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In this paper we consider a novel statistical inverse problem on
the Poincaré, or Lobachevsky, upper (complex) half plane. Here the
Riemannian structure is hyperbolic and a transitive group action
comes from the space of 2 × 2 real matrices of determinant one via
Möbius transformations. Our approach is based on a deconvolution
technique which relies on the Helgason Fourier calculus adapted to
this hyperbolic space. This gives a minimax nonparametric density es-
timator of a hyperbolic density that is corrupted by a random Möbius
transform. A motivation for this work comes from the reconstruction
of impedances of capacitors where the above scenario on the Poincaré
plane exactly describes the physical system that is of statistical in-
terest.

1. Introduction. The recovery of objects, for example, densities and
functionals thereof, based on noisy indirect observations, otherwise known as
statistical inverse problems (see e.g. [23]), is scientifically of intense interest.
The literature is vast and we mention only a few selected papers. Most of the
work is concerned with deconvolution on Euclidean spaces. Prominent ap-
proaches are based on wavelet and wavelet-vagulette expansions (see [1], [24]
and [39]) or, on singular value decompositions (see [33], [5] and [26]), where
for the latter block thresholding techniques lead to adaptive estimators,
see [8]. Minimax rates in deconvolution have been investigated by Fan[15],
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and many others. Recently, oracle inequalities have been proved in [9]. The
specific problem of boxcar deconvolution and its link to Diophantine ap-
proximation have been investigated in [21] and [22]. Other methods include
the linear functional strategy, see [16] and variants thereof. Very popular
are Fourier series estimators which have been known for a long time and
often they become particularly simple because on Euclidean spaces they can
be treated with kernel methods, see [15], [19] and [44]. We note that even
though our approach also utilizes Fourier methods on groups, due to the
hyperbolic geometry, the resulting estimator cannot be treated by kernel
methods thus complicating our endeavor considerably.

In this paper we provide a novel methodology for statistical object recov-
ery on the Poincaré upper half plane which we call the problem of Möbius
deconvolution. Here the group of Möbius transformations is given by all
fractions of the form (az + b)/(cz + d) for a complex number z and a 2× 2
matrix with real entries a, b, c, d of determinant 1. The metric which is in-
variant under these transformations is the hyperbolic metric (to be specified
in the next section) which will replace the Euclidean metric in a natural way.
In fact, a key observation is, that this problem can be tackled by generalized
Fourier methods similar in spirit to the Euclidean case. The development of
the theory builds on the foundations laid out in [43, chapter 3]. However,
extending Euclidean arguments to this manifold is challenging since the hy-
perbolic space is non-compact, the (hyperbolic) geometry is non-Euclidean
and the group of Möbius transformations is non-commutative. A fundamen-
tal technical difficulty comes from a lack of a dilation property that does
not extend over from the Euclidean case. Despite these difficulties, a generic
element is the Riemannian structure on a manifold, on which a Laplacian
can then be defined. This together with the generic Euclidean approach as
outlined in [33] will be the foundation to what will be presented below.

In addition to the theoretical interest of this novel scenario of Möbius
deconvolution, there are important practical applications as well. One par-
ticular situation occurs in alternating current circuit analysis and design
whenever signals travel through circuit elements as well as whenever geome-
tries of waveguides change. A simple example of the latter is a connector
to a coaxial cable, say. Here, the so-called ‘reflections’ are modeled on the
complex unit disk and the corresponding ‘impedances’ occur in a complex
half plane. Usually, these reflections or impedances are not directly visible
but observed through other electrical devices, such as a ‘two-port’ which in
turn is modeled by Möbius transformations. In particular, a class of so called
‘lossless’ two-ports can be identified with 2 × 2 matrices of determinant 1.
One particular aspect of Möbius deconvolution is related to the temporal de-
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cay of impedances of capacitors whereby the above scenario on the Poincaré
plane exactly describes the physical system that is of statistical interest.
Other applications include the field of electrical impedance spectroscopy, as
well as electrical impedance tomography. In the former, measuring varying
impedances due to variable ion transport through biological membranes is
currently of high interest in view of pharmaceutical drug design, see [14] as
well as [41]. In the latter in a non-invasive and radiation-free way, medical
imaging can be cost effectively accomplished by measuring skin-impedances,
cf. [6]. Indeed, for successful reconstruction, control of various errors is of
paramount importance, see [17]. There is also work in higher dimensional
hyperbolic spaces with respect to medical imaging, see for example [29].

In statistics there is also some recognition of the Poincaré plane and its hy-
perbolic geometry particularly so because the parameter space of the Gaus-
sian distribution (with unknown mean and standard deviation) is this space.
Furthermore, it has been shown by several authors that the Riemannian met-
ric derived from the Fisher information is exactly hyperbolic, see [25, 32] for
details. Obviously, location and dispersion parameters of arbitrary distri-
butions and random estimators thereof can be viewed within the Poincaré
plane. Curiously here, the family of Cauchy distributions play a specific role
as being equivariant under Möbius transformations, see [34, 35] for this and
its consequences for parameter estimation. Based on the above, techniques
from the hyperbolic geometry of the Poincaré plane are developed exclu-
sively from a parametric point of view, cf. [36]. As far as the authors are
aware, our contribution is the first attempt at nonparametric developments.

We now summarize the paper. Section 2 is a preliminary section which
introduces the notation along with the Helgason-Fourier analysis needed for
this paper. Following this, Section 3 presents the main results. In Section
4 we focus on computational aspects of Möbius deconvolution illustrating
the ideas through simulations. To this end we introduce in addition to the
hyperbolic Gauss the hyperbolic Laplace distribution. In Section 5 we go
into explicit detail with respect to the Möbius deconvolution problem for
statistically recovering the temporal decay of impedances of capacitors as
outlined two paragraphs above. We will briefly sketch the background, how-
ever, if the reader is well versed in this field, then one can start from Section
5.4 where we examine a data set that was aquired through collaboration
with the University of Applied Sciences (Fulda, Germany) that depicts the
physical system of this paper. In particular, we are able to identify random
impedances when only their impedances viewed through random capacitive
two-ports are given. Following this, technical details of the Poincaré upper
half plane and the proofs of the main theorems are collected in appendices.
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As usual for two function g and f , write f ³ g if f(x) = O
(
g(x)

)
and

g(x) = O
(
f(x)

)
for x→∞ or, x→ 0, depending on context.

2. Preliminaries. In the following let R and C denote the real and
complex numbers, respectively. Furthermore, the group of real 2×2 matrices
of determinant one is denoted by

SL(2,R) :=

{
g =

(
a b
c d

)
: a, b, c, d ∈ R, ad− bc = 1

}
.(2.1)

This defines the group of Möbius transformations Mg : C → C by setting
for each g ∈ SL(2,R),

(2.2) Mg(z) :=
az + b

cz + d
,

where Mg Mh = Mgh for g, h ∈ SL(2,R). Let

H := {z ∈ C : Im(z) > 0}(2.3)

be the upper half plane where ‘Re(z)’ and ‘Im(z)’ denote the real and imagi-
nary parts of a complex number z, respectively. Then for each g ∈ SL(2,R),
the Möbius transformation Mg is a bijective selfmap of H. Moreover, for
arbitrary z, z′ ∈ H there exists a (in general not unique) g ∈ SL(2,R) such
that z′ = Mg(z′).

The action of SL(2,R) on H which is rather involved is further discussed
in Appendix A. It will be used in the proof of the lower bound in Appendix
B.3. For the following we note that Möbius transformations preserve the
family of vertical lines and circles centered at the real axis, cf. Figure 1.
This is a consequence of the fact, that Möbius transformations leave the
cross ratio

c(z1, z2, w1, w2) =
(z1 − w1)(z2 − w2)
(z1 − z2)(w1 − w2)

invariant. For a detailed introduction, cf. [38], Chapter 3.
The deconvolution, or statistical inverse problem of reconstructing the

density of a random object X on H, of which we only see a version Y cor-
rupted by an independent random error ε on SL(2,R) can now be formulated
as

Y = Mε(X) .(2.4)

A natural geometry for (2.4) is the given by the hyperbolic distance on H

d(z, z′) = log
1 +

√
|c(z, z′, z′, z)|

1−
√
|c(z, z′, z′, z)|
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x

y
Fig 1. The shortest connection (a
geodesic segment) between two points
z, z′ ∈ H in the hyperbolic geometry is
either a vertical line segment (if Re(z) =
Im(z)) or an arc on the circle through z
and z′ with center on the real axis.

since for this distance the space of isometries of H is precisely the group
of Möbius transformations, meaning that d

(
Mg(z),Mg(z′)

)
= d(z, z′) for all

g ∈ SL(2,R) and z, z′ ∈ H. Here, z = x− iy denotes the complex conjugate
of z = x+ iy. The corresponding hyperbolic measure is chosen such that

(i) its area element dz agrees with the area element dxdy of Lebesgue
measure at z = i and

(ii) it is invariant under Möbius transformations.

