english version
News
Nächster Vortrag im Stochastischen Kolloquium:
25.10.2017, 11:15, Dr. Vlada Limic (Université Paris Sud 11)

"Title: t.b.a.".
Statistics Meets Friends: The workshop "Statistics Meets Friends - from biophysics to inverse problems and back -" takes place in Göttingen from November 29th to December 1st, 2017.
Publikationen

Arbeitsgruppe "Statistics on non-Euclidean Spaces"
Publikationen: Prof. Dr. Stephan Huckemann

  • Imdahl, C., Gottschlich, C., Huckemann, S.,Ohshika, K. (2017).
    Möbius moduli for fingerprint orientation fields arXiv 1708.02158. Submitted.
  • Kim, B., Huckemann, S.F., Jung, S. (2017).
    Small sphere distributions for directional data with application to medical imaging. arXiv 1705.10013. Submitted.
  • Beneš, V., Večeřa, J., Eltzner, B., Wollnik, C., Rehfeldt, F., Králová, V., Huckemann, S.F. (2017).
    Estimation of parameters in a planar segment process with a biological application Image Analysis & Stereology , 36, 25-33.
  • Huckemann, S.F., Eltzner, B. (2017).
    Backward nested descriptors asymptotics with inference on stem cell differentiation. Ann. Statist. arXiv 1609.00814. Accepted.
  • Gottschlich, C., Tams, B., Huckemann, S. (2017).
    Perfect fingerprint orientation fields by locally adaptive global models. IET Biometrics, 6 (3), 183--190.
  • Telschow, F.J.E, Huckemann, S.F. Pierrynowski, M. (2016).
    Functional Inference on Rotational Curves and Identification of Human Gait at the Knee Joint arXiv 1611.03665. Submitted.
  • Thai, D.H., Huckemann, S., Gottschlich, C. (2016).
    Filter Design and Performance Evaluation for Fingerprint Image Segmentation. PLoS ONE, 11(5), e0154160.
  • Huckemann, S.F., Kim. K.-R., Munk, A., Rehfeld, F., Sommerfeld, M., Weickert, J., Wollnik, C. (2016).
    The circular SiZer, inferred persistence of shape parameters and application to stem cell stress fibre structures. Bernoulli, arxiv.org 1404.3300, 22, 2113-2142.
  • Hartmann, A., Huckemann, S., Dannemann, J., Laitenberger, O., Geisler, C., Egner, A., Munk, A. (2016).
    Drift estimation in sparse sequential dynamic imaging: with application to nanoscale fluorescence microscopy. J. Royal Statist. Society, Ser. B, arxiv.org 1403.1389, 78(3), 563–587.
  • Eltzner, B., Wollnik, C., Gottschlich, C., Huckemann, S., Rehfeldt, F. (2015).
    The Filament Sensor for Near Real-Time Detection of Cytoskeletal Fiber Structures PLoS ONE, 10 (5), e0126346.
  • Eltzner, B., Jung, S., Huckemann, S. (2015).
    Dimension Reduction on Polyspheres with Application to Skeletal Representations Geometric Science of Information 2015 proceedings, 22 - 29.
  • Eltzner, B., Huckemann, S.F., Mardia, K.V. (2015).
    Torus Principal Component Analysis with an Application to RNA Structures. arXiv:1511.04993 Submitted.
  • Imdahl, C., Huckemann, S., Gottschlich, C. (2015).
    Towards generating realistic synthetic fingerprint images Proc. Image and Signal Processing and Analysis (ISPA), 78-82.
  • Oehlmann, L., Huckemann, S., Gottschlich, C. (2015).
    Performance Evaluation of Fingerprint Orientation Field Reconstruction Methods. Proc. International Workshop on Biometrics and Forensics , 1-6.
  • Huckemann, S., Mattingly, J.C., Miller, E., Nolen, J. (2015).
    Sticky central limit theorems at isolated hyperbolic planar singularities Electronic Journal of Probability, 20, paper no. 78, 34 pp., arXiv.org 1410.6879 .
  • Schulz, J.,Jung, S., Huckemann, S., Pierrynowski, M., Marron, S., Pizer, S. (2015).
    Analysis of rotational deformations from directional data. Journal of Computational and Graphical Statistics, 24(2), 539 - 560 preprint.
  • Hotz, T., Huckemann, S. (2015).
    Intrinsic Means on the Circle: Uniqueness, Locus and Asymptotics. The Annals of the Institute of Statistical Mathematics, 67(1), 177-193 arXiv.org 1108.2141 [stat.ME] [math.PR].
  • Huckemann, S.F. (2014).
    (Semi-)Intrinsic Statistical Analysis on Non-Euclidean Spaces. Chapter in Advances in Complex Data Modeling and Computational Methods in Statistics, Editors A. M. Paganoni and P. Secchi, 103-118.
  • Henke, M., Huckemann, S.F., Kurth, W., Sloboda, B. (2014).
    Reconstructing Leaf Growth Based on Non-destructive Digitizing and Low-Parametric Shape Evolution for Plant Modelling Over a Growth Cycle Silva Fennica, 48 (2), 1019..
  • Telschow, F.J.E., Huckemann, S.F., Pierrynowski, M. (2014).
    Asymptotics for Object Descriptors. Biometrical Journal, 56 (5), 781--785.
  • Skwerer, S., Bullitt, E., Huckemann, S., Miller, E., Oguz, I., Owen, M., Patrangenaru, V., Provan, S., Marron, J.S. (2014).
    Tree-oriented analysis of brain artery structure. Journal of Mathematical Imaging and Vision, 50, 126--143, DOI 10.1007/s10851-013-0473-0.
