
Shape spaces for pre-aligned star-shaped objects –

studying the growth of plants by principal

components analysis

T. Hotz∗, S. Huckemann†, A. Munk‡

Institute for Mathematical Stochastics,

University of Göttingen, Germany

D. Gaffrey and B. Sloboda

Institute for Forest Biometry and Informatics,

University of Göttingen, Germany

June 2009

Abstract

We analyse the shapes of star-shaped objects which are pre-aligned.
This is motivated from two examples studying the growth of leaves, and
the temporal evolution of tree rings. In the latter case measurements were
taken at fixed angles while in the former case the angles were free. Subse-
quently, this leads to different shape spaces, related to different concepts
of size, for the analysis. While several shape spaces already existed in the
literature when the angles are fixed, a new shape space for free angles,
called spherical shape space, needed to be introduced. We compare these
different shape spaces both regarding their mathematical properties, and
in their adequacy to the data at hand; we then apply suitably defined prin-
cipal component analysis on these. In both examples we find the shapes
to evolve mainly along the first principal component during growth; this
is the “geodesic hypothesis” formulated by Le, H. and Kume, A. (De-
tection of Shape Changes in Biological Features, Journal of Microscopy,
2000 (200), 140–147). Moreover, we were able to link change points of
this evolution to significant changes in environmental conditions.
Keywords: Shape analysis; Shape space; Principal components analysis;
Log-linear; Growth; Trees; Star-Shaped; Contours.

1 Introduction

The scientific study of the growth and development of plants has a long history,
at least dating back to Theophrastus of Eresus in Lesbos (ca. 371–287 BCE)1

∗Supported by DFG Graduate Program 1023 and by the German Federal Ministry of
Education and Research, Grant 03MUPAH6.

†Supported by DFG Grant MU 1230/10-1.
‡Supported by DFG FOR 916.
1He was originally named Tyrtamos, but later called Theophrastus by Aristotle, with whom

he worked, for the divinity of his style tò tĥ frásew (p. xxiii ibid.).
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and his comprehensive per� fut¸n aÒti¸n (On the Causes of Plants). In fact, he
even discusses some views of Democritus (ca. 460–370 BCE) on the relationship
of a tree’s shape and its speed of growth, see (Theophrastus, 1976, I.8.2 and
II.11.7). Another important contribution was made in the 9th century by Abū
H. an̄ıfa ad-Dı̄nawar̄ı (ca. 815–895 CE) who, gathering the knowledge of his
time, described the many phases in plants’ lives from birth to death in his kitāb
an-nabāt (Book of Plants), cf. Bauer (1988); unfortunately, that particular
chapter, General properties of the plants, has been lost (p.58 ibid.). Quantitative
relationships between the size and the shape of an organism apparently began
to interest biologists in the 19th century, opening the field which is nowadays
known as allometry, the phrase having been coined by Huxley and Teissier
(1936), cf. Gayon (2000); Niklas (1994) provides an overview over the subject.

In this article, we are going to analyse the evolution of plants’ shape over
time. We will consider two examples: in the first one the same leaf has been re-
peatedly photographed over one growing period, in the second one the tree rings
(annuli) of a stem disk have been determined which allows one to analyse the
(lateral) growth of the stem. In both cases, we are interested in determining the
development of the shape, in describing it parsimoniously, and in understanding
its course. Naturally, our specimens’ size will increase over time; beyond that,
much can be learned from the change of their geometry, i.e. their shape: this is
what we set out for in this research.

Before continuing, we have to clarify what we mean by size and shape, as
both our results as well as their interpretation hinge on these definitions, cf.
Bookstein (1989). A size variable, e.g. the square root of a polygon’s area,
determines the size of an object in such a way that rescaling the object rescales
the size variable by the same factor. Kendall (1977, 1986) then defines shape as
“the geometrical information left, when filtering out size, location and rotation”;
this will also be our viewpoint here: we are concerned with similarity shape, i.e.
two objects feature the same shape iff they are similar in the sense of Euclidean
geometry.

We stress that our interest lies in the study of the evolution of shape over
time, not so much in its relationship to size, i.e. allometry. This is not to
say that there will be no allometries, i.e. correlations between size and shape,
but the way we defined shape, size and shape can only be correlated through
time: as time progresses the specimen under consideration grows in size and
simultaneously will vary its shape.