In consequence, the Radon-Nikodym derivative of the hyperbolic area ele-
ment with respect to the Lebesgue area element at w = u + iv is given by
v−2 which is the determinant of the Jacobimatrix

(
ux uy

vx vy

)

of a Möbius transformation M yielding M(i) = (ai + b)/(ci + d) = u + iv.
This can be verified with the complex derivative M ′(i) = (ci+d)2 = ux+ivx

and the Cauchy differential equations uy = −vx, vy = ux, cf. [43], Chapter
III.

At z = x+ iy ∈ H we have hence the hyperbolic area element

dz :=
dx dy

y2
.(2.5)

In addition, in order to properly define below in (2.6) a convolution of a
density on H with a density on SL(2,R), a compatible bi-invariant Haar
measure dg on SL(2,R) is chosen in Appendix A.

Hence, X and Y are random complex numbers in the upper half plane H
equipped with the hyperbolic geometry and ε is a random isometric self-map
of H applied to X by (2.2). The problem of the Möbius deconvolution can
be made precise as follows. A density on the upper compex half plane with
respect to the hyperbolic measure is called a hyperbolic density. Densities
on SL(2,R) are taken with respect to the Haar measure dg.
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Problem 2.1. Under the model (2.4) estimate nonparametrically, the
hyperbolic density fX of X from the hyperbolic density fY of Y when the
density fε on SL(2,R) is known.

We note that this setup assumes underlying i.i.d. X1, . . . , Xn corrupted
by i.i.d. errors ε1, . . . , εn, also independent of Xj (j = 1, . . . , n) giving ob-
servations Yj = Mεj (Xj), j = 1, . . . , n.

We will base our work using Fourier, or singular value decomposition
methods that are common for the Euclidean case, see [33], [5] and [26], and
the fact that the densities of (2.4) are related by the convolution

fY (z) = (fε ∗ fX)(z) =:
∫

SL(2,R)
fε(g)fX

(
Mg−1(z)

)
dg .(2.6)

This fact is a consequence of (A.4) in Appendix A.
From here on, we will make the abbreviation SL(2) := SL(2,R), as well

as to write (2.2) as simply g(z) or gz for g ∈ SL(2) and z ∈ H whenever the
context is clear.

2.1. Fourier analysis on the Poincaré plane. For purposes of Möbius
deconvolution for Problem 2.1 we sketch the Helgason formulation of hyper-
bolic Fourier calculus which can be found in more detail in [43, Chapter 3.2].
The Helgason-Fourier transform of f ∈ C∞c (H) with the latter being the
space of real valued functions with compact support in H with derivatives
of all orders, is defined as the function

Hf(s, k) :=
∫

H
f(z)

(
Im

(
k(z)

))s
dz

analytic for (s, k) ∈ C× SO(2) where overline denotes complex conjugation.
Here,

k = ku =

(
cosu sinu
− sinu cosu

)
∈ SO(2) ⊂ SL(2)

is naturally identified with u ∈ [0, 2π) acting on H as the Möbius transfor-
mation

Mk(z) =
z cosu+ sinu
cosu− z sinu

,

as defined in (2.2), cf. Appendix A. Note that for all s ∈ C, z = x+ iy → ys

and z →
(

Im
(
k(z)

))s
are eigenfunctions with corresponding eigenvalues

s(s− 1) of the Laplace-Beltrami operator

(2.7) ∆ = y2

(
∂2

∂x2
+

∂2

∂y2

)
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on H. With the spectral measure

dτ =
1

8π2
t tanh(πt) dt du

on R× SO(2) the inverse Helgason-Fourier transform is given by

f(z) =
∫

t∈R

∫ u=2π

u=0
Hf

(
1
2

+ it, ku

) (
Im

(
k(z)

)) 1
2
+it

dτ ,(2.8)

where i2 = −1. The following result justifies these definitions: mapping to
the Helgason-Fourier transform extends to an isometry L2(H, dz) → L2(R×
SO(2), dτ), that is we have the Plancherel identity

∫

H
|f(z)|2 dz =

∫

t∈R

∫ u=2π

u=0

∣∣∣∣Hf
(

1
2

+ it, ku

)∣∣∣∣
2

dτ ,(2.9)

where we denote the space of square integrable functions over some space
by L2. We note that f ∈ L2(H, dz) is SO(2)-invariant if and only if Hf ∈
L2(R×SO(2), dτ) is SO(2)-invariant. Thus, for numerical computations [43,
p.141 and p.149], for an SO(2)-invariant function f , transforms and inverse
transforms can be considerably simplified:

Hf
(

1
2

+ it

)
= 2π

∫ ∞

0
f(e−ri)P− 1

2
+it(cosh r) sinh r dr ,

f(e−ri) =
1
4π

∫ ∞

−∞
Hf

(
1
2

+ it

)
P− 1

2
+it(cosh r) t tanh(πt) dt(2.10)

with the Legendre function

Pa(c) :=
1
2π

∫ 2π

0

(
c+

√
c2 − 1 cos(φ)

)a
dφ .

Throughout this work we will use the following assumptions.

(D.1) All densities are square-integrable:

fX , fY ∈ L2(H, dz), fε ∈ L2(SL(2), dg) ;

(D.2) The error density fε is bi-invariant:

fε(agb) = f(g) ∀g ∈ SL(2), a, b ∈ SO(2) ;

(D.3) fX ∈ Fα(Q) for a Sobolev ball

Fα(Q) = {f ∈ L2(H, dz) : ‖∆α
2 f‖2 ≤ Q}

with α > 1 and Q > 0.
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Here, ∆
α
2 f denotes the unique function h ∈ L2(H, dz) with Hh(s, k) =

s(s− 1)
α
2Hf(s, k).

As detailed in Appendix A, the isometry SL(2)/SO(2) → H : gSO(2) 7→
Mg(i) preserves the action of SL(2). Hence a density fε satisfying (D.2) can
be regarded as an SO(2)-invariant mapping H→ R. In particular, in case of
(D.1) and (D.2), the Helgason-Fourier transform Hfε(z) is well defined, we
have

HfY (s, k) = H(fε ∗ fX)(s, k) = Hfε(s) · HfX(s, k) ,(2.11)

[43, p. 149]. One final assumption to be made is the following.

(D.4) ∃ constants β, γ, C1, C2 > 0 such that

C1 exp

{
−|s|

β

γ

}
≤ |Hfε(s)| ≤ C2 exp

{
−|s|

β

γ

}
∀s =

1
2

+ it, t ∈ R .

As an example, the hyperbolic Gaussian-distribution, see Section 3 below,
satisfies (D.4).

Of course, any density on the upper half plane (or on the unit disk)
can be rescaled with respect to hyperbolic measure. One example, using the
normalized squared absolute cross ratio c(z, θ, z, θ), has been kindly provided
by one of the referees:

1
π

(
|z − z||θ − θ|
|z − θ|2

)2

dz =
4σ2dx dy

π
(
(x− µ)2 + (y + σ)2

)2 , z = x+ iy ∈ H

with a hyperbolic parameter θ = µ + iσ ∈ H; e.g. one could take x and y
as suitable estimators of the location and dispersion parameters of another
distribution, cf. [34, 35]. Note that this density is not SL(2)-invariant, rather
it is equivariant with respect to the SL(2) action on both variable z and
parameter θ. In the context of this research one is interested also in SL(2)-
invariant densities. Such can be generated from suitable densities on y ∈
[1,∞). Moreover, SL(2)-invariant functions additionally fulfilling (D.3) can
be obtained by applying the inverse Helgason transform (2.10) to suitable
functions on s = 1

2 + it, −∞ < t < ∞. If the function is even in t, then
the inverse Helgason transform thus obtained is real. It is, however, not
necessarily non-negative. As a consequence of P−1/2+it(cosh r) > 0 for t =
0, non-negativity can be obtained if the function tends sufficiently fast to
zero as t → ∞. Numerical experiments indicate that one may consider for
τ > −1/4 and α > 1 a suitable multiple of a power of a Cauchy density in
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the spectral domain

Hhα,τ (s, k) ∝ 1(
τ − s(s− 1)

)α =
1(

τ + 1/4 + t2
)α(2.12)

giving an invariant hyperbolic Laplace density hα,τ ∈ Fα(Q). This density
can be lifted as in Appendix A giving a bi-invariant density h̃α,τ on SL(2).
In particular h̃α1,τ1 ∗ hα2,τ2 ∈ Fα1+α2(Q) for τ1, τ2 > −1/4, α1, α2 > 1 and
suitable Q > 0.

