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The authors wish to thank the discussants for their very interesting and
stimulating contributions indicating various directions for future research and
clarifying issues raised in our contribution. It seems that the following three
major topics

1. “Simple and Parsimonious Descriptors for Shape Data”,

2. “Shape Space Geometry”, and

3. “Statistical Inference for Shape Spaces”

emerge from the ample comments provided by the discussants. These comments
have been given from the individual perspectives of expertise in quite different
fields which interestingly allow to connect originally disjoint strains of thoughts.
For this reason we organize our rejoinder by following these specific issues and
perspectives, rather than by addressing each contribution separately and thus
loosing valuable aspects of this stimulating discussion.

1 Simple and Parsimonious Data-Descriptors

One goal of classical Euclidean statistics is to effectively describe data using low
dimensional descriptors, not least to make them more interpretable. To such
ends principal components analysis (PCA) is often employed, as its variance de-
composition yields zero-dimensional (means), one-dimensional (first PC), and
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higher dimensional data descriptors. We emphasize that simplicity of data-
descriptors is of value in itself, e.g. linear models may not model real life situ-
ations satisfactorily but their use for understanding and handling by a practi-
tioner are beyond doubt.

As J.T. Kent elaborated upon in his comment, for some shape data, variance
decomposition, dimension reduction, and arbitrary dimensional data-descriptors
may be inappropriate concepts, and tools likewise. Thus for most data appli-
cations on a torus, almost every (w.r.t. the induced canonical Riemannian
measure on the space of geodesics) “one-dimensional” geodesic data-descriptor
is dense, i.e. is two-dimensional in effect, so hardly giving a “parsimonious”
description of the data. Thus, for data sufficiently spread out on a torus, mean-
ingful one-dimensional data descriptors may prove difficult to define. Hence, as
a general phenomenon on arbitrary shape spaces, there may not be meaningful
data-descriptors of any desired dimensionality. Moreover as demonstrated by
our contribution, for a given data-set, data-descriptors of varying dimensional-
ity may have little in common. In the second subsection, we follow and extend
the classification of data proposed by J.T. Kent in his contribution.

Beforehand, however, we elaborate on the first issue, namely, that a rea-
sonable objective of (intrinsic) data analysis consists in finding parsimonious
data-descriptors that allow for the essential tasks of statistics to be performed;
in particular, R.N. Bhattacharya in his contribution asked for feature selec-
tion, classification, and prediction – dimension reduction might also be added.
Clearly, whether a descriptor is indeed parsimonious depends on one’s aims.
This well-known fact has been recently discussed in mathematical rigour by
Yang (2005) among many others, viewing model selection as the search for a
parsimonious model. This dependence will resurface when we discuss inference.
An alternative intrinsic approach, based on directly adapting the geometry itself
to suit the data, is proposed in Section 2.5.

Our contribution may be seen as proposing that, when working in a specific
non-Euclidean geometry, parsimony is most naturally achieved by using data-
descriptors based on the space’s intrinsic geometry, most prominently based
on geodesics. Choosing such intrinsic descriptors can be justified when the
data at hand are in some way congruent to the underlying geometry. Since
obviously some data – e.g. as presented by S. Jung, M. Foskey and J.S. Marron
– are incongruous to the underlying geometry, a thorough investigation of this
assumption is necessary.

1.1 Data-Descriptors

In our contribution we used generalized geodesics to obtain parsimonious data
descriptors. These generalized geodesics were taken from an underlying canon-
ical geometric structure. Often, there is a unique canonical structure stemming
from the subsequent immersions and submersions defining the shape space, e.g
for Kendall’s shape spaces; this structure is given by immersing a hypersphere in
a Euclidean space and subsequently submersing it w.r.t. the special orthogonal
group action. Sometimes, however, there is more than one canonical structure,
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e.g., for the spaces of geodesics on Kendall’s shape spaces (cf. Theorem 5.3) at
least two different canonical structures come to mind. For the first structure,
the Grassmannian involved is viewed as a quotient of a Stiefel manifold; for
the other more simple structure, only quotients w.r.t. orthogonal groups are
considered (cf. Edelman et al. (1998)). As remarked on by many discussants,
one can generalize to other geometries as well.