In order to be able to analyse these shapes statistically then, we need to
represent shapes in some metrical space such that we can speak of the dis-
tance of two shapes. We call this a shape space. Obviously different ways of
“filtering out” the similarity group lead to different shape spaces and thus to
different notions of shape, each with specific advantages and disadvantages over
the other concepts. Having determined a shape space, statistical analysis of
shape appears within reach. Most shape spaces, however, are non-Euclidean
manifolds, even worse, some are only quotients of non-Euclidean manifolds with
unbound curvature, and worst, some are non-metrical spaces only (cf. e.g.
Schmidt et al. (2007)). This requires either sophisticated methods respecting
the non-Euclidean nature of the space, or to work by approximation: usually,
shape spaces are approximated locally by suitable linear Euclidean spaces in
which standard multivariate analysis can be carried out. Small (1996) as well
as Dryden and Mardia (1998) give a broad overview over such methods for
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Figure 1: A two-
dimensional contour that
is star-shaped with respect
to a central point p0. By
choosing seven pre-specified
directions e1, e2, etc., along
the contour seven intersec-
tion points r1e1, r2e2, etc.
are determined.

landmark-based shape spaces; with suitable modifications, these linearisations
are also employed in the statistical analysis based on more recently developed
shape space models, cf. e.g. Krim and Yezzi (2006) for an overview. Mean-
while, methods of intrinsic shape analysis have been proposed, based solely or
in part on the non-Euclidean structure, cf. e.g. Le (2001), Fletcher and Joshi
(2004), Klassen et al. (2004) as well as Huckemann et al. (2009). In contrast
to standard statistical analysis within linear spaces, intrinsic methods can be
computationally costly and difficult to analyse theoretically.

Such involved non-Euclidean structures, however, are by no means inevitable:
the data analyst might want to use his freedom in the choice of his shape space
such to obtain a space which he can easily work with. In fact, for our two
applications it is possible to define appropriate shape spaces that are either Eu-
clidean vector spaces or spheres which constitute in a way the most elementary
non-Euclidean spaces. Thus, instead of linearising some complicated differential
structure, we want to start immediately with a structure which is as simple as
possible, allowing us to work intrinsically without much effort. The landmark-
based model of Bookstein (1986) is one popular approach where the first two
landmarks of a planar object are mapped to pre-specified points by an simi-
larity transformation, thereby specifying translation, rotation and scaling. The
drawback of this model, however, is that its shape representation depends on
the order in which the landmarks have been numbered, namely the first two
play a special rôle. In general, it might not be possible to come up with simple
shape spaces which do not depend on some artificial, i.e. subjective, ordering
of the landmarks, but in our two examples the data structure is such that it is
possible, as we are going to demonstrate.

Tracking the growth of a single specimen, one can often view the growth
of some part as originating from a point. A leaf naturally starts growing from
its stem, forming the leaf blade, cf. left image of Figure 2. Also the tree
rings (annuli) of a stem disk capture the evolution of the tree’s stem at that
particular height from the central pith outwards in our second example, see
Figure 8. Marking specific points at the leaf’s boundary or at a tree ring,
it appears natural to view the polygon they form as a star-shaped domain
with the centre being the starting point of growth. Hence we assume that
the contours of the m-dimensional geometrical objects being studied are star-
shaped w.r.t. a distinguished point p0 ∈ Rm, i.e. every ray t 7→ p0 + tv (t >
0, v ∈ Rm) originating from p0 intersects the contour at a unique point. If
there is a collection of distinct unit vectors e1, . . . , ek ∈ Rm, k ≥ 2 which has
been fixed in advanced this leads to a radii-tuple (r1, . . . , rk) ⊂ (0,∞)k where
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Figure 2: Left: Original contours of a single Canadian black poplar leaf during
a growth period. Right: Describing a typical leaf contour with four landmarks:
stem, tip and maximal extensions orthogonal.

p0 + r1e1, . . . , p0 + rkek are the unique points of intersection with the contour,
cf. Figure 1. Usually, in applications, m ∈ {2, 3} whereas k will be much larger.
We note this still differs from the situation in classical morphometrics where the
data are given by measurements of certain distances on an object: the radii-
tuple contains all the information about the landmarks whereas the shape may
not be completely determined when only some distances of landmarks have been
measured, cf. the discussion of (Dryden and Mardia, 1998, p. 7).

In our example with the leaves, no angles, i.e. no unit vectors, have been
fixed in advance. For this situation we will derive the new spherical shape space
in Section 2. For the tree rings, on the other hand, data have been collected
along fixed rays emanating from the pith such that our analysis will be based on
the radii-tuple. We will show how one can obtain a Euclidean shape space in that
scenario within Section 3. We will analyse both examples by first reducing the
data dimension through principal component analysis, and afterwards tracking
their scores over time. This leads to fresh insights into the growth of leaves and
tree stems: while both occur mainly unidirectional, we find change points in
the growth direction for the latter which we can link to environmental changes.
Finally, we will discuss both our methodology and our findings in Section 4.

2 Spherical shape spaces for modelling poplar

leaves

2.1 Shapes of poplar leaves

To study the growth of leaves we selected two Canadian black poplar leaves
from a dataset collected at the University of Göttingen’s Institute for Forest
Biometry and Informatics, cf. Table 1.