We will not elaborate further on this topic, but we mention that motivated
by our research and by many potential applications, the task of generalizing
non-Gaussian distributions to hyperbolic spaces may lead to a new field of
challenging research.

3. Main results. Let us begin with the definition of the Helgason-
Fourier transform of the generalized derivative of the empirical distribution:
f

(n)
Y (z) = 1

n

∑n
j=1 δYj (z) where Y1, . . . , Yn is a random sample in H

Hf (n)
Y (s, k) =

1
n

n∑

j=1

(
Im

(
k(Yj)

))s
.(3.1)

Obviously

EHf (n)
Y (s, k) = HfY (s, k) ,(3.2)

where ‘E’ denotes expectation. We estimate the Helgason transform of an
SO(2)-invariant density as well by an SO(2)-invariant estimator:

Hf (n)
Y (s) := Hf (n)

Y (s, I) =
1
n

n∑

j=1

Im(Yj)s(3.3)

with the identity element I ∈ SO(2).
From the Helgason-Fourier transform (3.1) we build an estimator by using

(2.11) and the inverse Helgason-Fourier transformation (2.8) with a suitable
cutoff T > 0:

f
(n,T )
X (z) :=

∫

|t|<T

∫ u=2π

u=0

Hfn
Y

(
1
2 + it, ku

)

Hfε

(
1
2 + it

)
(

Im
(
ku(z)

)) 1
2
+it

dτ(3.4)

for the density fX . This is well defined if Hfε 6= 0 is bounded from below
on compact sets which is guaranteed under assumption (D.4). Even though
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we consider in this section the general case, we note in view of (3.3) and
(2.10) that for the estimation of an SO(2)-invariant density fX , we can use
the simpler

f
(n,T )
X (e−ri) :=

1
4π

∫ T

−T

Hfn
Y

(
1
2 + it

)

Hfε

(
1
2 + it

) P− 1
2
+it(cosh r) t tanh(πt) dt .

As the first main result we have

Theorem 3.1. For fX , fY and fε satisfying (D.1) - (D.3), and Hfε 6= 0
bounded from below on compact sets, there is a constant C > 0 not depending
on T, α,Q and n such that

E‖f (n,T )
X − fX‖2 ≤ C sup

|t|≤T

∣∣∣∣Hfε

(
1
2

+ it

)∣∣∣∣
−2 T 2

n
+ QT−2α ,

as n→∞.

If the corruption by error is smooth enough or equivalently if the asymp-
totic rate of the decay of its Helgason-Fourier transform is suitable, the
cutoff T can be adjusted appropriately to obtain the following rates.

Theorem 3.2. Suppose that fX , fY and fε satisfy (D.1) - (D.4). Then
by letting T =

(γ
2 logn− ηγ

2 log(logn)
) 1

β where η ≥ 2(α+ 1)/β

E‖f (n,T )
X − fX‖2 ≤ Q

(
γ

2
logn

)− 2α
β

(1 + o(1)) ,

as n→∞ where α is from condition (D.3).

The optimal rate of a power of logn in case of error smoothness (D.4)
is in agreement with Euclidean results. On the real line, condition (D.4)
corresponds to supersmooth errors for which Fan [15] establishes the same
type of rate. This rate has also been established by Butucea and Tsybakov [7]
in case of additionally supersmooth signals. For a scenario corresponding to
our setup on compact Lie groups, see [28] and more general on any compact
manifold, see [27], where similar rates have been found.

The above results are minimax in the sense that the rate of convergence
is matched by a corresponding lower bound. We have the following.
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Theorem 3.3. Suppose that fX , fY and fε satisfy (D.1) - (D.4). Then
for some constant C > 0, we have

inf supE‖fn − fX‖2 ≥ C (logn)−
2α
β ,

as n → ∞, where the infimum is taken over all estimators fn and the
supremum over all fX ∈ Fα(Q).

Recall the Gaussian density gρ on the real line with zero mean and vari-
ance 2ρ > 0 can be characterized as yielding the solution of the heat equation

(∆− ∂ρ)u = 0

with initial condition u(z, 0) = f(z) by

(3.5) u(z, ρ) = (gρ ∗ f)(z) .

Similarly on H, the density gρ giving the solution of the heat equation by
(3.5) is also called the Gaussian density for H. Here, the Laplace-Beltrami
operator ∆ would be defined by (2.7), and the convolution in (3.5) would
be defined as in (2.6). Using (2.11) for SO(2)-invariant f and u it is easily
seen that Hgρ(s) ∝ es(s−1)ρ. Consequently, in terms of assumption (D.4),
the Gaussian density satisfies β = 2 and γ = 1/ρ. We have the following
result.

Corollary 3.4. For fX and fY satisfying (D.1) - (D.3) consider cor-
ruption according to a Gaussian distribution fε = gρ. Then by letting
T 2 = 1

4ρ [logn− η log(logn)] where η ≥ 1 + α,

E‖f (n,T )
X − fX‖2 ³ (logn)−α ,

as n→∞ gives the optimal rate of convergence.

4. Computations and simulations. In this section we elaborate on
computational aspects, simulations, and in particular discuss the Gaussian
distribution on H. We begin by first discussing methods for choosing the
truncation parameter.

4.1. Estimating truncation parameter. A popular technique for data-
driven choice of a truncation parameter is least squares cross-validation
(see [13] or [45, chapter 3.3]). We will discuss how that technique can be
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adapted to our setting. For a given random sample Y1, . . . , Yn, an optimal
cutoff T = T ∗n > 0 minimizes the mean integrated squared error

T ∗n = argminT>0

{
E

(∫

H

(
f

(n,T )
X (z)

)2
dz

)
− 2E

(∫

H
fX(z)f (n,T )

X (z) dz
)}

.

Instead of deriving a minimizer of the above we content ourselves with min-

imizing a suitable estimator. Obviously,
∫
H

(
f

(n,T )
X (z)

)2
dz is an unbiased

estimator of the first term. Let

f
(n,T,l)
X :=

∫ T

−T

∫ 2π

0

1
n− 1

∑

j 6=l

Im
(
k(Yj)

) 1
2
−it Im

(
k(Yl)

) 1
2
+it dτ

Hfε

(
1
2 + it

)

and therefore choose

Tn := argminT>0

(∫

H

(
f

(n,T )
X (z)

)2
dz − 2

n

n∑

l=1

f
(n,T,l)
X

)

which is an estimate for an optimal T = T ∗n .
Alternatively, we can use the result of Corollary 3.2 and set

T =
[
γ

2
log n− γ

2
log(logn)η

] 1
β

.

We are aware of the fact that cross-validation in general suffers from too
large variability and, of course, more involved parameter selection methods
could be generalized here as well (see for example [11], [12], [37],[40] and [42]
among many others). However, we do not pursue this issue any further in
this paper.

4.2. Simulation of the Gaussian distribution. For simulation we use the
analog gρ of the Gaussian distribution on the upper half plane introduced
above. Recall that by a more subtle argument, see [43, p. 153 and 155], the
inverse transform is obtained in polar coordinates (for any k ∈ SO(2)):

gρ
(
k(e−ri)

)
= gρ(e−ri) =

1√
4πρ3

√
2 e−ρ/4

∫ ∞

r

be−b2/4ρ db√
cosh b− cosh r

=:
g̃ρ(r)

2π sinh r
,

that is for a ρX -Gaussian distributed SO(2)-invariant random object X on
H and an SO(2)-invariant subset A ⊂ H,

P{X ∈ A} =
∫

{r≥0:e−ri∈A∩H}
g̃ρX (r) dr ,
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see (A.2). Hence, in order to simulate X from an invariant Gaussian distri-
bution we simulate rX ∼ g̃ρX on R and uX uniform on [0, 2π); then

X = kuX ◦RrX (i) = kuX (e−rX i) .

Note that gρX ∈ Fα(Q) for all α > 0 with suitable Q = Qα > 0. That is fX

satisfies condition (D.3).
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Fig 2. Three simulated data samples of n = 100 (top row), n = 1000 (middle row)
and n = 10, 000 (bottom row) independent random data points on the upper half plane.
Left row: original independent invariant ρX-Gaussian distributed data points, right row:
transformed data points under independent n bi-invariant ρε-Gaussian distributed SL(2)
transformations (right).