A very interesting approach by S. Jung, M. Foskey and J.S. Marron is to
retain the original spherical geometry but include arbitrary circles for principal
components. While computationally not much harder to obtain than great
circles, arbitrary circles allow for more flexibility in adapting to data on spheres
and direct products thereof, which are not only the common ingredients of
medial axes based shape manifolds (e.g Pizer et al. (2003), Fuchs and Scherzer
(2008) as well as Sen et al. (2008)), but can also be used to model prealigned
landmark-based shape data (cf. Dryden (2005) as well as Hotz et al. (2009)). We
note that circles on spheres are curves of constant curvature thereby generalizing
great circles which are curves with constant curvature zero. Extending this
approach is a challenging project; one may as well investigate curves of constant
non-zero curvature on general shape spaces, and build a principal component
analysis on them.

J.T. Kent also proposed allowing more freedom for choosing one-dimensional
descriptors. In particular, he demonstrated how time series of shape data show-
ing the growth of rats can be successfully modeled by employing tensor products
of e.g. principal splines. Kume et al. (2007) also model higher-order curves on
manifolds to describe shape data by splines. We remark, however, that these
models serve a different primary purpose, namely to describe longitudinal data
as opposed to i.i.d. observations for which PCA is usually employed.

In the Appendix we touched on a third approach to parsimony based on
simple descriptors, namely considering totally geodesic submanifolds or sub-
manifolds totally geodesic at least at a point. We emphasize that the former
may not exist for arbitrary dimension, the latter may only locally be manifolds.
Noting this idea of employing higher-dimensional submanifolds, V. Patrange-
naru suggested considering principal submanifolds, as introduced by Hastie and
Stuetzle (1989), e.g. from the class of minimal surfaces and their higher dimen-
sional analogs. This challenging topic certainly deserves further research.

1.2 Limitations to Dimension Reduction

Depending on their distribution, not all data on manifolds may warrant descrip-
tions of any desired dimension. In order to facilitate discussions about which
descriptors are appropriate for what data sets, J.T. Kent distinguished between
Type I and Type II data. Data of Type I can effectively be analyzed by mim-
icking Euclidean PCA; in particular, the first principal component describing
the main direction of data variation passes through the mean. In contrast on
compact spaces, data may be spread along recurrent geodesics; for such Type
II data, the concept of a data mean is meaningless and the first principal com-
ponent is the most parsimonious data descriptor. A typical example of Type II
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data is given by a sample of a girdle distribution around the equator of a sphere.
Obviously, the means, i.e. the north- and south-pole, constitute no reasonable
(zero-dimensional) summaries of the data.

In his discussion, J.T. Kent re-analyzes our crown data in a fascinating and
simple manner. While the impact of unbounded curvature for data near singular
shapes is quite dramatic when the data involve reflections, i.e. symmetries w.r.t.
a singular shape, J.T. Kent correctly points out that if this symmetry is removed,
the impact of curvature may be considerably reduced; for the “tree-crown” data
at hand, Type II data thus are transformed into Type I data. Nonetheless,
whether the symmetry may be removed is a question of the research’s aims;
often, identifying symmetric objects is not permissible.

We believe that introducing the distinction between Type I and Type II is
a very enlightening clarification of the fundamentals of our endeavor. While
being inspired by J.T. Kent’s classification, we would like to distinguish more
subtly between flat data (his Type I), curved data, and looped data, as we feel
that for data on general manifolds there are more than two types of situations
to be treated distinctly. We note that J.T. Kent’s definition of data of Type II
is a special case our definition of looped data. Also, data – be they Euclidean or
on a manifold – may be incongruous with the geometric structure of the space.
Typical data sets of the four types are depicted in Figure 1.

Flat data are concentrated enough such that one can treat them as if they were
observed on a flat (i.e. Euclidean) space; clearly, the higher the curvature
in this region, the more concentrated the data set needs to be. For this
kind of data, all means (Procrustes mean, IM and PM) are close to one
another and the first GPC passes nearly through the IM. In consequence
within some approximation, the total variance decomposes, mimicking
Euclidean PCA. This type of data has been characterized as Type I by
J.T. Kent. In this situation, general Procrustes analysis (GPA), princi-
pal geodesic analysis (PGA), and geodesic principal component analysis
(GPCA) yield similar results.

Curved data spread further than flat data, so the space’s curvature needs to
be taken into account. Such data have their Procrustes mean and IM
much closer to one another than to the PM, and are considerably distant
from the first GPC. Still, the means represent meaningful zero-dimensional
data descriptors. For this type of data, however, a decomposition of total
variance into variances explained by geodesics is inappropriate.