These leaves have been repeatedly photographed over their growth period
from June 2007 to September 2007. The first six measurements have been taken
in June with only a few days between, subsequent measurements with increasing
time intervals followed until the beginning of September. These leaves’ contours
have subsequently been digitised as well as translated and rotated such that the
starting point of growth from the stem p0 was placed at the origin and the main
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Table 1: Features of leaves considered.

leaf recorded time period number of contours
f2b7 June – September 12
f2b9 June – July 7

leaf vein pointed to the positive vertical axis, see Figure 2. Then 4 anatomical
landmarks were placed at each leaf’s contour: the first at the base, i.e. at the
start of the main leaf vein, another one at the end of the main leaf vein, and two
more landmarks at the largest extents of the leaf, orthogonal to the dominating
direction of the main leaf vein. Thus we have marked the bottom (p0), right
(x1), top (x2), and left (x3) “end” of the leaf, thereby obtaining a pre-aligned,
quadrangular representation of the leaf, see again right image of Figure 2; cf.
also (Thompson, 1942, p. 1041 et seqq.).

To analyse these quadrangles, we adapt Kendall’s shape space model accord-
ingly. In the Kendall (1984) formulation, on every m-dimensional geometrical
object studied, k landmarks at certain locations x1, . . . , xk are specified. The
locations are arbitrary but should correspond to each other on different objects
in a meaningful way. Each landmark xj is an m-dimensional column vector and
the m × k - matrix X := (x1, . . . , xk) is the configuration matrix.

In the general approach, location information is filtered out by Helmertising,
i.e. by multiplying X from the right with a k-sub-Helmert matrix. This yields a
m×(k−1) -matrix which can be viewed as containing k−1 landmarks only. The
very objective of Helmertising is to filter out location information in a uniform
way thus ensuring that shape distances are independent of the order the land-
marks are numbered. In view of our applications for pre-aligned objects with
a specified central location p0, two aspects have to be considered. Obviously,
the location p0 is also a landmark. Hence, one might want to Helmertise the
enlarged configuration matrix (x1, . . . , xk, p0). This way, however, the informa-
tion of “pre-alignment” encoded in p0 is lost but the starting point of growth
is clearly of importance in our applications. For this reason, if x1, . . . , xk are
landmarks on the contour of a pre-aligned object studied with a central location
p0, we instead remove location information by subtracting p0 from every column
of the configuration matrix, i.e. by placing p0 at the origin:

x∗
j := xj − p0 (j = 1, . . . , k), X∗ := (x∗

1, . . . , x
∗
k) .

Following Kendall (1984), we divide X∗ by its size which is taken as the

Euclidean norm, ‖X∗‖ =
√

∑m

i=1

∑k−1
j=1 x∗

ij
2, and the spherical shape space is

obtained as
Sk

m :=
{

Z ∈ R
m × R

k−1 : ‖Z‖ = 1
}

,

the unit-sphere in the space of m × (k − 1) - matrices. At this point we note
that trivial configurations x1 = . . . = xk with zero size, i.e. where all landmarks
except, possibly the centre are on top of each other, are excluded from our
considerations. With this restriction, the spherical shape distance

d(X, Y ) = arccos
trace

(

X∗(Y ∗)T
)

‖X∗‖ ‖Y ∗‖
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of two configurations X , Y , is well defined and indeed invariant under common
relabelling of landmarks and under a common translation. Note that this dis-
tance arises naturally from the sphere’s non-Euclidean geometry, given by its
natural embedding into Euclidean space. In classical Kendall shape analysis,
Sk

m is called the pre-shape sphere since the Kendall shape spaces are then ob-
tained by additionally filtering out rotation information. As we are concerned
with pre-aligned data where the rotation has been fixed in advance, e.g. by
placing the main leaf vein tangential to the positive vertical axis as described
above, we can immediately use the spherical representation ‖X∗‖−1X∗ in Sk

m.
Alternatively, one might consider the vertex transformation vectors of Hobolth

et al. (2002). They view planar star-shaped objects with k landmarks as de-
formations of a regular k-sided polygon. More precisely, they represent every
landmark as a complex number zj ∈ C and then remove translation by centreing
– which we replace by subtracting z0, the complex number representing the cen-
tral location p0 ∈ R2, to obtain z∗j = zj − z0. Then, denoting the corresponding
vertices of the regular k-sided polygon by ωj = exp(2πij/k), they define the
vertex transformation vectors

dj = z∗j /ωj. (1)

Finally, they normalise scaling and rotation with α ∈ C such that

1

k

k
∑

j=1

αdj = 1. (2)

In our case, we do not want remove the rotation as the data are already pre-
aligned, so instead one might want to divide through size. Then, however, one
obtains a sphere as the shape space, instead of a representation with linear side
conditions that give rise to a Euclidean vertex transformation space as originally
intended by the authors.