Similarly, in order to simulate ε from a bi-invariant ρε-Gaussian distribu-
tion on SL(2) we consider rε ∼ g̃ρε and kuε , ku′ε independent and uniform on
[0, 2π). Then

Y = kuε ◦Rrε ◦ ku′ε(X) ,

see (2.4) and (A.3).
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According to Theorem 3.1, (3.1) and (3.4) we can then estimate the den-
sity fX by

f
(n,T )
X (z) =

∫

|t|<T

∫ u=2π

u=0

1
n

∑n
j=1

(
Im

(
ku(Yj)

)) 1
2
−it

e−(t2+ 1
4)ρε

(
Im

(
ku(z)

)) 1
2
+it

dτ .

By SO(2)-invariance it suffices to estimate for z = e−ri only, hence we
estimate g̃ρX (r) by

f̃
(n,T )
X (r) := 2π sinh r f (n,T )

X (e−ri)

with the integral simplified as in (2.10).
In the following simulation we consider an original distribution with ρX =

0.1 under a corrupting Möbius transformation distributed with ρε = 0.05.
From this we create three data sets with different sample sizes: n = 100, 1000
and 10, 000. Figure 2 shows the original X1, . . . , Xn and the corrupted data
Y1 = Mε1(X1), . . . , Yn = Mεn(Xn) in cartesian coordinates in the upper half
plane. In Figure 3 we show the corresponding densities times hyperbolic
area on [0,∞). Note that these are then densities in the usual sense, that
is their integrals with respect to Lebesgue measure on [0,∞) are 1. The
density estimation by deconvolution has been obtained from the observed
data Y1, . . . , Yn by the proposed method. For the deconvolution, since only
the optimal rate

T ≈
(

1
4ρε

log n
) 1

4

=





2.19 (n = 100),
2.42 (n = 1000),
2.61 (n = 10, 000)

is guaranteed by Corollary 3.4, we have used the estimate via least squares
cross-validation as proposed in Section 4.1.

4.3. Simulation of the Hyperbolic Laplace distribution. Using formula
(2.10) directly with (2.12) to simulate Laplace (α, τ)-deviates for Laplace
distributed SL(2) error corruption, we obtain results similar to the ones
reported above. Due to the oscillation of the Legendre polynomials to be
evaluated, however, the computational time is much longer. In analogy to
Theorem 3.2 we have the upper bound O(n−

α
1+α ) for the choice T = n

1
2(α+1) .

5. Impedance density estimation in AC driven circuits. For the
convenience of the reader, we begin this section with a review of classical
electrical engineering theory specifically taylored to the application of hy-
perbolic statistics in mind. For the underlying engineering terminology we
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Fig 3. Left side: population and empirical densities times hyperbolic area (corresponding to
g̃ρX (r) and g̃ρX+ρε(r) ) along the first polar coordinate r of the data depicted and described
in Figure 2. Top row: n = 100, middle row: n = 1000, and bottom row: n = 10, 000. Right
side: additionally the respective estimate times hyperbolic area: g̃

(n,T )
X (r) of the original

density by Möbius deconvolution. The corresponding optimal cutoff parameters T = Tn

have been estimated by least squares cross-validation as in Section 4.1.

refer to standard textbooks such as [10]. More mathematical approaches are
explained in [20], [43, chapter 3], and [2]. In the following we rephrase this
problem in the language of statistics. We are then able to identify a typical
problem as a novel inverse problem in hyperbolic space.

Here, general Möbius transformations appear with complex coefficients
a, b, c, d in (2.1). Moreover, hyperbolic space materializes in the form of the
upper half plane H, the open unit disk D := {w ∈ C : |w| < 1}, and the
open right half plane −iH := {ζ ∈ C : Re(ζ) > 0}. With the notation of
(2.3), all are related to one another by Möbius transformations, the first is
usually called the Cayley transform:

(5.1) w = C(z) :=
z − i

z + i
, z = i

1 + w

1− w
, iζ = z, w =

ζ − 1
ζ + 1

, ζ =
1 + w

1− w
.
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5.1. Complex impedance in AC circuits. We begin our discussion with a
one-port, a single load impedance serially inserted in a circuit of a voltage
generator and its impedance, see Figure 4(a). Recall that voltages, currents
and impedances in an alternating current (AC) circuit are modeled by com-
plex numbers, otherwise, a loss of alternating real voltage u : t 7→ u0 cos(ωt)
over a load giving a phase shifted current j : t 7→ j0 cos(ωt + φ) would re-
sult into an awkward time dependent real resistance u(t)/j(t). In complex
notation, the ratio of voltage u(t) = u0e

iωt over current j(t) = j0e
i(ωt+φ) is

constant and called impedance:

Z :=
u(t)
j(t)

=
u0

j0
eiφ ∈ C .

Its real part is called resistance, the imaginary part is the reactance. For
example under an AC-voltage u0 cos(ω)t, a serial circuit of a resistor with
direct current DC-resistance R and an ideal capacitor with capacitance C
features an inverse impedance (called admittance) of Z−1 = R−1 + iωC. In
fact, in realistic scenarios, the resistance is positive, thus Z ∈ −iH and the
boundary (the imaginary axis) corresponds to ideal (lossless) impedances.

ZG

ZLuG

(a) Serial circuit with generated voltage
uG, generator impedance ZG and load
impedance ZL.

Z G

Z Lu G Z C

a 1 a 2

b 1 b 2

a L

b L

(b) Circuit of Figure 4(a) with a two-port in-
serted between generator and load, depicting in-
put (a·) and output waves (b·) at the two-port
and at load.

Fig 4. Basic circuit models for signal processing. Left: one-port, right: two-port.

5.2. Reflections and characteristic impedance. We now assume that our
circuit features a generator generating the open circuit voltage uG with in-
ternal impedance ZG and a load with impedance ZL as depicted in Figure
4(a) with total impedance Z = ZG+ZL according to Kirchhoff’s circuit law.

Inspired by the wave model, voltage loss uL over and current flow jL along
the load is considered to be the superimposition of an incoming (denoted by
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“+”) and a reflected wave (denoted by “−”) in such a way that each single
wave satisfies Ohm’s law with a common characteristic impedance Zc. Since
the reflected wave propagates into a direction opposite to the incoming wave,
we have the ansatz

uL = u+
L + u−L and jL = j+L − j−L

with Ohm’s law

u+
L

j+L
= Zc =

u−L
j−L

and
u+

L + u−L
j+L − j−L

= ZL .

The specific decomposition or equivalently the choice of Zc is arbitrary in
many applications and it will be guided by imposing additional conditions.
Usually Zc is taken positive, or at least chosen such that the normalized
impedances Z̃ := Z/Zc will be again of positive real part, that is Z̃ ∈ −iH.
The analog for the right half plane of the Cayley transform, (5.1), yields
then reflection coefficient of the load

ΓL :=
u−L
u+

L

=
j−L
j+L

=
ZL − Zc

ZL + Zc
=

Z̃L − 1

Z̃L + 1
= C(−iZ̃L)(5.2)

as an element of the unit-disk D. Of course, there is no reflection if ZL = Zc.

5.3. The chain matrix. We are now in a position to investigate the
generic scenario of signal transmission through a two-port, see Figure 4(b).
Among others due to linearity of the Maxwell equations, voltages and cur-
rents (j1 = a1, j2 = a2) on either side of the two-port have a linear relation-
ship governed by a so called impedance matrix Z:

Z

(
j1
j2

)
=

(
Z11 Z12

Z21 Z22

) (
j1
j2

)
=

(
u1

u2

)
.

For given circuit parameters, the coefficients of the impedance matrix can
be easily computed, for example Z11 = u1

j1

∣∣
j2=0

is the well known input-
impedance (by inserting a load of infinite impedance the right hand side
becomes an open circuit with j2 = 0). In most applications it turns out that
Z is symmetric, the corresponding two-port is then called reciprocal.

One easily verifies that the chain matrix which is usually denoted by q
(the Russian letter “cha”) relating (u2,−j2) with (u1, j1) is given by

q

(
u2

−j2

)
=

1
Z21

(
Z11 det(Z)
1 Z22

) (
u2

−j2

)
=

(
u1

j1

)
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(in contrast to the mathematical literature, the engineering literature tends
to use a transmission matrix relating (u2, j2) with (u1, j1) instead, with
reversed j2 = −a2 in Figure 4(b)). An advantage of the chain matrix over the
impedance matrix is that the former is well defined for the limit Z21 →∞,
for example for an ideal coil in series with the load.