Looped data are more severely affected by the space’s curvature than curved
data. While curvature is more of a local feature in curved data, for looped
data global effects of curvature play a dominating role. In consequence,
such data may not feature parsimonious data descriptors in a meaningful
way for any given dimensionality, e.g., a meaningful mean may not exist
because the data are spread around an equator of a sphere or because
data “loop” around a singularity of the space. Often, the IM and the
Procrustes mean can still be computed and they are far from the PM.
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(a) Flat data. (b) Curved data.

(c) Looped data. (d) Incongruous data.

Figure 1: Visualizing typical data types on a cone-like surface with unbounded
curvature.

Then GPA and PGA can be performed as well, usually yielding similar
results yet very different from the results obtained by GPCA.

Incongruous data possess features that are not easily modelled using descrip-
tors derived from the space’s (intrinsic) geometry. One might as well say
that geometry-based models do not fit the data. Similar to looped data,
parsimonious data descriptors may not exist in a meaningful way for any
given dimensionality. In contrast to looped data however, this is not a
consequence of the geometry of the underlying space, rather the data do
not conform to the given geometry. A typical example of incongruous data
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is given by clusters, e.g. isotropically arranged w.r.t. their common cen-
ter such that only the zero- and the full-dimensional data descriptor are
meaningful, or by data along a circle in a two-dimensional Euclidean space
(only the zero- and two-dimensional data descriptor are meaningful).

In a way, for flat data one may work and think Euclidean, for curved data
one must abandon the Euclidean concept of nested variance decomposition,
while for looped data, one has to additionally give up the quest for reduction
to arbitrarily low dimension. As clearly illustrated by S. Jung, M. Foskey, and
J.S. Marron, incongruous data cannot be tackled well with models based on the
intrinsic geometry alone. Note that curved and looped data can only occur on
non-flat spaces.

Examples for flat, looped and incongruous data. The classical data
set of “macaque skulls” (Dryden and Mardia, 1993) is a typical example for flat
data, intrinsic variance (data dispersion) and data curvature (CX) both are low,
as illustrated in Section 6.3 of our contribution. Flat Kendall shapes of two-
dimensional objects can be modelled well by complex Bingham distributions (cf.
Kent (1994)) if the dispersion is small (cf. Huckemann and Hotz (2009)). More
realistic models are achieved by using quartic complex Bingham distributions
(cf. Kent et al. (2006)) of low dispersion. Low dispersion and low curvature
distinguish flat from looped data, as the latter feature a notably high data
curvature.

While for looped data there is no need for low intrinsic variance – e.g. for a
girdle distribution around a sphere as pointed out by J.T. Kent – small intrinsic
variance with high data curvature indicates proximity to a singularity as in
our “tree crown” example. Recall that shape spaces may feature unbounded
curvature in regions of bounded diameter. In Figure 1(c) we illustrate the
latter situation of low intrinsic variance for looped data in a simplified two-
dimensional geometry (Σ4

3 is five-dimensional). Note the subtle difference from
incongruous data on the same surface, depicted in Figure 1(d). For the former,
the singularity is surrounded by the data which lie “intrinsically along a straight
line” (i.e. along a geodesic); it is the space that generates the loop. The latter
data surround a regular region of the surface where the looped structure is not
caused by the space’s geometry. Typical examples of incongruous data modelled
with non-geodesic descriptors are illustrated in the contribution of S. Jung, M.
Foskey, and J.S. Marron, as well as by Hastie and Stuetzle (1989).

The “brooch” data are curved. Let us now reconsider the brooch data
from Section 6.2. Again, the IM or the Procrustes mean serve well as one-
dimensional data-descriptors. Recall that the first GPC captures the dominant
mode of data-variation, namely diversification that is found neither by GPA nor
PGA. The differences between these methods’ results show the data not to be
flat; this is also visible from the considerable data curvature (CX).

In some way, the second GPC seems “parallel” to the generalized geodesic
determined by the covariance matrix obtained from GPA or PGA, as it catches
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precisely that mode of data-variation. Since every single brooch shape is closer
to any other brooch shape than to its reflected shape, this data-set contains “no
reflections” as opposed to the crown data which are indeed looped. We conclude
that this data set is curved.