2.2 Principal component analysis

Let us first recall the main ingredients for principal component analysis (PCA)
in the “classical” setting: suppose that R(1), . . . , R(n) are independent realisa-
tions of a multivariate random variable R taking values in a Euclidean space
Rk. Then consider the empirical covariance matrix ZZT , where Z =

(

(R(1) −

R)T , . . . , (R(1) − R)T
)

are the centred realisations with respect to the mean

R = 1
n

∑n
i=1 R(i). The eigenvectors of ZZT are the principal components (PCs)

and the eigenvalues (ordered to be non-increasing) give the variance explained
by the respective principal components, i.e. the (univariate) variance of R pro-
jected on the respective PC. As the PCs form a basis of Rk, these variances
explain all (multivariate) variation in the data; their sum is the total variance.
The first PC thus gives the direction of largest variation, and so on. The scalar
product of a realisation with a particular PC is called its score on that PC.

For non-Euclidean shape spaces, the situation is more difficult. Therefore,
we have to generalise the concepts of mean, variance and principal components
to multivariate random variables that take values in the spherical shape space;
for this we follow the more general methodology of Huckemann et al. (2009).
Recall that a geodesic (i.e. the path minimising the distance) in Euclidean space
is a straight line whereas on a sphere it is a great circle.
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Given independent realisations Y (1), . . . , Y (n) of a random variable Y on
the spherical space Sk

m, we are concerned with the minimisation of the two
quantities:

n
∑

i=1

d(Y (i), µ)2 and (3)

n
∑

i=1

d(Y (i), δ)2 (4)

for µ ∈ Sk
m, and a geodesic δ : t → δ(t) on Sk

m. Note that since Sk
m is compact,

both quantities are finite.
A point µ̂I ∈ Sk

m minimising (3) is called an intrinsic mean (IM) with total
(intrinsic) variance

Vint :=

n
∑

i=1

d(Y (i), µ̂I)
2.

A geodesic δ1 on Sk
m minimising (4) is called a first spherical principal component

(SPC). A geodesic δ2 on Sk
m that minimises (4) over all geodesics δ on Sk

m that
have at least one point in common with δ1 and that are orthogonal to δ1 at all
points in common with δ1 is called a second SPC.

Every point µ̂P that minimises (3) over all common points µ of δ1 and δ2 is
called a principal component mean (PM). Given a first and a second SPC δ1 and
δ2 with PM µ̂P , a geodesic δ3 is a third SPC if it minimises (4) over all geodesics
that meet δ1 and δ2 orthogonally at µ̂P . Analogously, SPCs of higher order are
defined. Figure 3 illustrates SPCs and means for a sample of three points on a
two-sphere. Each of these points corresponds to a triangular, two-dimensional
configuration.

Given a SPC δ denote by Y
(i)
(δ) the orthogonal projection of Y (i) onto δ. We

accordingly call the signed distance of Y
(i)
(δ) to µ̂P the geodesic score of Y (i) on

δ; the sign orients the geodesic. By Theorem 2.6 of Huckemann et al. (2009),
geodesic scores are uniquely defined outside a null set on Sk

m.
In Euclidean geometry these definitions yield the mean and the principal

components as introduced above. In contrast to Euclidean geometry however,
µ̂I 6= µ̂P , in general, cf. Theorem 4.1 of Huckemann and Ziezold (2006), and
Figure 3 above.

Variance in Euclidean space can be obtained equivalently either by consider-
ing projections or by considering residuals. In non-Euclidean geometry the two
approaches yield different results. We consider here projection only: suppose
we are given SPCs δ1, δ2, . . . with PM µ̂P . Then, define the geodesic variance
explained by the s-th SPC, 1 ≤ s ≤ m(k − 1), by

V
(s)

proj :=

n
∑

i=1

d(Y
(i)
(δs), µ̂P )2 ,

leading to cumulative variances

V
[l]

proj :=
l

∑

s=1

V
(s)

proj , l = 1, . . . , m,
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Figure 3: A sample of three points (large dots) on a two-sphere. Left: the first
SPC (the thick line close to the equator, i.e. the great circle approximating the
sample best with respect to squared spherical distances) intersects the second
SPC (thinner meridional line) at the principal component mean (small dot).
Below is the intrinsic mean (the small square), which does not lie on the first
SPC. Right: geodesic scores of the first data point on the first two SPCs (thick
lines) with corresponding residuals (thin lines). Due to spherical curvature,
Pythagoras’ Theorem does not hold.

Table 2: Cumulative variances of the first three SPCs (spherical shape space) as
percentages of total variance obtained by projection and total intrinsic variances
for each of the two data-sets of leaf-contours.

leaf SPC1 SPC2 SPC3 total variance
f2b7 86.1 97.2 99.1 0.0134
f2b9 96.7 99.2 99.6 0.0303

and total variance obtained by projection

Vproj :=

m
∑

s=1

V
(s)

proj .

In Euclidean geometry Vproj = Vint by Pythagoras’ Theorem which is no longer

true in spherical geometry, cf. the right part of Figure 3.
Spherical principal components can be calculated iteratively. For the fol-

lowing computations we have used an implementation based on the algorithms
provided in Huckemann and Ziezold (2006).