Again, only using lossless (that is purely imaginary) impedances (such as
ideal inductances, transformers and capacitors) guarantees that the corre-
sponding chain matrix has real diagonal coefficients and imaginary coeffi-
cients elsewhere. Moreover, for cascaded two-ports (that is several two-ports
in serial connection), the resulting chain matrix is just the product of the in-
dividual chain matrices. By linear algebraic decomposition of SL(2,R) it can
be shown that every lossless two-port of lumped elements can be modeled by
cascading combinations of two-ports involving only inductances, transform-
ers and capacitors, see [20, p. 18]. Note that j2 = a2 = −aL = −jL in Figure
4(b). Hence q defines a Möbius transformation relating load impedance with
the input impedance of the two-port:

Mq(ZL) =
q11ZL + q12

q21ZL + q22
=

q11u2 − q12j2
q21u2 − q22j2

=
u1

j1
= Z1 .

Here, Z1 = u1/j1 is the impedance of the load ZL = −u2/j2 as viewed
through the two-port. As a consequence we make the following remark.

Remark 5.1. Serial cascading of lossless two-ports is equivalent to the
action of the Möbius group SL(2,R) on the i-fold iZL ∈ H of load impedances
ZL.

We are thus led to the statistical inverse problem (cf. Problem 2.1).

Problem 5.2. Estimate the load impedance ZL when only the impedance
Z(1) viewed through the two-port can be observed where ε = I ◦Mq ◦ I−1 ∈
SL(2) is assumed to be of known distribution. Here, I : C → C : z → iz
denotes the multiplication with i.

In conclusion we note that one may as well consider normalized impedances
Z̃ = Z/Zc or equivalently reflection coefficients, (5.2). Then the mapping for
the normalized impedances goes as follows

Z1

Zc
=

q11
ZL
Zc

+ q12
Zc

Zcq12
ZL
Zc

+ q22

.
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5.4. Estimating resistances seen through electrolyte capacitors. It is well
known that over the duration of years properties of electronic equipment
change due to wear-out effects of various elements. In particular, electrolyte
capacitors have a tendency to loose capacitance. In effect, older electronic
devices deviate from original calibration and may feature non-desired side-
effects, for example field strengths of transmitters may grow stronger than
tolerated.
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Fig 5. Random resistors seen through random capacitors. Left top: original measurements.
Right top: hyperbolic polar mesh points at which the Möbius deconvolution was computed.
The bottom left image depicts the deconvolved densities times hyperbolic measure along
fixed angles. The red and blue line goes along the red and blue mesh points. For verification,
the one-dimensional distribution of the resistors seen through the single mean capacitor is
depicted in the bottom right image.

In an application of our method we consider a series of n = 150 mea-
surements of random resistors of 15 Ω provided with an accuracy of 10
percent by the manufacturer (they range from 13.5 Ω to 17.7Ω) viewed
through 30 random capacitors at 1 kHz taken at the Department of Elec-
trical Engineering, University of Applied Sciences, Fulda, Germany. These
originally identical lossy 22µF capacitors have been collected from over ten
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year old electronic gear. For the impedance measurements the LCR-Bridge
“HM8118” has been used that comes with an accuracy of 0.3% guaran-
teed by its producer HAMEG. We model the i-fold of the impedance Z of
these capacitors with a hyperbolic Gaussian-distribution at unit impedance,
that is Z i = ZcMρε(i) with a suitable characteristic impedance Zc and
a random hyperbolic Gaussian ρ-distributed Möbius transformation Mρε .
Measurement of the capacitors gives ρε ≈ 0.0004 corresponding to a spread
of roughly 4.8%. Our goal lies in the reconstruction of the one-dimensional
resistances R solely from the observations

W =
1

1
R + 1

Z

=
ZR

Z +R

and the known dispersion ρε of the corruption as posed in Problem 5.2. To
this end we apply Möbius deconvolution to the model

W

Wc
i = Mε

(
R

Rc
i

)

with suitable characteristic impedances Wc and Rc. For this application the
Euclidean means have been chosen as characteristic impedances. Alterna-
tively, a better approach may be to use hyperbolic intrinsic means, see [3]
and [4]. Figure 5 shows the observations W in the left top corner. Möbius
deconvolution is computed along the hyperbolic polar mesh-points depicted
in the right top corner (Figure 5 ). Below in the bottom left corner the de-
convolved densities along fixed angles of the mesh are depicted. The angle
depicted in red shows highest density followed by the angle depicted in blue.
The location of the two dominating directions depicted with the same colors
in the right top corner (Figure 5 ) is in high agreement with the location of
the impedances of the resistors seen through the mean capacitor depicted
in the bottom right image of Figure 5. Indeed, one can say that with the
few measurements available, we were able to reconstruct the nature of the
unobserved elements, namely resistors with impedances distributed along a
one-dimensional subset in the complex half plane.

In Figure 6 the above scenario is more prominently re-enacted in a sim-
ulation of n = 1000 measurements using Rc = min(R) and Wc from the
preceeding example (depicted by “x”). We show observed measurements
and unobserved capacitors in the top row as well as original density and the
deconvolved densities along respective angles as in Figure 5 in the bottom
row. Obviously the distribution of the unobserved resistors is quite reason-
ably recovered along the grid.
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Fig 6. Simulation of n = 1000 random resistors seen through n random capacitors. Top
left: observed impedances, characteristic impedance denoted by “x”. Top right: unobserved
underlying normalized resistors seen through unobserved mean capacitor. Bottom left: ra-
dial density times hyperbolic measure of non-observed resistors. Bottom right: deconvolved
densities times hyperbolic measure along fixed angles of mesh in Figure 5.

APPENDIX A: POLAR COORDINATES AND CONVOLUTION

In this Appendix we focus on the right and left action (they are different
due to non-commutativity) of the special orthogonal group SO(2) on SL(2)
giving rise to polar coordinates and to H viewed as the quotient with respect
to one of the actions. In fact, the action of SL(2) on H can be naturally
viewed in polar coordinates (cf. Figure 7) of which we will make extinsive
use in the proof of Theorem 3.3 in Appendix B.3.

In contrast to a metric on a manifold in the usual topological sense, a
Riemannian metric is a metric in every tangent space, that varies smoothly
with the offset of the tangent space. Thereby, every Riemannian metric
defines a metric on the manifold in the usual sense and a unique volume
element, called the Riemannian volume, giving rise to a unique measure on
the manifold. For more details we refer to [31], Chapter 3.
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z 1

z 2

g(z)

e−r

er

i

i

0

Fig 7. The polar coordinates (r, u) of
z ∈ H are obtained from the unique
circle hyperbolically centered at i (star)
containing z, i.e. this circle is symmet-
ric to the imaginary axis and intersects
it at points of form e−ri and eri (x-
crosses). Rotating z by the hyperbolic an-
gle −u along this circle, the lower point
e−ri is obtained. The polar coordinates
(u2, R, u1) of g ∈ SL(2) rotatate z by the
hyperbolic angle u1 along the above cir-
cle to obtain z1, rescale z1 by e−R to ob-
tain z2 = e−Rz1, and subsequently rotate
z2 by the hyperbolic angle u2 along the
unique hyperbolic circle through z2 hy-
perbolically centered at i yielding g(z).

If the Riemannian metric on SL(2) underlying the Haar measure dg is
chosen such that the natural Riemannian quotient metric on H yields the
hyperbolic measure dz on H, then we are able to lift densities on the bottom
space H to the top space SL(2) to obtain (A.4) yielding (2.6).

Let us begin with the observation, that the hyperbolic measure (2.5) is
the Riemannian volume element of the extension of the standard Euclidean
metric in the tangent space of H at z = i in a left-invariant way under the
action of SL(2) on H. Similarly, we equip SL(2) with the Riemannian metric
obtained from the left SL(2)-invariant extension of the standard Euclidean
metric in the tangent space of the unit matrix I ∈ SL(2). We denote the
corresponding Riemannian volume element which defines a left-invariant
Haar measure by dg . According to [43, Exercise 19, p. 149], it is also right
invariant, that is

∫

SL(2)
f(agb) dg =

∫

SL(2)
f(g) dg , ∀a, b ∈ SL(2), f ∈ L1(SL(2), dg

)
.

As mentioned before, for arbitrary z, z′ ∈ H there exists a g ∈ SL(2) such
that z′ = Mg(z). Given one such g, any other g′ ∈ SL(2) satisfies Mg′(z) = z′

if, and only if, g−1g′ ∈ SO(2). In particular, Mg(i) = i if, and only if,
g ∈ SO(2). This entails that the following mapping of the quotient space
SL(2)/SO(2) due to the right action of SO(2) is well defined and bijective

SL(2)/SO(2) → H
gSO(2) 7→ Mg(i)

}
.(A.1)

Since the mapping preserves the action of SL(2), the natural Riemannian
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quotient metric of SL(2)/SO(2) is isometric with the the hyperbolic metric
of H.