2 Shape Space Geometry

In this section we remark on the very profound comments in the contributions
of R.N. Bhattacharya and V. Patrangenaru concerning the role of means and
geodesic variance. As is well known (cf. Karcher (1977)), uniqueness of intrin-
sic means can only be assured under restrictive conditions involving bounds on
curvature. In effect, for data in high curvature regions as in our “tree-crown”
example, a theoretical argument giving the uniqueness of intrinsic means that
we naively computed presents quite a challenge. It seems even more difficult,
yet similarly important for a thorough foundation of analysis of nearly degen-
erate data to derive general conditions on the uniqueness of geodesic principal
components and their intersection point, the principal component mean.

Inspired by V. Patrangenaru, we first establish that the data curvature CX
has the same sign as the sectional curvature on constant curvature manifolds.
As a consequence, MANOVA cannot directly be applied to data on manifolds,
rather we propose a combination of local variance decomposition coupled with
parallel transport in the second subsection.

The third subsection addresses the concern of R.N. Bhattacharya that geodesic
variances explained by the s-th GPC may be negative.

In the fourth subsection we take up the non-trivial issue of variance obtained
by projection on Kendall’s shape spaces. At this point we would like to clarify
that principal geodesic analysis (PGA), as introduced by Fletcher and Joshi
(2004), which has been cited by R.N. Bhattacharya as well by M.C. Mukher-
jee and A. Biswas, is almost equivalent to general Procrustes analysis (PGA).
In both approaches the eigenvectors of the covariance matrix computed from
the data mapped to the tangent space at some mean determine the principal
components; the difference is that PGA employs the IM whereas GPA uses the
Procrustes mean. The similarity of the approaches follows from the fact that
the means are usually very close to one another. However, Fletcher and Joshi
(2004) also suggested that one could define GPCs by maximizing the projected
variance. The fourth section is also intended to clarify why we consider this
problematic; we rather agree with V. Patrangenaru that minimizing the resid-
ual variance under no constraining condition appears far more natural.

In the concluding two subsections we suggest altering the Riemannian struc-
ture based on the comments of P.T. Kim and J.-Y. Koo; finally, leaving Rieman-
nian geometry altogether, we propose a version of extrinsic PCA, as triggered
by V. Patrangenaru’s comments.
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(a) Hyperbolic disk. (b) Two-sphere.

Figure 2: Pythagoras Theorem on constant sectional curvature manifolds.

2.1 Data Curvature Estimated by CX

Here we consider data on a manifold M of constant positive or constant negative
sectional curvature, i.e. on a sphere or on a hyperbolic space, respectively.
Recall that spherical shape spaces have been studied by Dryden (2005) as well
as Hotz et al. (2009); for hyperbolic shape spaces we refer to studies of Bookstein
(1991), Le and Small (1999), Le and Barden (2001), as well as Kume and Le
(2002). The situation underlying the following lemma is depicted in Figure 2.

Lemma 2.1 (Spherical and Hyperbolic Theorem of Pythagoras). Suppose that
two geodesics γ1 and γ2, on a constant sectional curvature manifold M with
intrinsic metric d, meet orthogonally at µ ∈ M , and that p ∈ M is contained
in the surface spanned by γ1 and γ2. For j = 1, 2, let aj = d(p(γj), p), Aj =
d(p(γj), µ), and c = d(µ, p) where the orthogonal projection of p to γj is p(γj)

assumed to be well defined. Then

a2
1 + a2

2 ≤ c2 ≤ A2
1 + A2

2

on spheres, whereas
a2
1 + a2

2 ≥ c2 ≥ A2
1 + A2

2

on hyperbolic spaces. The inequalities are strict unless p lies on γ1 or γ2.

Proof. First note that

y sin x ≤ sin(yx), 0 ≤ x ≤ π , (1)

y tanx ≥ tan(yx), 0 ≤ x ≤ π

2
, (2)

y tanx ≤ tan(yx),
π

2
≤ x ≤ π , (3)
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y sinh z ≥ sinh(yz), z ≥ 0 , (4)
y tanh z ≤ tanh(yz), z ≥ 0 . (5)

for all 0 ≤ y ≤ 1. The inequalities are strict unless y = 0, 1 or x = 0 (for (1)
and (2)) or z = 0 (for (4) and (5)). This can be seen by verifying equality at
y = 0, 1 and by verifying that the r.h.s. of (1) and (5) are strictly concave in y,
while the r.h.s. of (2) and (4) are strictly convex. For (3) note that the r.h.s is
strictly concave for π/2 ≤ yx ≤ π, and y tanx < 0 < tan(yx) otherwise. Now
for j = 1, 2, denote by αj ∈ [0, π/2] the angle between the geodesic γj and the
geodesic from µ to p. Note that sin α1 = cos α2.