2.3 Growth of poplar leaves

We computed spherical principal components (SPCs) for the quadrangles repre-
senting the leaves as defined above. Note that this shape space is 5-dimensional.
However, most of the variation over time is explained by the first principal com-
ponent, see Table 2.

Figure 4 shows the evolution of shape of the first leave over time by as cap-
tured by the first PC, as well as the change in size ‖X∗‖. Not surprisingly, the
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latter appears to show the typical logistic growth pattern, cf. Niklas (1994), as
does the first PC; similarly for the second leaf (not shown). And indeed, we see
a strong linear relationship between size and shape for both leaves in Figure 5.
Note however, that each leaf has its own PC, hence follows its own path through
shape space, i.e. the allometries we observe here are intra-subject allometries
whereas most allometric studies analyse allometries within populations. Hence,
the allometry we obtain here can be explained by two coincidental events ob-
servations: firstly, growth in terms of size and shape happens on the same
time-scale, and secondly, the leaf’s shape appears to develop straight, i.e. along
a geodesic in shape space, towards the shape of the full-grown leaf. This sup-
ports the “biological-geodesic hypothesis” stating that biological growth mainly
follows the first principal component in shape space, see Le and Kume (2000).
We cannot conclude, however, that there is an allometry, i.e. a correlation,
between size and shape of the full-grown leaves in a population of leaves.

We note the need to distinguish this evolution of shape along a geodesic in
shape space from the shapes of some objects, e.g. spicules, whose growth is
forced along geodesics because they are confined to some curved surface, e.g.
the cell wall, as described by (Thompson, 1942, p. 675 et seqq., and Ch. X).
The latter is the result of a physical constraint to stay within a hollow structure,
the former is related to the mathematical definition of shape space. Indeed, if
physical constraints restrain the growth we expect an evolution of shape along a
curve in shape space which is not a geodesic but features additional curvature.
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Figure 4: First spherical PC measured in arc length (left) and size measured in
mm (right) over time (day zero corresponds to June 5, 2007) for the contours
of leaf f2b7.

3 Analysing tree rings in log-shape space

3.1 Shapes of tree rings

In forest biometry, the temporal development of entire tree populations and the
development of single tree stems are of great interest. Modelling and under-
standing these temporal evolutions is of high importance for biological research
and forest economical planning as well as for the study of exterior effects such
as environmental and climate-based impacts. In this study, we will address the
latter, the development of single tree stems. The evolution of such a stem has
two aspects: growth not only affects the volume and thus the yield of a tree
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Figure 5: First spherical PC measured in arc length vs. size measured in mm
(right). Left: leaf f2b7. Right: leaf f2b9.

Table 3: Features of disks considered.

tree data-set at height (m) number of rings

d104
bottom-disk 0.4 63
middle-disk 13.1 46

d177
bottom-disk 0.4 62
middle-disk 15.5 41

but also the tree’s shape. The growth of trees in regard to their yield which
is closely related to their size has been extensively studied for more than two
hundred years due to its direct economical impact, cf. e.g. Vanclay (2003). For
instance growth change induced by external stress has been of specific interest
in recent years, cf. e.g. Gaffrey and Sloboda (2004). Obviously, yield is also
related to the shape of tree stems: from an economical point of view, nearly
cylindrical pine tree stems are desirable, however, thus leading to studies on
how the shape of a tree stem develops.

We present here a case study of two Douglas fir stems labelled “d104” and
“d177” (Gaffrey and Sloboda, 2001), studying their annual evolution of shape.
These trees from an experimental site in the Netherlands have been cut by
the end of 1997 at the age of about 65 years. Each of the trees has been cut
in several horizontal disks and on every disk, the radii of all rings have been
recorded at k = 36 evenly spaced angles. Because of the large vertical distances
between the disks, we decided to analyse each disk individually, showing us the
temporal evolution of the stem’s shape at the corresponding heights. For this
case study we have selected 2 representative data-sets for each tree which we
call bottom-disk and middle-disk, cf. Table 3. Figure 8 (upper-left) displays the
bottom-disk of tree d177.

For each disk the radial distances of each ring from the pith (which is roughly
the centre of the innermost ring) are recorded for k = 36 angles beginning at 0◦

(which points north) in steps of 10◦. Every tree ring can thus be described by
either a radii tuple

r := (r1, . . . , rk) ∈ (0,∞)k

or a configuration matrix

X := (x1, . . . , xk) ∈ (R2 × R
k) \ {0}

10



the columns of which are the landmarks :

xT
j =

(

rj cos
2(j − 1)π

k
, rj sin

2(j − 1)π

k

)T

, j = 1, . . . , k .