  • Huckemann, S. (2014).
    A Comment to Statistics on Manifolds and Landmark Based Image Analysis: A Nonparametric Theory with Applications Journal of Statistical Planning and Inference, 145, 33--36.
  • Huckeman, S., Hotz, T. (2014).
    On Means and Their Asymptotics: Circles and Shape Spaces Journal of Mathematical Imaging and Vision, 50(1), 98-106, DOI 10.1007/s10851-013-0462-3 (Preprint).
  • Gottschlich, C., Huckemann, S. (2014).
    Separating the Real From the Synthetic: Extended Minutiae Histograms as Fingerprints of Fingerprints. IET Biometrics, 3(4), 291-301.
  • Hotz, T., Huckemann, S., Le, H., Marron, J. S., Mattingly, J. C., Miller, E., Nolen, J., Owen, M., Patrangenaru, V., Skwerer, S. (2013).
    Sticky central limit theorems on open books. Annals of Applied Probability, 23(6) 2238-2258 , 1202.4267 [math.PR] [math.MG] [math.ST].
  • Pizer, S., Jung, S., Goswami, D., Zhao, X., Chaudhuri, R., Damon, J., Huckemann, S., Marron, S.J. (2013).
    Nested sphere statistics of skeletal models. Proc. Dagstuhl Workshop on Innovations for Shape Analysis: Models and Algorithms, Chapter 5, Preprint ..
  • Huckemann, S. (2012).
    A Comment to "A Microbiology Primer for Pyrosequencing" Quantitative Bio-Science, 31(2), 83-84.
  • Huckemann, S. (2012).
    On the Meaning of Mean Shape: Manifold Stability, Locus and the Two Sample Test Annals of the Institute of Statistical Mathematics, 64(6), 1227--1259.
  • Huckemann, S.F. (2011).
    Manifold stability and the central limit theorem for mean shape. Proceedings of the 30th Leeds Annual Statistical Research Workshop 5th-7th July, 2011, pdf.
  • Huckemann, S. (2011).
    Inference on 3D Procrustes Means: Tree Bole Growth, Rank Deficient Diffusion Tensors and Perturbation Models Scand. J. Statist., 38(3), 424--446 1001.0738 [stat.ME].
  • Huckemann, S. (2011).
    Intrinsic Inference on the Mean Geodesic of Planar Shapes and Tree Discrimination by Leaf Growth Ann. Statist., 39 (2), 1098–1124, arXiv 1009.3203 [stat.ME] (Preprint).
  • Huckemann, S., Hotz, T. (2010).
    Geodesic and parallel models for leaf shape Proceedings of the 29th Leeds Annual Statistical Research Workshop 6th-8th July 2010, pdf.
  • Huckemann, S., Hotz, T., Munk, A. (2010).
    Intrinsic shape analysis: Geodesic principal component analysis for Riemannian manifolds modulo Lie group actions. Discussion paper with rejoinder. Statistica Sinica, 20, 1-100 (Preprint).
  • Huckemann, S. (2010).
    Dynamic shape analysis and comparison of leaf growth. arXiv , 1002.0616v1 [stat.ME].
  • Huckemann, S., Kim, P., Koo, J.-Y., Munk, A. (2010).
    Moebius deconvolution on the hyperbolic plane with application to impedance density estimation. Ann. Statist., 38 (4), 2465-2498 (Preprint).
  • Hotz, T., Huckemann, S., Gaffrey, D., Munk, A., Sloboda, B. (2010).
    Shape spaces for pre-alingend star-shaped objects in studying the growth of plants. Journal of the Royal Statistical Society, Series C (Applied Statistics), 59 (1), 127-143 (Preprint).
  • Huckemann, S., Hotz, T., Munk, A. (2010).
    Intrinsic MANOVA for Riemannian Manifolds with an Application to Kendalls Spaces of Planar Shapes. IEEE Trans. Patt. Anal. Mach. Intell., 32 (4), 593-603, "Spotlight Paper" for this issue with its "Special Section on Shape Analysis and its Applications in Image Understanding", freely available until 18 March 2010 (Preprint).
  • Huckemann, S., Hotz, T., Munk, A. (2010).
    Rejoinder on "Intrinsic shape analysis: Geodesic principal component analysis for Riemannian manifolds modulo Lie group actions." Statistica Sinica, 20, 1-100 (Preprint).
  • Huckemann, S., Hotz, T., Munk, A. (2009).
    Intrinsic two-way MANOVA for shape spaces. Proc. of the ISI2009, article.
  • Huckemann, S., Hotz, T. (2009).
    Principal Components Geodesics for Planar Shape. Journal of Multivariate Analysis, 100, 699-714 (Preprint).
  • Huckemann, S., Hotz, T., Munk, A. (2008).
    Global Models for the Orientation Field of Fingerprints: An Approach Based on Quadratic Differentials. IEEE Trans. Patt. Anal. Mach. Intell., 30(9), 1507-1519 (Preprint).
  • Huckemann, S. und Ziezold, H. (2006).
    Principal component analysis for Riemannian manifolds with an application to triangular shape spaces. Adv. Appl. Prob. (SGSA), 38, no. 2, 299 - 319.
  • Huckemann, S. (1988).
    Ein Extremalproblem für das harmonische Maß einer Familie von Extremalkontinua im Einheitskreis. Mitt. d. Math. Seminars Gießen, 184, 1 - 64 .
  • Huckemann, S. (1987).
    On the crossingpoint of Green's function of an annulus. Complex Variables Theory & Application, 8, no. 4, 281 - 291.
  • Huckemann, S. (1985).
    Spezielle Radialschlitzgebiete von festem Modul. Mitt. d. Math. Seminars Gießen, 169, 11 - 23.

edit