Assume that M is a sphere. From the spherical law of the sine we have

sin aj

sin αj
= sin c ,

giving with (1) (e.g. for the first term set x = c and y = sin α1, and for c > π/2
use the monotonicity of arcsin at (π − x)y instead)

a2
1 + a2

2 = arcsin2(sinα1 sin c) + arcsin2(sinα2 sin c)
≤ c2 sin2α1 + c2 cos2α1 = c2 ,

as desired. Note that equality holds if and only if c = 0 or sin α1 = 0, 1, i.e. iff
p lies on one of the two geodesics. From the spherical law of the cosine we have

cos A1 =
cos c

cos a2
=

cos c√
1− sin2c cos2α1

, cos A2 =
cos c√

1− sin2c cos2α2

giving

A2
1 + A2

2 = arccos2
(

cos c√
1− sin2c cos2α1

)
+ arccos2

(
cos c√

1− sin2c cos2α2

)

≥ c2 sin2α1 + c2 sin2α2 = c2 .

Here, we used

cos2 c

1− sin2c cos2αj

=
cos2 c

cos2c + sin2c sin2αj

=
1

1 + sin2αj tan2c

≤
≥

}
cos2(c sin αj) for

{
0 ≤ c ≤ π

2
π
2 ≤ c ≤ π

,

which is a consequence of (2) and (3). Equality holds again if and only if p lies
on one of the two geodesics.

Nows suppose that M is a hyperbolic space. We have the hyperbolic laws of
sine and cosine:

sinh aj

sin αj
= sinh c, cosh Aj =

cosh c

cos aj′
, {j, j′} = {1, 2} .
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Then with the argument above, accordingly modified using (4), we have at once
a2
1 + a2

2 ≥ c2. The other inequality, A2
1 + A2

2 ≤ c2, follows from an analogous
argument using

cosh aj′ =
√

1 + sinh2aj′ =
√

1 + sinh2c cos2αj ,

cosh2c

1 + sinh2c cos2αj

=
cosh2c

cosh2c− sinh2c sin2αj

=
1

1− sin2αj tanh2c

≤ cosh2(c sinαj) ,

which is a consequence of (5). Equality holds again if and only if p lies on one
of the two geodesics.

We say that a random variable X on a quotient space Q = M/G admits
a unique GPCA if all population GPCs and the population PM exist and are
uniquely determined, and if the orthogonal projections X(δ) to all GPCs δ are
a.s. well defined.

As a consequence of Theorem 2.6 of our contribution, every random variable
absolutely continuous w.r.t. the measure induced by the Riemannian measure
on M features a.s. well defined orthogonal projections to a given generalized
geodesic.

Recall that every submanifold of a constant curvature manifold spanned by
geodesics through a common point is totally geodesic. Hence, an inductive
argument relying on Lemma 2.1 gives at once the following.

Theorem 2.2. Suppose that a random variable X on a constant curvature
manifold M admits a unique GPCA. Then CX = 0 for zero sectional curvature,
CX ≥ 0 for positive sectional curvature, and CX ≤ 0 for negative sectional
curvature. The inequalites are strict if and only if X does not exclusively assume
values on its GPCs a.s.

This settles the issue raised by V. Patrangenaru in the special case of con-
stant curvature manifolds.

2.2 Variance Decomposition and Multiple Effects Models

Variance decomposition, and hence dimension reduction, in Euclidean space is
based on the Pythagoras Theorem that has CX = 0. For random variables
spread out on spaces involving curvature this decomposition poses difficulties,
as will be further elaborated on below. The approach of classical MANOVA
and multiple effects models can be thought of as a combination of variance
decomposition locally and comparison via the connection of tangent spaces, i.e.
affine parallel transport. Obviously on compact spaces, parallelism can only be
a local concept. Translating an intuitive notion of similar shape variation into,
say, parallel data variation (as begun in Huckemann (2009)), seems like another
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GPC1 GPC2 GPC3 GPC4 GPC5 ... GPC9
2.6e− 05 9.4e− 06 −2.8e− 06 −3.1e− 06 −3.1e− 06
0.40226 0.33941 0.08660 −0.00035 −0.03718