Next, consider the left action of SO(2) on SL(2). This projects to a left-
action on H giving rise to polar coordinates u ∈ [0, 2π), called the hyperbolic
angle and r > 0 (cf. Figure 7) of

z = Mku ◦MRr(i) with ku =

(
cosu sinu
− sinu cosu

)
, Rr =

(
e−r/2 0

0 er/2

)
.

For ease of notation, for the entire paper we identify Mku with ku and
MRr with Rr, respectively, such that ku ◦Rr(i) = ku(e−ri) . Since for every
z ∈ H \ {i} we have that kφ(z) = z if, and only if φ ≡ 0 mod π, polar
coordinates cover the hyperbolic plane twice. As a consequence, z ∈ H has
polar coordinates with r ≥ 0 uniquely determined and u unique modulo π
if r > 0. Thus, the hyperbolic area element (2.5) transforms to

dz = sinh(r) dr du .(A.2)

Polar coordinates can also be defined on SL(2): every element g ∈ SL(2) has
a decomposition

g = kuRrku′ , r ∈ [0,∞), u, u′ ∈ [0, 2π)(A.3)

with uniquely determined r ≥ 0; if r > 0 then u and u′ are also uniquely
determined modulo π (in fact, one of the two is unique modulo 2π). In
view of the isometry (A.1), this gives our choice of Haar measure in polar
coordinates

dg = sinh(r) dr du du′ .

If g, g′ are independent random elements in SL(2) with densities f1, f2

continuous with respect to Haar measure, we have for the probability that
the product is contained in a measurable subset A ⊂ SL(2) by left-invariance
of the measure that P(gg′ ∈ A) =

∫
A(f1 ∗ f2)(a) da with the convolution of

f1 and f2 given by

(f1 ∗ f2)(a) : =
∫

SL(2)
f1(g)f2(g−1a) dg .

In general, convolutions over non-commutative groups are non-commutative.
Suppose now that Z is a random quantity on H with density f2 contin-

uous with respect to the hyperbolic measure. Using polar coordinates, this
density lifts to a right SO(2)-invariant density f̃2 on SL(2) f̃2(kuRrk

′
u) :=
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f2
(
kuRr(i)

)
. Hence, convolutions of a density f1 on SL(2) with a density

f2 on H can be well defined by lifting to a right SO(2)-invariant density on
SL(2):

(f1 ∗ f2)(z) :=
∫

SL(2)
f1(g)f̃2(g−1a) dg(A.4)

with any a ∈ SL(2) giving Ma(i) = z. This convolution is commutative if
either f1 is bi-invariant or if f2 is SO(2)-invariant.

APPENDIX B: PROOFS

B.1. Upper Bound: Proof of Theorem 3.1. In order to measure
the performance of f (n,T )

X we consider the mean integrated squared error

E
∥∥∥fX − f

(n,T )
X

∥∥∥
2

= E
∥∥∥fX − Ef (n,T )

X

∥∥∥
2
+

∥∥∥Ef (n,T )
X − fX

∥∥∥
2

with the usual variance-bias decomposition. The assertion of Theorem 3.1
then follows from the following more detailed Lemma.

Lemma B.1. For fX , fY and fε satisfying (D.1) and (D.2), and Hfε

bounded from below on compact sets, there is a constant C > 0 independent
of T and n such that

E
∥∥∥fX − Ef (n,T )

X

∥∥∥
2 ≤ C

inf |t|<T |Hfε(1
2 + it)|2

T 2

n
.

If additionally, fX satisfies (D.3) then
∥∥∥Ef (n,T )

X − fX

∥∥∥
2 ≤ QT−2α .

Proof. We first note that by (2.8), definition (3.4), since the r.h.s is in
L2(H, dz),

Hf (n,T )
X

(
1
2

+ it, k

)
=
Hfn

Y (1
2 + it, k)

Hfε(1
2 + it, k)

I(−T,T )(t) .

Here I denotes the indicator function. Hence by the Fubini-Tonelli theorem,
(3.4), (3.2), (2.8) and (2.11):

H(Ef
(n,T )
X )

(
1

2
+ it, k

)

= H
(

z →
∫

|t′|<T

∫ u′=2π

u′=0

EHfn
Y

(
1
2

+ it′, ku′
)

Hfε

(
1
2

+ it′
)

(
Im

(
ku′(z)

)) 1
2+it′

dτ ′
)(

1

2
+ it, k

)

= HfX

(
1

2
+ it, k

)
I(−T,T )(t) .(B.1)
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Deduce from (3.1),

E
∣∣∣∣Hf (n)

Y

(
1
2

+ it, k

)∣∣∣∣
2

=
∣∣∣∣HfY

(
1
2

+ it, k

)∣∣∣∣
2

+
Im

(
Ek(Y )

)−
∣∣∣HfY

(
1
2 + it, k

)∣∣∣
2

n
.(B.2)

In addition, Im
(
Ek(Y )

)
= HfY (1, k) implies that

∫ 2π

0

∣∣Im (
Eku(Y )

)∣∣ du =
∫ 2π

0
|HfY (1, ku)| du ≤ C(B.3)

with a suitable constant C > 0, since HfY is analytic. Thus, using the
Plancherel identity (2.9), (2.11), the Fubini-Tonelli theorem, (3.2), (B.1),
(B.2) and (B.3) (by hypothesis (D.1) and (2.9), ‖fY ‖2 = ‖HfY ‖2 <∞), we
have indeed for the variance

E
∫

H
|f (n,T )

X − Ef (n,T )
X |2 dz

=
∫

t<|T |

∫

u∈[0,2π)

E|Hf (n)
Y −HfY |2
|Hfε|2 dτ

=
1
n

1
8π2

∫

t<|T |

∫

u∈[0,2π)

Im(Eku(Y ))− |HfY (1
2 + it)|2

|Hfε(1
2 + it)|2 t tanh(πt) dt du

≤ C

inf |t|<T |Hfε(1
2 + it)|2

T 2

n

with a constant C > 0 involving neither n nor T .
In the next step we similarly estimate the squared bias under the addi-

tional assumption (D.3) using also (2.9) and (B.1):
∫

H
|Ef (n,T )

X − fX |2 dz =
∫

|t|≥T

∫

u∈[0,2π)
|HfX |2 dτ

=
1

8π2

∫

|t|≥T

∫ u=2π

u=0

∣∣∣
(1
2

+ it
)(
− 1

2
+ it

)∣∣∣
−α∣∣∣

(1
2

+ it
)(
− 1

2
+ it

)∣∣∣
α

∣∣∣∣HfX

(
1
2

+ it, ku

)∣∣∣∣
2

t tanh(πt) dt du

≤ QT−2α .
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B.2. Optimal Rate: Proof of Theorem 3.2. If fε satisfies (D.4) we
have the upper bound

logC + logC1 + 2 log T − log n+
2
γ
T β

(
1 +

1
4T 2

)β
2

(B.4)

for the logarithm of the variance term (cf. Lemma B.1). A sufficient condition
for convergence of the variance term while T = T (n) → ∞, is that (B.4)
tends to −∞. Hence, T is of form

T (n) =
(
γ

2
log n− γ

2
A(n)

) 1
β

with A(n) → +∞ at a rate lower than that of logn. A short computation
gives the rate

2
β

log(logn)−A(n)

for (B.4). In case of optimality this rate must be larger or equal to the
logarithmic rate of the upper bound of the bias term in Lemma B.1 which
is then

−2α
β

log(logn) .

In consequence the rate of A(n) is η log(logn) with η ≥ 2(1+α)/β as asserted
by Theorem 3.2.

B.3. Lower Bound Properties: Proof of Theorem 3.3. Recall the
decomposition in polar coordinates from Appendix A, cf. Figure 7. The
general idea of proof goes as follows. Define the dilation of H by

Hδ(k(e−ri)
)

:= H(k(e−δri))
sinh(δr)
sinh r

P− 1
2

(
cosh(δr)

)
.(B.5)

For arbitrary SO(2)-invariant H and δ > 0, Hδ is obviously also SO(2)-
invariant

To derive a lower bound for estimating fX in L2 norm, we follow a classical
scheme which has been condensed in [15, pp. 1261–1262], cf. also [18, pp.
1555-1556]. The adaption of this scheme to the Poincaré plane, however, is
not at all obvious and will be the subject of the following sections. After
some elaborate preparation in the following two sections we take a pair
f0 ∈ Fα(Q), fn ∈ Fα(Q), for which

fn = f0 + CHδ
−αHδ,
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where δ = δn, cf. Sections B.3.3 and B.3.4 below. Then, in Section B.3.5 we
show that δ can be chosen such that

(B.6) χ2(fε ∗ f0, fε ∗ fn) :=
∫ ∞

0
(fε ∗ f0 − fε ∗ fn)2(fε ∗ f0)−1 dz ≤ C

n
.