Obviously, the radii no longer contain any information about location and
rotation, thus in order to attain the shape, only size has to be filtered out. Size
has been viewed as area (2D) or volume (3D), cf. e.g. Small (1996), or as a
certain mean mutual distance of contour points, cf. e.g. Kendall (1984) and
Bookstein (1986). In 2D for our specific data format, the two views are closely
related: the area bounded by a two-dimensional star-shaped contour can be
approximated by a multiple of the arithmetic mean of squared radii (cf. our
choice of size in Section 2.1),

Â =
π

k

k
∑

j=1

r2
j ;

and for the square root of the sum of squared mutual distances we have

√

∑

1≤i<j≤k

‖riei − rjej‖2 =

√

√

√

√k

k
∑

j=1

r2
j = k

√

1

π
Â,

if
∑n

i=j rjej = 0, i.e. if p0 is the mean of p0 + r1e1, . . . , p0 + rkek.
In the case of a general location of p0, dividing the radii-tuple by its Eu-

clidean length ‖r‖ its shape is obtained as a point on the unit hyper-sphere of
Rk as suggested by Dryden (2005). This directly leads to the sphere Sk−1 of
normed radii tuples as a shape space.

Note that the approach of Hobolth et al. (2002) leads to the mean radius as
size, cf. our discussion further below on p. 12.

Alternatively in a mathematically simpler approach, following Mosimann
(1970), Darroch and Mosimann (1985) and Dryden and Gattone (2001) define
size by instead using the geometric mean

Ŝ :=





k
∏

j=1

rj





1

k

(5)

and consider the logarithms of the resized radii-tuple:

R := (R1, . . . , Rk) with Rj := log
rj

Ŝ
.

Then, these data come to lie in a hyperplane through the origin of Rk which we
call the log shape space:

R ∈ Λk :=







(x1, . . . , xk) ∈ R
k :

k
∑

j=1

xj = 0







.

As the log-radii shape space is a linear subspace of Euclidean Rk, we can carry
out “classical” multivariate statistical analysis: mean values, principal compo-
nents, etc. will come to lie in Λk.
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Besides the mathematical elegance, there is also a biological reasoning for
taking logarithms: the allometric equation

y = bxα

relates two morphological measurements x and y for the common situation of rel-
ative growth, see Huxley and Teissier (1936). Taking logarithms then transforms
this into the linear relationship log y = log b+α log x, cf. Jolicoeur (1963). Defin-
ing size as the geometric mean (5) is then called isometric size. While choosing
isometric size is debatable in general morphological studies where lengths of dif-
ferent parts are collected, cf. Mosimann (1970), in our setting all measurements
are distances to the contour, taken at equi-distant angles, and therefore a priori
comparable, rendering isometric size appropriate.

The spherical shape space introduced in Section 2.1 is also applicable in the
present situation: fixing the landmarks along prespecified unit length vectors
e1, . . . , ek leads to all geodesics between such landmarks to run through the
restricted space as well. Indeed, any such geodesic is given by normalised linear
combinations of the corresponding shapes, i.e. as an orthogonal projection of
the straight line connecting the two in the embedding space; any point on the
geodesic can thus be represented as a configuration along these prespecified unit
length vectors. In particular means and principal components as introduced
above in Section 2.2 preserve the radii representation. We note that this does
not hold in general Kendall shape spaces because of the optimal positioning that
is necessary to remove the rotation, for a related discussion cf. Lele (1993).

In the specific situation of fixed e1, . . . , ek the vertex transformation shape
space of Hobolth et al. (2002) as introduced in Section 2.1 can be adapted to
the case of pre-aligned configurations preserving linearity. Indeed, the vertex
transformation vectors dj in (1) have fixed arguments, differing only in their
modulus for differing shapes, in the situation of landmarks fixed along e1, . . . , ek.
The condition for resizing in (2) then is linear in the radii which act as the
coefficients of the unit length vectors dj/|dj |. Thereby size is implicitly defined
as the mean radius. We conclude that the vertex transformation shape space
also qualifies in the present situation.

For all of the above spaces we know by now how to calculate principal com-
ponents, as we shall do in the following section. We note that Jolicoeur and
Mosimann (1960) probably were first to perform PCA on morphological mea-
surements, and Burnaby (1966) proposed PCA on the subspace orthogonal to
a general growth vector. Cadima and Jolliffe (1996) discuss PCA on Λk, using
the geometric mean of morphological distance measures as isometric size just as
we do.

In conclusion we note that Krepela (2002) analyses tree stem variation
among different trees by describing each horizontal disk by its height and a
single radius. Thus modelling with Kendall’s classical space for 2D-shapes and
employing as usual Procrustes analysis to locally approximate these spaces by
Euclidean spaces he finds that a large amount of shape variation is explained
by the first PC alone and most of the shape variation by the first two PCs.