2.7e− 02 1.2e− 02 7.2e− 03 4.7e− 03 3.3e− 03 ... −1.3e− 05

Table 1: Variance explained by residuals. Top row: five-dimensional shapes of
tree crowns; middle row: five-dimensional data of iron age brooches; and bottom
row: nine-dimensional data of macaque skulls. For the latter data only the
ultimate variance is negative.

challenging goal when confronting the non-linear structure of shape spaces. In
a similar vein, additive models cannot directly be generalized to shape spaces,
because in general these spaces lack a (natural) commutative operation. In
Huckemann et al. (2009), we discuss generalizations of classical fixed effects
models toward intrinsic MANOVA.

2.3 Variance Explained By Residuals

In Euclidean geometry due to the Pythagoras Theorem, V
(s)
res ≥ 0 for all 1 ≤

s ≤ m. For higher dimensions m, the variance V
(s)
res explained by the s-th GPC

obtained by residuals can be viewed as the difference between the mean squared
distance to all GPCs and the squared distanced to the s-th GPC. In view of
the Pythagoras Theorem for constant curvature spaces, cf. Lemma 2.1 for
this reason, higher order variances may be negative. This effect increases with
dimension, dispersion, and anisotropy. Numerical experiments for data on m-
spheres give negative variance V

(m)
res “explained” by the ultimate GPC in more

than 80 % of the simulations for

(a) data uniformly distributed on a quarter sphere {(x1, . . . , xm+1) ∈ Rm+1 :∑m+1
j=1 x2

j = 1,−π/4 ≤ x1 ≤ π/4} for m ≥ 7; and

(b) data highly anisotropically distributed following a spherical Bingham dis-
tribution with eigenvalues 0, 0, 0,−104, i.e. m = 3 (see e.g. Mardia and
Jupp (2000, Section 9.4.3)).

Obviously, for m = 2 and any data admitting a unique GPCA, both V
(1)
res and

V
(2)
res are non-negative. For the shape data considered in our contribution the

individual variances explained by residuals are depicted in Table 1.
Summarizing, we can say that the tendency of higher order residual vari-

ances to be negative increases with dimension, dispersion, anisotropy, and data
curvature (CX).

2.4 Geodesic Scores

Suppose that p(δ) = x sin(α)+v cosα is a pre-shape of the orthogonal projection
of a shape [p] ∈ Σk

m to a generalized geodesic δ through a principal component
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mean [x] ∈ Σk
m with initial velocity v ∈ HxSk

m and geodesic score t = arctan(α).
As we have seen, even for concentrated data, due to oscillation |t| can be large.
If one would determine generalized geodesics by maximizing sums of squared
geodesic scores as proposed by Fletcher and Joshi (2004), this effect would be
enlarged giving non-interpretable geodesic scores. For an example one may
think of data on a torus where there will be geodesics that allow infinite scores
while staying arbitrarily close to the data.

2.5 Data Driven Riemannian Metrics

As pointed out by most of the discussants (cf. Section 1.1), many data-sets are
approximated much better by non-geodesic curves than by geodesics. In view of
parsimony and the interpretation of the geometry of the shape space as reflecting
an “elastic shape energy” (cf. Bookstein (1986) as well as Grenander and Miller
(1994)), one might boldly want to alter the canonical geometry of the shape
space according to the data to be modelled. In their very interesting contribution
P.T. Kim and J.-Y. Koo pointed to the fact that the geometric structure is
equivalently described by the Laplace operator, which in turn is characterized by
its eigenfunctions and eigenvalues. Recent applications to image understanding
and shape analysis have successfully exploited this fact, e.g. Reuter et al. (2006)
or Wardetzky et al. (2007). Under a statistical paradigm, these relations may
be used to obtain a data-driven adaption of the metric; a challenging endeavor
that may provide further insight, e.g. into biological growth, by finding the
suitable geometry for a “geodesic hypothesis” to hold. Indeed it is well known
that for some applications (e.g. Kume et al. (2007)), certain classes of curves
non-geodesic w.r.t. the canonical metric fit biological growth data much better
than geodesic curves. Possibly, a framework can be utilized which has been laid
out in Kim et al. (2009) for a different statistical estimation problem, though
in a very similar context.

