) it follows that u† lies in the interior of the admissible set of the convex problem
(11). In other words, the functionals Gk are continuous at Ku† for k large enough. Therefore
we can apply [29, Chap. II Prop. 4.1] (cf. also Chapter II, Remark 4.2 therein) and choose
an element ξk ∈ V such that

K∗ξk ∈ ∂J(ûk) and − ξk ∈ ∂Gk(Kûk).

The second inclusion and the definition of the sub-gradient show that for all u ∈ U

Gk(Ku) ≥ Gk(ûk)− 〈ξk,Ku−Kûk〉 = 〈K∗ξk, ûk − u〉 .
In particular, u† satisfies TNk

(σ−1
k (Y − Ku†)) = TNk

(ε) < qNk
(αk) and thus Gk(Ku

†) = 0.
This shows

0 ≥
〈

K∗ξk, ûk − u†
〉

.
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Since J(ûk) → J(u†) a.s. (cf. (33)) as k → ∞ we find

0 ≤ lim sup
k→∞

DJ(u
†, ûk) ≤ lim sup

k→∞
DK∗ξk
J (u†, ûk)

= lim sup
k→∞

J(u†)− J(ûk)−
〈

K∗ξ, u† − ûk

〉

≤ lim sup
k→∞

J(u†)− J(ûk) = 0.

This proves (15). �

It remains to prove the convergence rate results in Theorem 3.10. To this end additional
regularity of the true J-minimising solutions u† of (1) has to be taken into account. This is
formulated in Assumption 3.8. With this we get the following basic estimate.

Lemma A.3. Assume that Assumption 3.8 holds and let N ≥ N0 and α ∈ (0, 1). Then,

∣

∣

∣

〈

K∗p†, ûN (α) − u†
〉∣

∣

∣
≤ σ

c1

(

T̃N (ε)− 2c2 inf
1≤n≤N

λN (‖φn‖) + L
√

−2 log(2α)

) N
∑

n=1

|bn,N |

+ ρN

∥

∥

∥
KûN(α) −Ku†

∥

∥

∥
,

where T̃N (ε) = TN (ε) + med(TN (ε)).

Proof. From Assumption 3.8 we find that
∣

∣

∣

〈

K∗p†, ûN (α)− u†
〉∣

∣

∣ =
∣

∣

∣

〈

p†,KûN (α)−Ku†
〉∣

∣

∣

≤
∣

∣

∣

∣

∣

〈

N
∑

n=1

bn,Nφ
∗
n,KûN (α) −Ku†

〉∣

∣

∣

∣

∣

+ ρN

∥

∥

∥
KûN (α) −Ku†

∥

∥

∥

=

∣

∣

∣

∣

∣

N
∑

n=1

bn,N

〈

φ∗n,KûN (α)−Ku†
〉

∣

∣

∣

∣

∣

+ ρN

∥

∥

∥KûN (α) −Ku†
∥

∥

∥

≤
N
∑

n=1

|bn,N | sup
1≤n≤N

∣

∣

∣

〈

φ∗n,KûN (α) −Ku†
〉∣

∣

∣
+ ρN

∥

∥

∥
KûN (α)−Ku†

∥

∥

∥
.

From Lemma A.2 it follows that

sup
1≤n≤N

∣

∣

∣

〈

φ∗n,KûN (α) −Ku†
〉∣

∣

∣ ≤ σ

c1

(

T̃N (ε)− 2c2 inf
1≤n≤N

λN (‖φn‖) + L
√

−2 log(2α)

)

which shows the assertion. �

Combination of the auxiliary result in Lemma A.3 with Theorem 3.7 paves the way to the
proof of Theorem 3.10.

Proof of Theorem 3.10. First, observe that Assumption 3.8 and (19) imply (14), that is, all
assumptions in Theorem 3.7 are satisfied. Therefore {ûk}k∈N is bounded almost surely and
due to the continuity of K we find

sup
k∈N

∥

∥

∥
Kûk −Ku†

∥

∥

∥
<∞ a.s.
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After setting B := supN∈N

∑N
n=1 |bn,N |, which is finite according to Assumption 3.8, it follows

from Lemma A.3 and (19) that

∣

∣

∣

〈

K∗p†, ûk − u†
〉∣

∣

∣ ≤ Bσk
c1

T̃Nk
(ε) + Cηk

for a suitably chosen constant C > 0. Since supN∈N TN (ε) <∞ almost surely, it follows that

sup
N∈N

T̃N (ε) = sup
N∈N

(TN (ε) + med(TN (ε))) <∞ a.s.