3.2 Evolution of tree rings over time

For the two data-sets bottom-disk and middle-disk for each of the two trees
d104 and d177 introduced in Section 3.1, principal components in log-shape
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(a) The first two LPCs and SPCs for the bottom-disk and middle-disk of tree d104.
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(b) The first two LPCs and SPCs for the bottom-disk and middle-disk of tree d177

Figure 6: The respective PCs for each of the two data-sets of trees d104 and
d177 plotted against time; note the differing scales on the vertical axes caused
by the different metrics on the respective shape spaces.
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Table 4: Cumulative variances of the first five LPCs (log-shape space), SPCs
(spherical shape space) and VPCs (vertex transformation shape space) as per-
centages of total variance obtained by projection and total intrinsic variances
for each tree and each of the two data-sets.

tree data-set LPC1 LPC2 LPC3 LPC4 LPC5 total variance

d104
middle-disk 67.2 89.3 94.7 96.9 98.3 0.038
bottom-disk 91.1 94.5 96.3 97.4 98.2 0.138

d177
middle-disk 71.1 85.8 92.2 96.8 98.2 0.078
bottom-disk 59.5 81.4 90.2 93 95 0.091

SPC1 SPC2 SPC3 SPC4 SPC5

d104
middle-disk 66.6 89.3 94.6 97.0 98.3 0.001
bottom-disk 91.0 94.5 96.2 97.4 98.1 0.005

d177
middle-disk 71.2 86.2 92.3 96.7 98.2 0.002
bottom-disk 53.9 80 90.2 92.9 94.8 0.004

VPC1 VPC2 VPC3 VPC4 VPC5

d104
middle-disk 66.6 89.3 94.6 97.0 98.3 0.039
bottom-disk 91.1 94.5 96.2 97.4 98.1 0.139

d177
middle-disk 71.2 86.2 92.3 96.7 98.2 0.078
bottom-disk 53.9 80 90.2 93 94.8 0.089

(a) Tree d104 (b) Tree d177

Figure 7: Along first LPC for tree d104 (left) and tree d177 (right): movement
from the minimum data-score (left images) to the maximum data-score (centre
images) and further beyond by the same distance (right images) along the first
PC for the bottom-disks. As before, the vertical radius depicted points north
from the pith location. Thus the left images correspond to early shapes, the
middle images to the shapes at the time of cutting and the right images to some
never observed shapes around 100 years into the future.
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original First LPC First 2 LPCs

First 3 LPCs First 4 LPCs First 11 LPCs

Figure 8: Bottom-disk of tree d177; top-left: original disk, in the following
images the rings corresponding to size and projections onto the respective log-
linear principal components are depicted. The vertical radius from the pith
points north.

space (LPCs), in spherical shape space (SPCs), and in vertex transformation
space (VPCs) have been computed. We note that there are min(n, 35) LPCs as
well as non-trivial VPCs, and min(n, 70) SPCs where n denotes the number of
samples in the respective data-set. In Table 4 we report the percentages of total
variance explained by the first five respective components. Rather strikingly we
notice that the first PC alone explains a large amount of shape variation, the
first two PCs together explain more than 80 %.

As a second result, we observe that spherical PCA for the spherical shape
space, as well as classical PCA for the log-shape space and the vertex trans-
formation shape space give similar results. These are particularly similar if the
data are explained almost exclusively by the first PC. The equivalence of the
eigenvectors becomes very much apparent in Figure 6 which shows scatterplots
of the temporal shape evolution along the first two LPCs and SPCs, respec-
tively. Even for the bottom disk of tree d177 (the amount of variance explained
by the first PC differs by approx. 5 % between the three methods), the plots
of the scores along the first PC against time of the three methods are almost
identical. Figure 6(b)) displays the scores using the first two methods.

One reason for the similarity of the methods might be that the data are
very concentrated as can be seen from the small scores. Hence the mapping of
one shape space onto the other is in a good, first-order approximation linear
and thus preserves the space spanned by the principal components. We note
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that the similarity of the results also is reassuring when we are about to inter-
pret them. Indeed, since there is no objective way to prefer any of these shape
spaces over the others, our findings might depend on our subjective choice of
the shape space; for this data, however, we are fortunate enough to get results
whose interpretation remains the same whichever shape space we use. It would
be interesting to analyse under which circumstances, i.e. under which mathe-
matical assumptions, this holds. Because the results are so similar, we only give
results for log-shape space in the following.

To visualise the shapes’ evolution along their respective first PC, we depict
the shapes that belong to different scores on the first PC in Figure 7, starting
with the lowest score which represent the coming into being of the tree, next
the highest score corresponding to the time of cutting the tree, and finally
exaggerating this evolution for better visibility by showing the shape which
corresponds to the maximal score plus the range of scores, i.e. this shape has
the same distance to the middle one as has the first one but in opposite direction.

In a similar fashion, the backtransformation of the entire bottom disk of tree
d177 is given in Figure 8 using one LPC, two LPCs etc.; there, the shapes were
given the sizes of the corresponding original rings to obtain tree rings of the
same scale, rendering them visually comparable with the original stem disk.

