Institut für Mathematische Stochastik

Publikationen: Dr. Eltzner

  • Hundrieser, S, Eltzner, B., Huckemann, S.F. (2024).
    A Lower Bound for Estimating Fréchet Means. arXiv:2402.12290. Submitted.
  • Wiechers, H., Zobel M.,, Bennati, M., Tkach, I., Eltzner, B., Huckemann, S.F, Pokern, Y. (2023).
    Drift Models on Complex Projective Space for Electron-Nuclear Double Resonance. arXiv:2307.12414. Submitted.
  • Wiechers, H., Kehl, A., Hiller, M., Eltzner, B., Huckemannm S.F., Meyer, A., Tkach, I., Bennati, M., Pokern, Y. (2023).
    Bayesian optimization to estimate hyperfine couplings from 19F ENDOR spectra. Journal of Magnetic Resonance, 107491.
  • Hauke, L., Primeßnig, A., Eltzner, B., Radwitz, J., Huckemann, S.F., Rehfeld, F. (2023).
    FilamentSensor 2.0: An open-source modular toolbox for 2D/3D cytoskeletal filament tracking. PLOS One, 18(2).
  • Wiechers, H., Eltzner, B., Mardia, K. V., Huckemann, S. F. (2023).
    Learning torus PCA based classification for multiscale RNA backbone structure correction with application to SARS-CoV-2. bioRxiv Journal of the Royal Statistical Society, Series C, 72 (2), 271--293.
  • Hansen, P., Eltzner. B., Huckemann, S.F., Sommer, S. (2023).
    Diffusion Means in Geometric Spaces. arXiv:2105.12061 Bermoulli, 29(4),, 3141 - 3170.
  • Mardia, K. V., Wiechers, H., Eltzner, B., Huckemann, S. F. (2022).
    Principal component analysis and clustering on manifolds. Journal of Multivariate Analysis, 188, 104862 early online access.
  • Hiller, M., Tkach, I., Wiechers, H., Eltzner, B., Huckemann, S., Pokern, Y., Bennati, M. (2022).
    Distribution of Hß Hyperfine Couplings in a Tyrosyl Radical Revealed by 263 GHz ENDOR Spectroscopy. Applied Magnetic Resonance, 53 (7-9), 1015-1030.
  • Pein, F., Eltzner, B., Munk, A. (2021).
    Analysis of patchclamp recordings: model-free multiscale methods and software. European Biophysics Journal, 50 (3), 187 - 209.
  • Pokern, Y., Eltzner, B., Huckemann, S. F., Beeken, C., Stubbe, J.A., Tkach, I., Bennati, M., Hiller, M. (2021).
    Statistical analysis of ENDOR spectra Proc. Natl. Acad. Science of the US, 118 (27), e2023615118
  • Vanegas, L. J., Eltzner, B., Rudolf, D., Dura, M., Lehnart, S. E., Munk, A. (2021).
    Analyzing cross-talk between superimposed signals: Vector norm dependent hidden Markov models and applications. arXiv:2103.06071. Submitted.
  • Eltzner, B., Galaz-Garcia, F., Huckemann, S.F., Tuschmann, W. (2021).
    Stability of the Cut Locus and a Central Limit Theorem for Fréchet Means of Riemannian Manifolds. Proceedings of the American Mathematical Society arXiv 1909.00410, 149 (9), 3947–3963.
  • Wiesner, S., Kaplan-Damary, N., Eltzner, B., and Huckemann, S. F. (2020).
    Shoe prints: The path from practice to science. Chapter XVII in Banks, D., Kafadar, K., and Kaye, D., editors, Handbook of Forensic Statistics, 391-410.
  • Huckemann, S.F., Eltzner, B. (2020).
    Data Analysis on Non-Standard Spaces WIREs Computational Statistics , 2021;13:e1526., early access.
  • Eltzner, B., Hauke, L., Huckemann, S., Rehfeldt, F., Wollnik, C. (2020).
    A Statistical and Biophysical Toolbox to Elucidate Structure and Formation of Stress Fibers, Chapter 10 in Nanoscale Photonic Imaging edited by T. Salditt, A. Egener and D.R. Luke, 263-282.
  • Hundrieser, S., Eltzner, B., Huckemann, S.F. (2020).
    Finite Sample Smeariness of Fréchet Means and Application to Climate arXiv:2005.02321.. Submitted.
  • Huckemann, S.F., Eltzner, B. (2020).
    Statistical Methods Generalizing Principal Component Analysis to Non-Euclidean Spaces Handbook of Variational Methods for Nonlinear Geometric Data, Chapter 10, 317-338.
  • Eltzner, B., Huckemann, S. F. (2019).
    A Smeary Central Limit Theorem for Manifolds with Application to High Dimensional Spheres. Ann. Statist. arXiv 1801.06581, 47 (6), 3360-3381.
  • Eltzner, B., Huckemann, S.F., Mardia, K.V. (2018).
    Torus principal component analysis with applications to RNA structure. Annals of Applied Statistics, 12(2), 1332 -- 1359.
  • Huckemann, S.F., Eltzner, B. (2018).
    Backward nested descriptors asymptotics with inference on stem cell differentiation. Ann. Statist. arXiv 1609.00814, 46(5), 1994 -- 2019.
  • Huckemann, S. F., Eltzner, B. (2017).
    Essentials of backward nested descriptors inference. Functional Statistics and Related Fields, Chapter 18, 137--144.
  • Eltzner, B., Huckemann, S. (2017).
    Applying Backward Nested Subspace Inference to Tori and Polyspheres. Geometric Science of Information 2017 proceedings, 587--594.
  • Eltzner, B., Huckemann, S. (2017).
    Bootstrapping Descriptors for Non-Euclidean Data. Geometric Science of Information 2017 proceedings, 12--19.
  • M. Bernhardt, J.D. Nicolas, M. Eckermann, B. Eltzner, F. Rehfeldt, T. Salditt, (2017).
    Anisotropic x-ray scattering and orientation fields in cardiac tissue cells New Journal of Physics, 19, 013012.
  • Beneš, V., Večeřa, J., Eltzner, B., Wollnik, C., Rehfeldt, F., Králová, V., Huckemann, S.F. (2017).
    Estimation of parameters in a planar segment process with a biological application Image Analysis & Stereology , 36, 25-33.
  • Eltzner, B., Wollnik, C., Gottschlich, C., Huckemann, S., Rehfeldt, F. (2015).
    The Filament Sensor for Near Real-Time Detection of Cytoskeletal Fiber Structures PLoS ONE, 10 (5), e0126346.
  • Eltzner, B., Jung, S., Huckemann, S. (2015).
    Dimension Reduction on Polyspheres with Application to Skeletal Representations Geometric Science of Information 2015 proceedings, 22 - 29.
  • Eltzner, B., Huckemann, S.F., Mardia, K.V. (2015).
    Torus Principal Component Analysis with an Application to RNA Structures (old Version). arXiv:1511.04993 Submitted.