In consequence by (3.3) of [15], there is d1 > 0 such that for any estimator
fn of fX ,

(B.7) sup
fX∈{f0,fn}

Pf

{
‖fn − fX‖2 > ‖f0 − fn‖2/2

}
> d1,

which gives with (3.4) of [15] a lower bound

sup
fX∈Fα(Q)

E‖fn − fX‖2 ≥ d1

4
‖f0 − fn‖2 ³ δ−α‖Hδ‖2.

The choice of δ in (B.17) at the end of Section B.3.5 in conjunction with
‖Hδ‖2 ³ ‖H‖2 from Lemma B.5 then yields the rate

δ−α‖Hδ‖2 ³ (
logn

)−2 α
β

asserted by Theorem 3.3.

B.3.1. Convolution Equation in Polar Coordinates.

Lemma B.2. Suppose f is bi-invariant and h is SO(2)-invariant. Write
z = kuRr(i), g = kαRskβ ∈ SL(2) and dg = sinh s dαdsdβ. Then,

(f ∗ h)(z) = 2π
∫ 2π

φ=0

∫ ∞

s=0
f(e−si)h

(
esk−φ(e−ri)

)
sinh s dφds.

Proof. Since k−αku = ku−α observe that

(f ∗ h)(z) =
∫

SL(2)
f(g)h(g−1z)dg

=
∫∫

α,β∈[0,2π)

∫ s=∞

s=0
f(kαRskβ)h

(
k−βR−sk−αkuRr(i)

)
sinh s dαdsdβ

= 2π
∫ 2π

φ=0

∫ ∞

s=0
f(e−si)h

(
R−sk−φRr(i)

)
sinh s dφds .

Lemma B.3. Define η(r, s, φ) and R(r, s, φ) by kη(r,s,φ)e
−R(r,s,φ)i = esk−φe

−ri,
where 0 ≤ η(r, s, φ) < 2π and R(r, s, φ) ≥ 0. Suppose φ ∈ [0, 2π) and
r, s ≥ 0. Then,

|r − s| ≤ R(r, s, φ) ≤ r + s.
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Proof. Let ψ = 2φ. From [43, p. 125] we take

k−φe
−ri =

− sinψ sinh r + i

cosψ sinh r + cosh r
.

Let kη(r,s,φ)e
−R(r,s,φ)i = x+ iy. Then using [43, p. 150],

cosh
(
R(r, s, φ)

)
=

1
2

1 + x2 + y2

y

=
1
2

(
e−s(cosψ sinh r + cosh r) + es

sin2 ψ sinh2 r + 1
cosψ sinh r + cosh r

)
.

Set t = cosψ. Since

sin2 ψ sinh2 r + 1
cosψ sinh r + cosh r

=
(1− t2) sinh2 r + 1
t sinh r + cosh r

= cosh r − t sinh r,

we have

cosh
(
R(r, s, φ)

)
=

1
2

{
e−s(cosh r + t sinh r) + es(cosh r − t sinh r)

}

= −t sinh r sinh s+ cosh r cosh s.

Since −1 ≤ t ≤ 1, cosh
(
R(r, s, φ)

)
has the maximum cosh(r+ s) at t = −1

and the minimum cosh(r − s) at t = 1. Suppose that cosh a ≤ cosh b with
b ≥ 0. This implies that b ≥ |a| since

{
b ≥ a if a ≥ 0
b ≥ −a if a < 0.

The desired result follows from this and the assumption R(r, s, φ) ≥ 0
The following Lemma is an immediate consequence of Lemma B.3.

Lemma B.4. Suppose H is SO(2)-invariant and H(e−ri) is monotoni-
cally decreasing in r. Then,

H
(
esk−φe

−ri
)
≤ H

(
e−|r−s|i

)
for s ≥ 0, φ ∈ [0, 2π), r ≥ 0.



MÖBIUS DECONVOLUTION 29

B.3.2. Dilation.

Lemma B.5. Suppose

(B.8) HH
(

1
2

+ it

)
= 0 for t /∈

[
1
2
, 1

]
.

Then for δ →∞,

HHδ
(

1
2

+ it

)
³ 1

δ
HH

(
1
2

+ i
t

δ

)
,(B.9)

‖Hδ‖2 ³ ‖H‖2,∥∥∥∆α/2Hδ
∥∥∥
2
³ δα/2

∥∥∥∆αH
∥∥∥
2

and for fε satisfying (D.4) with γ = 1, with a constant C > 0,
∫
|fε ∗Hδ|2 ≤ Ce−2( δ

2)
2β

.

Proof. Let’s start with an alternate representation of the Legendre func-
tion from [43, p.158] and a specific derivative:

P− 1
2
+it(cosh r) =

√
2
π

∫ r

0

cos(tu) du√
cosh r − coshu

,

A(cosh r) := − ∂2

(∂t)2

∣∣∣∣∣
t=0

P− 1
2
+it(cosh r)

=
√

2
π

∫ r

0

u2 du√
cosh r − coshu

.

In a next step we make use of [43, Exercise 28 (b), p. 158]. For fixed t, κ > 0
and large δ, i.e. r = κ/δ → 0:

P− 1
2
+it

(
cosh

κ

δ

)
³ J0

(
t
κ

δ

)

=
∞∑

j=0

(−1)j

(j!)2

(
tκ

2δ

)2j

= 1− 1
4

(
t

δ

)2

κ2 + . . . .

Similarly

P− 1
2
+i t

δ
(coshκ) = P− 1

2
(coshκ)− A(κ)

2

(
t

δ

)2

+ . . . .
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Then with the two above developments,

HHδ
(

1
2

+ it

)
=

2π
δ

∫ ∞

0
H(e−κi)P− 1

2
(coshκ)

(
1 +O

(
1
δ2

))
sinh(κ) dκ

³ 2π
δ

∫ ∞

0
H(e−κi)P− 1

2
+i t

δ
(coshκ) sinh(κ) dκ

=
1
δ
HH

(
1
2

+ i
t

δ

)

Moreover since HH
(

1
2 + iu

)
= 0 for u ∈ (0, 1

2),

‖Hδ‖2
2 ³ 1

4π

∫ ∞

0

1
δ2

∣∣∣∣HH
(

1
2

+ i
t

δ

)∣∣∣∣
2

t tanh(πt) dt

=
1
4π

∫ ∞

0

∣∣∣∣HH
(

1
2

+ iu

)∣∣∣∣
2 tanh(πδu)

tanh(πu)
u tanh(πu) du

³ ‖H‖2
2

and taking additionally into account that δ is large
∥∥∥∆α/2Hδ

∥∥∥
2

2

³ 1
4π

∫ ∞

0
(t2 + 1/4)α 1

δ2

∣∣∣∣HH
(

1
2

+ i
t

δ

)∣∣∣∣
2

t tanh(πt) dt

≤ δ2α 1
4π

∫ ∞

0

(
u2 +

1
4

)α
∣∣∣∣HH

(
1
2

+ iu

)∣∣∣∣
2 tanh(πδu)

tanh(πu)
u tanh(πu) du

≤ Cδ2α
∥∥∥∆α/2H

∥∥∥
2

2
.

Since by hypothesis

|Hfε(1/2 + it)| ≤ C2 exp
[
− |1/2 + it|β

]
= C2e

−(
1
4+t2)β/2

,

we obtain

(B.10) sup
u∈[ 1

2
,1]

∣∣∣f̂ε(1/2 + iδu)
∣∣∣ ≤ C2e

−(
1
4+δ2/4)β/2 ≤ C2e

−( δ
2)

β

.

It follows from (B.8), (B.9) and (B.10) that there is a constant C > 0 such
that∫
|fε ∗Hδ|2 =

∫
|HHδ(1/2 + it)|2|Hfε(1/2 + it)|2dτ

³
∫ 1

1/2
δ−2|HH(1/2 + iu)|2|Hfε(1/2 + iδu)|2(δu) tanh(πδu)δdu

≤ Ce−2( δ
2)

β

.
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This completes the proof of Lemma B.5.