More common effects are apparent:

1. After a small number of initial years (between 10 and 15 years), the tem-
poral shape evolution tends to be directed along the first PC, in particular
for the bottom disks, see Figure 6. This directed motion is also very well
visible in the second image of the first row in Figure 8 and in both parts
of Figure 7: the first PC records an overall motion of the pith from east
to west within the disk. This effect can be explained with the effort of
the tree to counter the dominating wind force from the west at the exper-
imental site by building up stem-mass east of the pith. This effect is not
well visible in the middle disks, one may conjecture that here individual
effects dominate, less aiming at overall tree-stability, rather then in search
of light.

2. Along the second PC, mainly oscillatory patterns are visible, cf. Figures
6 and Figure 8. E.g. in the third image of the first row of the latter figure
two bulges appear simultaneously at north and south-east a little after
1970 and disappear again in the early 1990’s. Subsequent PCs incorporate
more of such oscillatory shape change.

3. A change of orientation around 1970 visible in all second PCs (and mostly
visible as changes of slopes in the first PCs).

4. A change point with similar features a little after 1990 well visible in the
middle disk of tree d104, in the bottom disk of tree d177 and less visible
in the bottom disk of tree d104.

5. One more change point with similar features around 1985 visible in the
bottom disks of tree d104 and tree d177.

6. Some more changepoints about every five years before 1970 can be iden-
tified in some of the disks.
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If the geodesic hypothesis holds, cf. Section 2.3, a change in the direction of
growth might indicate a change in the trees’ environmental conditions. And
indeed, around the tree-age of 10 to 15 years the crowns of nearby trees met
and thus tree competition intensified. This effect may explain the first change
point in the bottom disk while the major two change points (approx. in 1973 and
1994) might be due to the fact that between the years 1972 and 1993, logging
in that forest was halted, thus increasing tree competition. Most of the other
change points noted above can be explained by thinning events and extended
periods of non-thinning. Beginning from 1952, thinning occurred every three
years, from 1961 every 5 years. From 1972 to 1994 thinning was completely
halted. Both phenomena, random initial motion and change points certainly
deserve further research.

Also, we observe again that the first PC highly correlates with time which
in term correlates with size, cf. Section 2.3. Thus for the bottom disks we have
a relative east-west motion of the pith correlating with size; again this amounts
to an intra-subject effect, although one might expect from the data we’ve seen
that smaller, i.e. younger, trees in this forest’s population will again have a
rather central pith as opposed to older trees which have already adapted to the
dominating wind direction. Then, one should find a population level allometry
between size and the shape of the outermost ring.

4 Discussion

It was the aim of this research to provide for simple shape spaces allowing to
study how shapes of contours evolve that are

1. pre-aligned with respect to a pre-specified centre, and

2. star-shaped with respect to that centre.

In case of the tree-rings we assumed moreover that

(c) the landmarks are given on the contour at fixed angles.

For the general situation where the angles are free, we found that a spherical
shape space was appropriate. This is an adaption of Kendall’s shape space
where neither rotation nor translation needs to be removed. When the angles
are fixed, shape analysis can additionally be performed in log-shape space and
vertex transformation space, both of which are Euclidean.

We emphasise that these three shape space not only feature a simple ge-
ometry but their geometries are also invariant under cyclical relabelling of the
landmarks – excluding the centre, of course. This is a very desirable property
of these spaces; indeed, we do not want our statistical analysis of the tree rings,
for example, to depend on the order in which we labelled our landmarks, start-
ing from north as we did or starting from south. On the contrary, Bookstein
coordinates also lead to a linear space but they clearly let the centre and the
first landmark play a special rôle, rendering subsequent analyses dependent on
that subjective choice. On the other hand, our model cannot directly be used
to study the shapes of general geometrical data, be they not star-shaped or
not aligned. There, Bookstein’s linear and hyperbolic models as well as the
non-linear model of Kendall can still be successfully applied.
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Our motivation lay in two applications, where we wanted to explore the
growth of poplar leaves and of Douglas fir tree rings, respectively. In both cases
we found shape evolution to happen unidirectionally as long as the physical
conditions do not mandate a change of course, as was the case for the tree
rings, cf. Section 3.2. Principal components analysis, performed intrinsically
for the spherical shape space, allowed for a parsimonious description of the
data, reducing it to no more than two dimensions relevant for the analysis.
Our analyses where based on few leaves and stem disks, though. In the future,
more extensive studies comprising larger populations need to be undertaken to
statistically solidify the findings described here, e.g. by providing appropriate
confidence bands for the amount of variance explained, or by allowing to test
for the presence of change points.

Future applications in Forest Biometry lie in the estimation of the prospec-
tive growth of trees, cf. Figure 7. This is of value economically since the tree’s
shape determines how profitable the wood is which can be cut from it, e.g. long,
straight boards give higher profits. From our results it appears possible to pre-
dict the future evolution of the shape from few data which have been obtained
non-destructively, e.g. from horizontal drillings towards the pith.

Acknowledgements: We are most grateful for the helpful comments raised
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of this manuscript.
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