Combining the previous two estimates shows
∣

∣

∣

〈

K∗p†, ûk − u†
〉∣

∣

∣ = O(ηk) a.s.

Next, recall from (31) in the proof of Theorem 3.7 that almost surely an index k0 can be
chosen such that for all k ≥ k0 one has J(ûk) ≤ J(u†). This shows that

DK∗p†

J (ûk, u
†) = J(ûk)− J(u†)−

〈

K∗p†, ûk − u†
〉

≤
∣

∣

∣

〈

K∗p†, ûk − u†
〉∣

∣

∣ = O(ηk)

for k ≥ k0. This proves the first estimate in (20). The second estimate follows directly from
Lemma A.2. �

A.2. Technical results. In this section we collect some results on the approximation prop-
erties and entropy estimates for systems of piecewise constant functions defined on a convex
and compact set X ⊂ R

d (d ≥ 1). We start with the following basic

Definition A.4. Let X ⊂ R
d be compact and convex.

(1) For a function g : X → R, the modulus of continuity is defined by

ω(δ, g) = sup
s,t∈X

|s−t|
2
≤δ

|g(s)− g(t)| for δ > 0.

(2) A function g : X → R is called Hölder-continuous with exponent β ∈ (0, 1] if

ω(δ, g) = O(δβ).

The collection of all functions on X that are Hölder-continuous with exponent β is
denoted by Hβ(X).

The following lemma provides an error estimate for the approximation of a continuous
g : X ⊂ R

d → R by piecewise constant functions in terms of the modulus of continuity.

Lemma A.5. Let X ⊂ R
d be a compact and convex set and {A1, A2, . . .} be a collection of

measurable sub-sets of X. Assume that there exists an increasing sequence {nl}l∈N ⊂ N with
n0 = 0 such that

(i) for all nl < i < j ≤ nl+1 one has λd(Ai ∩Aj) = 0.
(ii) and

X =

nl+1
⋃

j=nl+1

Aj
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for all l ∈ N (λd denotes the d-dimensional Lebesgue measure). Then, for all continuous
g : X → R there exist coefficients bmj,l such that

sup
m∈N

m
∑

l=0

nl+1
∑

j=nl+1

∣

∣bmj,l
∣

∣ ≤ ‖g‖∞ and

∥

∥

∥

∥

∥

∥

g −
m
∑

l=0

nl+1
∑

j=nl+1

bmj,lχAj

∥

∥

∥

∥

∥

∥

2

≤ m+ 1
∑m

ν=0 ω
−2(δν , g)

,

where δl := maxnl<j≤nl+1
diam(Aj).

Proof. Let g : X → R be continuous. For l ∈ N we define

gl =

nl+1
∑

j=nl+1

λd(Aj)
−1

∫

Aj

g(τ) dτ · χIj .

Next, we set for m ∈ N and 1 ≤ l ≤ m

alm =
ω−2(δl, g)

∑m
ν=0 ω

−2(δν , g)
∈ (0, 1).

Note, that for all m ∈ N one has
∑

0≤l≤m alm = 1. With this, we define for 0 ≤ l ≤ m and

nl < j ≤ nl+1 the coefficients bmj,l = (alm
∫

Aj
g(τ) dλd(τ))/λd(Aj). Since we assumed that g is

continuous on the compact set X, it follows that
∣

∣

∣bmj,l

∣

∣

∣ ≤ ‖g‖∞ alm and hence

m
∑

l=0

nl+1
∑

j=nl+1

∣

∣bmj,l
∣

∣ ≤ ‖g‖∞ for all m ∈ N.

Moreover, we have for all s ∈ X that
∣

∣

∣

∣

∣

m
∑

l=0

almgl(s)− g(s)

∣

∣

∣

∣

∣

≤
m
∑

l=0

alm





nl+1
∑

j=nl+1

1

λd(Ij)

∫

Aj

|g(τ)− g(s)| dτ · χAj
(s)



 .