B.3.3. Bound on g0 = fε ∗ f0. Choose f0 as

f0
(
k(e−ri)

)
= f0(e−ri) =

a− 1
2π

(cosh r)−a for a > 1.

Lemma B.6. f0 is SO(2)-invariant and
∫ ∞

r=0

∫ 2π

u=0
f0

(
ku(e−ri)

)
sinh r drdu = 1

Proof. By the definition of f0, it is SO(2)-invariant and
∫ ∞

r=0

∫ 2π

u=0
f0

(
ku(e−ri)

)
sinh r drdu

= (a− 1)
∫ ∞

r=0
(cosh r)−a sinh r dr

= (a− 1)
∫ ∞

x=1
x−adx = 1 .

Lemma B.7. Suppose that fε is bi-invariant and
∫ Cε

0
fε(e−si) sinh s ds ≥ 1

2
for some positive constant Cε. Then, g0 = fε ∗ f0 satisfies

g0(e−ri) ≥
{

2π(a− 1)2a−1e−2ar for r > Cε

2π(a− 1)2a−1e−2aCε for r ≤ Cε

Proof. Note that 0 ≤ s ≤ Cε < r implies r + s ≤ 2r whereas 0 ≤ s, r ≤
Cε implies r + s ≤ 2Cε. It follows from these facts, fε ≥ 0, Lemma B.2 and
Lemma B.3 that

fε ∗ f0(e−ri)

= 2π
∫ 2π

0

∫ ∞

0
fε(e−si) f0

(
kη(r,s,φ)e

−R(r,s,φ)i
)

sinh s ds dφ

= (a− 1)
∫ 2π

0

∫ ∞

0
fε(e−si) cosh−a

(
R(r, s, φ)

)
sinh s ds dφ

≥ 2π(a− 1)
∫ Cε

0
fε(e−si) cosh−a(r + s) sinh s ds

≥ a− 1
cosha(2τ)

∫ Cε

0
fε(e−si) sinh s ds

≥ 2π
a− 1

2 cosha(2τ)
≥ 2π(a− 1)2a−1e−2aτ

with τ = r for r > Cε and τ = Cε for r ≤ Cε.
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B.3.4. Bound on fε ∗Hδ. We note from [30, p. 188]

P− 1
2
(cosh r) =

2
π cosh(r/2)

K
(

tanh(r/2)
)
,

where the complete elliptic integral of the first kind is defined by

K(t) =
∫ π/2

0

dφ√
1− t2 sin2 φ

.

In consequence there is a C > 0 such that for all r > 0

P− 1
2
(cosh r) ≤ C .(B.11)

Define

µδ(e−ri) = δe−(m0−1)δr for r ≥ 0.

When m0 > 1 and δ > 0, ‖µδ‖∞ ≤ δ and µδ(e−ri) is monotonically decreas-
ing in r.

Lemma B.8. Suppose
∣∣∣H(e−ri)

∣∣∣ ≤ Ce−m0r with m0 > 1 and δ ≥ 1.

Then, there is a constant C > 0 such that Hδ(e−ri) ≤ Cµδ(e−ri).

Proof. By Taylor expansion,

(er)δ − (e−r)δ = δηδ−1(er − e−r)

for e−r ≤ η ≤ er. Since ηδ−1 ≤ e(δ−1)r ≤ eδr,

sinh(δr)
sinh r

≤ δeδr for r ≥ 0.

Hence with C > 0 from (B.11),

∣∣∣Hδ(e−ri)
∣∣∣ =

∣∣∣H(e−δri)
∣∣∣sinh(δr)

sinh r
P− 1

2

(
cosh(δr)

)

≤ C
∣∣∣H(e−δri)

∣∣∣sinh(δr)
sinh r

≤ Ce−m0δrδeδr = Cµδ(e−ri).

Lemma B.9. Suppose that
∫ r+ξ0r

r−ξ0r
fε(e−si) sinh s ds ≤ Ce−(ξ−ξ0)r for 0 < ξ0 < 1 and ξ > 1 + ξ0,
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H(e−ri) is bounded and monotonely decreasing in r and satisfies the tail
condition

(B.12) H(e−ri) ≤ Ce−m0r for m0ξ0 > ξ.

Then, for δ ≥ 1 and r > 0,

(fε ∗Hδ)(e−ri) ≤ Cδe−(ξ−ξ0)r.

Proof. Set R1 =
{
s : |r − s| ≤ ξ0r

}
and R2 =

{
s : |r − s| > ξ0r

}
. It

follows from Lemma B.2, Lemma B.4 and Lemma B.8 that

1
2π

(fε ∗Hδ)(e−ri) =
∫ 2π

φ=0

∫ ∞

s=0
fε(e−si)Hδ

(
kη(r,s,φ)e

−R(r,s,φ)i
)

sinh s dφds

≤ C

∫ 2π

φ=0

∫ ∞

s=0
fε(e−si)µδ

(
e−R(r,s,φ)i

)
sinh s dφds

≤ 2πC
∫
fε(e−si)µδ

(
e−|r−s|i

)
sinh s ds.(B.13)

Set
Ij =

∫

Rj

fε(e−si)µδ

(
e−|r−s|i

)
sinh s ds for j = 1, 2.

Since m0 > ξ/ξ0 > 1,
‖µδ‖∞ ≤ δ.

Observe that

I1 ≤ ‖µδ‖∞
∫

|r−s|≤ξ0r
fε(e−si) sinh s ds

≤ Cδe−(ξ−ξ0)r.(B.14)

From the tail condition (B.12),

I2 =
∫

|r−s|>ξ0r
fε(e−si)

(
δe−(m0−1)δ|r−s|

)
sinh s ds

≤ δe−(m0−1)δξ0r
∫

|r−s|>ξ0r
fε(e−si) sinh s ds

≤ δe−(m0−1)δξ0r.(B.15)

Since r ≥ 0, m0ξ0 > ξ and δ is large,

e−(ξ−ξ0)r

e−(m0−1)δξ0r
= e(m0−1)δξ0r−(ξ−ξ0)r ≥ e(m0−1)ξ0r−(ξ−ξ0)r = e(m0ξ0−ξ)r ≥ 1.

Combining (B.13), (B.14), (B.15), we have the desired result.
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B.3.5. Chi-square Distance: Proof of (B.6). With the above notation,
choose a pair of densities

f0
(
k(e−ri)

)
= f0(e−ri) =

a− 1
2π

(cosh r)−a and fn = f0 + CHδ
−αHδ,

where a satisfies 1 < a < 2 and H satisfies the hypotheses of Lemmas B.5
and B.9. By choosing CH close to 0, we have f0, fn ∈ Fα(Q) for all large δ.
Let g0 = fε ∗f0 and gn = fε ∗fn with fε satisfying the hypotheses of Lemma
B.9 and (D.4) with γ = 1.

The χ2 distance between g0 and gn is defined by

χ2(g0, gn) :=
∫

(
gn − g0

)2

g0
dz = 2πC2

Hδ
−2α

∫
(
fε ∗Hδ(e−ri)

)2

g0(e−ri)
sinh r dr

and with a suitable constant M > 0 guaranteed by Lemma B.7, by Lemmas
B.5, B.8 and B.9

∫
(
fε ∗Hδ(e−ri)

)2

g0(e−ri)
sinh r dr

≤
(∫

er≤M
+

∫

er>M

) (
fε ∗Hδ(e−ri)

)2

g0(e−ri)
sinh r dr

≤ M2a

C

∫ (
fε ∗Hδ(e−ri)

)2
sinh r dr +

δ2

C

∫

er>M

e−2(ξ−ξ0)r

e−2ar
sinh r dr

= O
(
M2ae−2( δ

2)
β

+ δ2M−2(ξ−ξ0)+2a+1
)

= O
(
e−µ1( δ

2)
β)
,

where C = 2π(a − 1)2a−1. For the last equality we set M = e
1
2 ( δ

2)
β

, µ0 =
2(ξ − ξ0)− 2a− 1 and µ1 = min

(
µ0/2, (2− a)

)
. Then indeed

M2ae−2( δ
2)

β

= e−(2−a)( δ
2)

β

= O
(
e−µ1δβ

)
and δ2M−µ0 = O

(
e−µ1δβ

)
.

Hence,

(B.16) χ2(g0, gn) = O
(
δ−2αe−µ1( δ

2)
β)
.

Letting e−µ1( δ
2)

β

= n−1, or equivalently

δ = 2µ
− 1

β

1

(
logn

) 1
β
,(B.17)
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we conclude that the right-hand side of (B.16) is of order o(n−1), i.e. (B.6)
is proven.
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