2.6 Extrinsic PCA

Finally, we comment on V. Patrangenaru’s plea for extrinsic analysis. As il-
lustrated in Bandulasiri et al. (2009) for Kendall’s three-dimensional reflection
shape space, the Schönberg embedding allows for extrinsic methods for the man-
ifold part of the quotient. The intriguing fact about extrinsic methods – if
available – is that means and principal components can be directly computed in
Euclidean space and are mapped orthogonally back to the manifold and the tan-
gent space at the former, respectively. For Kendall’s three-dimensional shapes
non-invariant under reflections, a suitable embedding seems not at hand. More-
over, in general, a canonical approach to extrinsic PCA seems not obvious; e.g.
one could define extrinsic PCs by projecting straight lines of the ambient space.
Building such an extrinsic PCA at least on spaces with a “benign” embedding
seems like an interesting and challenging goal to pursue.
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3 Statistical Inference

Several discussants bemoaned “the complete lack of consideration of problems
of statistical inference” (R. N. Bhattacharya). Indeed, GPCA so far only gives
a parsimonious description of the data, but it does highlight the difficulties
already associated with descriptive statistics of shape data that need to be
understood before attempting to do inference. Nonetheless, we summarize some
of the discussants’ suggestions for moving forward and mention some recent
developments in this direction.

As J.T. Kent points out, there is a need for “more work to be done” develop-
ing distributions on shape spaces, especially for higher-dimensional shapes. Such
distributions are necessary to perform what is commonly known as parametric
statistics where one starts by specifying a probabilistic model for one’s data
in order to infer about the model’s parameters after observing the data. One
promising approach to obtaining a generalization of a Gaussian distribution on
manifolds was mentioned by P.T. Kim and J.-Y. Koo, viewing this “Gaussian”
distribution as the solution of a diffusion equation with an adequately defined
Laplacian. They then propose to use likelihood methods for statistical inference
by means of the corresponding empirical characteristic function.

If one wants to avoid distributional assumptions about the data, nonpara-
metric methods need to be employed. M.C. Mukherjee and A. Biswas suggest
the use of resampling techniques to this end. A common technique for proving
the validity of, say, the bootstrap for inference requires a central limit theorem
(CLT) for the statistic in question. For a mean on a manifold, this is indeed
available, see e.g. Hendriks and Landsman (1996, 1998), as well as Bhattacharya
and Patrangenaru (2003, 2005) for the extrinsic and intrinsic mean. Such results
are relatively easy to obtain since they make use of the fact that the mean’s
distribution gets more and more concentrated asymptotically, hence allowing for
a Euclidean approximation. For PCA, matters are more difficult since PCs by
definition extend into the manifold – possibly even worse, onto the non-manifold
part of the quotient – and hence do not allow for a Euclidean approximation,
even asymptotically; for the Euclidean case see e.g. Anderson (1963) or Ruym-
gaart and Yang (1997). More involved resampling techniques will be necessary
here, and the asymptotic distribution of the GPCs and its bootstrap analog
appears to us a very interesting challenge for the future.

Although statistical inference on manifolds raises difficulties, successful at-
tempts have been made for specific statistical models, especially for flat data
(cf. above). The latter e.g. allow for one-way analysis of variance, testing the
hypothesis of no difference between the groups, see e.g. Dryden and Mardia
(1998) where the analysis is performed in the tangent space; R.N. Bhattacharya
discussed intrinsic treatments of one- and two-sample problems in his contribu-
tion. Recently, Huckemann et al. (2009) have developed an intrinsic two-way
MANOVA for groups of flat data for which Euclidean approximation in a single
tangent space is not necessarily appropriate, i.e., where the entire data set is
not necessarily flat.

While in the past most efforts have focused on flat data, we currently witness
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an increased interest in developing methodology for curved data. Due to the
aforementioned difficulties, many of the existing tools are only descriptive but
there are first results allowing to do inference for such data, e.g. based on CLTs
of intrinsic means. Curved data will certainly remain an issue of intense research
in the near future, calling for the careful generalization of existing techniques
to spaces where curvature has to be taken into account. This is especially
important for Kendall’s shape spaces that feature non-constant curvature, or
even unbounded curvature for three- and higher-dimensional shapes. For looped
data, however, many concepts and views that have been developed for flat data
will no longer be applicable, so new ideas are needed to address the challenges
such data sets pose. This certainly requires fresh ways of thinking, opening the
field of shape analysis toward hitherto uncharted territory.
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