After applying Jensen’s inequality and keeping in mind that |s− t| ≤ δl for s, t ∈ Aj and
nl < j ≤ nl+1 it follows that

∫

X

∣

∣

∣

∣

∣

m
∑

l=0

almgl(s)− g(s)

∣

∣

∣

∣

∣

2

ds ≤
m
∑

l=0

alm

∫

X





nl+1
∑

j=nl+1

1

λd(Aj)

∫

Aj

|g(τ)− g(s)|2 dτ · χAj
(s)



 ds

=

m
∑

l=0

alm

nl+1
∑

j=nl+1

∫

Aj

1

λd(Aj)

∫

Aj

|g(τ) − g(s)|2 dτ ds

≤
m
∑

l=0

almω
2(δl, g)

nl+1
∑

j=nl+1

λd(Aj).

Assumptions (i) and (ii) together with the definition of the coefficients alm eventually yield

∫

X

∣

∣

∣

∣

∣

m
∑

l=0

almgl(s)− g(s)

∣

∣

∣

∣

∣

2

ds ≤ m+ 1
∑m

ν=0 ω
−2(δν , g)

.

�
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For the remainder of this section we collect some results concerning the capacity (cf. Defi-
nition 4.7) of (subsystems of) the set Φd of indicator functions on convex and closed sets in
[0, 1]d with d ≥ 1.

Remark A.6. From a practical point of view, it is often more convenient to express (27)
in terms of the ε-covering number N(ε, T ′) of T ′ which is defined as the smallest number of
ε-balls in T needed to cover T ′ (the center points need not to be elements of T ′, though). It
is common knowledge (cf. [52, p.98]) that for all ε > 0

(35) N(ε, T ) ≤ D(ε, T ) ≤ N(ε/2, T ).

We consider Φd ⊂ L2([0, 1]d) as a metric space with the induced L2-metric, i.e. for χP , χQ ∈
Φd we have

d(χQ, χP )
2 = ‖χP − χQ‖2 =

∫

[0,1]d
(χQ − χP )

2 dλd = λd(Q△P ).

The entire set Φd is too large in order to render the test-statistic TN in (26) finite: it was
shown in [11] (see also [26, Chap. 8.4]) that the ε-covering number of Φd of all nonempty,
closed and convex sets contained in the unit ball

{

x ∈ R
d : |x| ≤ 1

}

is of the same order as

exp(ε(1−d)/2) (for d ≥ 2) as ε→ 0+. This proves that there cannot exist any constants A, B
and γ such that (27) holds with Φ = Φd.

For particular classes of convex sets, however, entropy estimates as in (27) are at hand.
The collection Φr of indicator functions on d-dimensional rectangles in [0, 1]d constitutes such
an example:

Proposition A.7. There exists a constant A = A(d) > 0 such that

D(uδ, {φ ∈ Φr : ‖φ‖ ≤ δ}) ≤ A(uδ)−4d

for all u, δ ∈ (0, 1].

Proof. From [52, Thm. 2.6.7] it follows that the ε-covering number of Φr can be estimated by

Aε−2(V −1) where V denotes the Vapnik-C̆ervonenkis (VC)-index of the collection of subgraphs
{(x, t) : t < φ(x)} for φ ∈ Φr. This in turn is equal to the VC-index of the collections of all
rectangles in [0, 1]d which is 2d+ 1 (cf. [52, Ex. 2.6.1]). �

For certain subsets of Φr better estimates can be derived. We close this section with results
for the system Φs and Φ2 of indicator functions on all squares and dyadic partitions in [0, 1]d

respectively. We skip the proofs, for they are elementary but rather tedious.

Proposition A.8. There exists a constant A = A(d) > 0 such that

D(uδ, {φ ∈ Φs : ‖φ‖ ≤ δ}) ≤ Au−2(d+1)δ−d.

for all u, δ ∈ (0, 1].

Proposition A.9. Let d ≥ 2 and consider the system of all dyadic partitions in [0, 1]d, that
is

P2 :=
{

Q ⊂ [0, 1]d : Q = 2−k(i+ [0, 1]d), k ∈ N, i = (i1, . . . , id) ∈ N
d
}

.

Let Φ2 the set of all indicator functions on elements in P2. Then, there exists a constant
A = A(d) > 0 such that

A−1u−2δ−2 ≤ D(uδ, {φ ∈ Φ2 : ‖φ‖ ≤ δ}) ≤ Au−2δ−2

for all u, δ ∈ (0, 1].
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